The Expectation and Reality of the HepG2 Core Metabolic Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of the Data
- The panoramic nature of the study (which supposes an intended comprehensive analysis of all of the detectable analytes in a biological sample, including chemical unknowns);
- The access to results summarizing metabolomic findings.
2.2. Processing of the Data
2.3. Limits of Our Approach
3. Results and Discussion
3.1. Impact on HepG2 Cell Culture: “Control” and “Experimental” Datasets
3.2. The Resemblance of an Average Dataset in Accordance with the Number of Reported Metabolites
3.3. The Potential of Analytical Methods to Detect Different Chemical Substances
3.4. Most Often “Published” Metabolites and their Involvement in Biological Processes
3.5. Travel Essays on the Way to the Formation of the Metabolomic Core of the HepG2 Culture
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Resurreccion, E.P.; Fong, K. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022, 12, 488. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-I.; Yeh, Y.-M.; Tsai, Y.-S.; Huang, T.-H.; Shen, M.-R.; Lin, P.-C. Controlling the Confounding Effect of Metabolic Gene Expression to Identify Actual Metabolite Targets in Microsatellite Instability Cancers. Hum. Genom. 2023, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, M.; Pescini, D.; Galuzzi, B.G.; Bonanomi, M.; Gaglio, D.; Mangano, E.; Consolandi, C.; Alberghina, L.; Vanoni, M.; Damiani, C. INTEGRATE: Model-Based Multi-Omics Data Integration to Characterize Multi-Level Metabolic Regulation. PLoS Comput. Biol. 2022, 18, e1009337. [Google Scholar] [CrossRef] [PubMed]
- Arzumanian, V.A.; Kiseleva, O.I.; Poverennaya, E.V. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int. J. Mol. Sci. 2021, 22, 13135. [Google Scholar] [CrossRef]
- Johnson, C.H.; Gonzalez, F.J. Challenges and Opportunities of Metabolomics. J. Cell. Physiol. 2012, 227, 2975–2981. [Google Scholar] [CrossRef]
- Emwas, A.-H.M. The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research. In Metabonomics; Bjerrum, J.T., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1277, pp. 161–193. ISBN 978-1-4939-2376-2. [Google Scholar]
- Lichtenberg, S.; Trifonova, O.P.; Maslov, D.L.; Balashova, E.E.; Lokhov, P.G. Metabolomic Laboratory-Developed Tests: Current Status and Perspectives. Metabolites 2021, 11, 423. [Google Scholar] [CrossRef]
- Marshall, D.D.; Powers, R. Beyond the Paradigm: Combining Mass Spectrometry and Nuclear Magnetic Resonance for Metabolomics. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Nagana Gowda, G.A.; Gowda, Y.N.; Raftery, D. Expanding the Limits of Human Blood Metabolite Quantitation Using NMR Spectroscopy. Anal. Chem. 2015, 87, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Nagana Gowda, G.A.; Pascua, V.; Raftery, D. A New Limit for Blood Metabolite Analysis Using 1H NMR Spectroscopy. J. Magn. Reson. Open 2022, 12–13, 100082. [Google Scholar] [CrossRef]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The Human Urine Metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B.S.; Van Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.; Wopereis, S. Mass-Spectrometry-Based Metabolomics: Limitations and Recommendations for Future Progress with Particular Focus on Nutrition Research. Metabolomics 2009, 5, 435–458. [Google Scholar] [CrossRef] [Green Version]
- Khamis, M.M.; Adamko, D.J.; El-Aneed, A. Mass Spectrometric Based Approaches in Urine Metabolomics and Biomarker Discovery: Mass spectrometry in urine metabolomics and biomarker discovery. Mass Spec. Rev. 2017, 36, 115–134. [Google Scholar] [CrossRef]
- Damiani, C.; Gaglio, D.; Sacco, E.; Alberghina, L.; Vanoni, M. Systems Metabolomics: From Metabolomic Snapshots to Design Principles. Curr. Opin. Biotechnol. 2020, 63, 190–199. [Google Scholar] [CrossRef]
- Kiseleva, O.; Kurbatov, I.; Ilgisonis, E.; Poverennaya, E. Defining Blood Plasma and Serum Metabolome by GC-MS. Metabolites 2021, 12, 15. [Google Scholar] [CrossRef]
- PubChem PUG REST. Available online: https://pubchem.ncbi.nlm.nih.gov/docs/pug-rest (accessed on 24 May 2023).
- Batch Compound Classification. Available online: https://cfb.fiehnlab.ucdavis.edu/ (accessed on 25 May 2023).
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Krallinger, M.; Rabal, O.; Lourenço, A.; Oyarzabal, J.; Valencia, A. Information Retrieval and Text Mining Technologies for Chemistry. Chem. Rev. 2017, 117, 7673–7761. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Guled, F.; Hankemeier, T.; Ramautar, R. Profiling Nucleotides in Low Numbers of Mammalian Cells by Sheathless CE–MS in Positive Ion Mode: Circumventing Corona Discharge. Electrophoresis 2020, 41, 360–369. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, T.; Zhang, J.; Wong, S.C.C.; Ritchie, M.; Hou, H.W.; Wang, Y. Single Cell Metabolite Detection Using Inertial Microfluidics-Assisted Ion Mobility Mass Spectrometry. Anal. Chem. 2021, 93, 10462–10468. [Google Scholar] [CrossRef]
- Adeyemi, J.A.; Sorgi, C.A.; Machado, A.R.T.; Ogunjimi, A.T.; Gardinassi, L.G.A.; Nardini, V.; Faccioli, L.H.; Antunes, L.M.G.; Barbosa, F. Phospholipids Modifications in Human Hepatoma Cell Lines (HepG2) Exposed to Silver and Iron Oxide Nanoparticles. Arch. Toxicol. 2020, 94, 2625–2636. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, W.; Wang, S.; Li, M.; Tan, G.; An, J.; Xu, L.; Dong, J.; Cheng, P. Detection of the Effects of Triclosan (TCS) on the Metabolism of VOCs in HepG2 Cells by SPI-TOFMS. J. Breath Res. 2020, 14, 046002. [Google Scholar] [CrossRef] [PubMed]
- Gerdemann, A.; Behrens, M.; Esselen, M.; Humpf, H.-U. Metabolic Profiling as a Powerful Tool for the Analysis of Cellular Alterations Caused by 20 Mycotoxins in HepG2 Cells. Arch. Toxicol. 2022, 96, 2983–2998. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, N.J.; Hewitt, P. Phase I and II Enzyme Characterization of Two Sources of HepG2 Cell Lines. Xenobiotica 2004, 34, 243–256. [Google Scholar] [CrossRef]
- Kiseleva, O.I.; Kurbatov, I.Y.; Arzumanian, V.A.; Ilgisonis, E.V.; Vakhrushev, I.V.; Lupatov, A.Y.; Ponomarenko, E.A.; Poverennaya, E.V. Exploring Dynamic Metabolome of the HepG2 Cell Line: Rise and Fall. Cells 2022, 11, 3548. [Google Scholar] [CrossRef] [PubMed]
- García-Cañaveras, J.C.; López, S.; Castell, J.V.; Donato, M.T.; Lahoz, A. Extending Metabolome Coverage for Untargeted Metabolite Profiling of Adherent Cultured Hepatic Cells. Anal. Bioanal. Chem. 2016, 408, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Kiamehr, M.; Alexanova, A.; Viiri, L.E.; Heiskanen, L.; Vihervaara, T.; Kauhanen, D.; Ekroos, K.; Laaksonen, R.; Käkelä, R.; Aalto-Setälä, K. HiPSC-Derived Hepatocytes Closely Mimic the Lipid Profile of Primary Hepatocytes: A Future Personalised Cell Model for Studying the Lipid Metabolism of the Liver. J. Cell. Physiol. 2019, 234, 3744–3761. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Song, Q.; Cao, Y.; Zhao, Y.; Huo, H.; Wang, Y.; Song, Y.; Li, J.; Tu, P. Advanced Liquid Chromatography-Mass Spectrometry Enables Merging Widely Targeted Metabolomics and Proteomics. Anal. Chim. Acta 2019, 1069, 89–97. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Flor, S.; Ruiz, P.; Dhakal, R.; Hu, X.; Teesch, L.M.; Ludewig, G.; Lehmler, H.-J. 3,3′-Dichlorobiphenyl Is Metabolized to a Complex Mixture of Oxidative Metabolites, Including Novel Methoxylated Metabolites, by HepG2 Cells. Environ. Sci. Technol. 2020, 54, 12345–12357. [Google Scholar] [CrossRef]
- Luo, Y.; Geng, N.; Zhang, B.; Chen, J.; Zhang, H. Effects of Harvesting and Extraction Methods on Metabolite Recovery from Adherently Growing Mammalian Cells. Anal. Methods 2020, 12, 2491–2498. [Google Scholar] [CrossRef]
- Zheng, J.; Gong, G.-G.; Zheng, S.-J.; Zhang, Y.; Feng, Y.-Q. High Coverage Profiling of Carboxylated Metabolites in HepG2 Cells Using Secondary Amine-Assisted Ultrahigh-Performance Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Anal. Chem. 2021, 93, 1604–1611. [Google Scholar] [CrossRef]
- ASBMB Recommends Clearer Guidance on Metabolomics Data Sharing. Available online: https://www.asbmb.org/asbmb-today/policy/010923/asbmb-on-omics-data-sharing (accessed on 24 May 2023).
- Bayet-Robert, M.; Loiseau, D.; Rio, P.; Demidem, A.; Barthomeuf, C.; Stepien, G.; Morvan, D. Quantitative Two-Dimensional HRMAS 1H-NMR Spectroscopy-Based Metabolite Profiling of Human Cancer Cell Lines and Response to Chemotherapy. Magn. Reson. Med. 2010, 63, 1172–1183. [Google Scholar] [CrossRef]
- Bai, J.; Wang, M.X.; Chowbay, B.; Ching, C.B.; Chen, W.N. Metabolic Profiling of HepG2 Cells Incubated with S(−) and R(+) Enantiomers of Anti-Coagulating Drug Warfarin. Metabolomics 2011, 7, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Massimi, M.; Tomassini, A.; Sciubba, F.; Sobolev, A.P.; Devirgiliis, L.C.; Miccheli, A. Effects of Resveratrol on HepG2 Cells as Revealed by 1H-NMR Based Metabolic Profiling. Biochim. Et Biophys. Acta (BBA)—Gen. Subj. 2012, 1820, 1–8. [Google Scholar] [CrossRef]
- Keogh, A.; Şenkardeş, S.; Idle, J.; Küçükgüzel, Ş.; Beyoğlu, D. A Novel Anti-Hepatitis C Virus and Antiproliferative Agent Alters Metabolic Networks in HepG2 and Hep3B Cells. Metabolites 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Tian, N.; Wang, J.; Yang, M.; Kong, L. Metabolic Switching in the Hypoglycemic and Antitumor Effects of Metformin on High Glucose Induced HepG2 Cells. J. Pharm. Biomed. Anal. 2018, 156, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gao, J.; Wang, T.-S.; Guo, C.; Yan, Y.-J.; Mao, C.-Y.; Gu, L.-W.; Yang, Y.; Li, Z.-F.; Liu, A. NMR-Based Metabolomic Techniques Identify the Toxicity of Emodin in HepG2 Cells. Sci. Rep. 2018, 8, 9379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrends, V.; Giskeødegård, G.F.; Bravo-Santano, N.; Letek, M.; Keun, H.C. Acetaminophen Cytotoxicity in HepG2 Cells Is Associated with a Decoupling of Glycolysis from the TCA Cycle, Loss of NADPH Production, and Suppression of Anabolism. Arch. Toxicol. 2019, 93, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Xiang, B.; Wang, D.; Tang, S.; Teng, M.; Yan, S.; Zhou, Z.; Zhu, W. Different Toxic Effects of Racemate, Enantiomers, and Metabolite of Malathion on HepG2 Cells Using High-Performance Liquid Chromatography–Quadrupole–Time-of-Flight-Based Metabolomics. J. Agric. Food Chem. 2019, 67, 1784–1794. [Google Scholar] [CrossRef]
- Gu, J.; Shu, D.; Su, F.; Xie, Y.; Liang, X. Analysis of Metabolome Changes in the HepG2 Cells of Apatinib Treatment by Using the NMR-Based Metabolomics. J. Cell. Biochem. 2019, 120, 19137–19146. [Google Scholar] [CrossRef]
- Jin, M.; Shi, C.; Li, T.; Wu, Y.; Hu, C.; Huang, G. Solasonine Promotes Ferroptosis of Hepatoma Carcinoma Cells via Glutathione Peroxidase 4-Induced Destruction of the Glutathione Redox System. Biomed. Pharmacother. 2020, 129, 110282. [Google Scholar] [CrossRef]
- Krokos, A.; Deda, O.; Virgiliou, C.; Gika, H.; Raikos, N.; Aggelidou, E.; Kritis, A.; Theodoridis, G. Evaluation of Cocaine Effect on Endogenous Metabolites of HepG2 Cells Using Targeted Metabolomics. Molecules 2021, 26, 4610. [Google Scholar] [CrossRef]
- Nelson, D.R.; Hrout, A.A.; Alzahmi, A.S.; Chaiboonchoe, A.; Amin, A.; Salehi-Ashtiani, K. Molecular Mechanisms behind Safranal’s Toxicity to HepG2 Cells from Dual Omics. Antioxidants 2022, 11, 1125. [Google Scholar] [CrossRef]
- Hong, X.; Cai, Z.; Zhou, F.; Jin, X.; Wang, G.; Ouyang, B.; Zhang, J. Improved Pharmacokinetics of Tenofovir Ester Prodrugs Strengthened the Inhibition of HBV Replication and the Rebalance of Hepatocellular Metabolism in Preclinical Models. Front. Pharmacol. 2022, 13, 932934. [Google Scholar] [CrossRef]
- García-Cañaveras, J.C.; Castell, J.V.; Donato, M.T.; Lahoz, A. A Metabolomics Cell-Based Approach for Anticipating and Investigating Drug-Induced Liver Injury. Sci. Rep. 2016, 6, 27239. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tian, R.; Shan, Y.; Li, J.; Gao, H.; Xie, C.; Ma, Y.; Wu, Y.; Ji, B.; Gu, S.; et al. Metabolomics Study of the Metabolic Changes in Hepatoblastoma Cells in Response to NTCP/SLC10A1 Overexpression. Int. J. Biochem. Cell Biol. 2020, 125, 105773. [Google Scholar] [CrossRef]
- Rivas Serna, I.M.; Romito, I.; Maugeri, A.; Lo Re, O.; Giallongo, S.; Mazzoccoli, G.; Oben, J.A.; Li Volti, G.; Mazza, T.; Alisi, A.; et al. A Lipidomic Signature Complements Stemness Features Acquisition in Liver Cancer Cells. Int. J. Mol. Sci. 2020, 21, 8452. [Google Scholar] [CrossRef]
- Xu, F.; Wang, N.; Li, G.; Tian, D.; Shi, X. ANGPTL8/Betatrophin Improves Glucose Tolerance in Older Mice and Metabolomic Analysis Reveals Its Role in Insulin Resistance in HepG2 Cells. Diabetes Metab. Syndr. Obes. 2021, 14, 4209–4221. [Google Scholar] [CrossRef]
- Barot, S.; Stephenson, O.J.; Priya Vemana, H.; Yadav, A.; Bhutkar, S.; Trombetta, L.D.; Dukhande, V.V. Metabolic Alterations and Mitochondrial Dysfunction Underlie Hepatocellular Carcinoma Cell Death Induced by a Glycogen Metabolic Inhibitor. Biochem. Pharmacol. 2022, 203, 115201. [Google Scholar] [CrossRef]
- Lv, Y.; Hou, X.; Zhang, Q.; Li, R.; Xu, L.; Chen, Y.; Tian, Y.; Sun, R.; Zhang, Z.; Xu, F. Untargeted Metabolomics Study of the In Vitro Anti-Hepatoma Effect of Saikosaponin d in Combination with NRP-1 Knockdown. Molecules 2019, 24, 1423. [Google Scholar] [CrossRef] [Green Version]
- Lou, B.; Wu, H.; Ott, H.; Bennewitz, K.; Wang, C.; Poschet, G.; Liu, H.; Yuan, Z.; Kroll, J.; She, J. Increased Circulating Uric Acid Aggravates Heart Failure via Impaired Fatty Acid Metabolism. J. Transl. Med. 2023, 21, 199. [Google Scholar] [CrossRef]
- Ruiz-Aracama, A.; Peijnenburg, A.; Kleinjans, J.; Jennen, D.; Van Delft, J.; Hellfrisch, C.; Lommen, A. An Untargeted Multi-Technique Metabolomics Approach to Studying Intracellular Metabolites of HepG2 Cells Exposed to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. BMC Genom. 2011, 12, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Cañaveras, J.C.; Jiménez, N.; Gómez-Lechón, M.J.; Castell, J.V.; Donato, M.T.; Lahoz, A. LC-MS Untargeted Metabolomic Analysis of Drug-Induced Hepatotoxicity in HepG2 Cells: Liquid Phase Separations. Electrophoresis 2015, 36, 2294–2302. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cui, B.; Xu, Y.; Hu, C.; Liu, Y.; Qu, G.; Li, D.; Wu, Y.; Zhang, D.; Quan, S.; et al. Ethyl Carbamate Induces Cell Death through Its Effects on Multiple Metabolic Pathways. Chem.-Biol. Interact. 2017, 277, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Su, F.; Hong, P.; Zhang, Q.; Zhao, M. 1H NMR-Based Metabolomic Analysis of Nine Organophosphate Flame Retardants Metabolic Disturbance in Hep G2 Cell Line. Sci. Total Environ. 2019, 665, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shao, X.; Zhao, H.; Li, X.; Wei, J.; Yang, C.; Cai, Z. Integration of Metabolomics and Lipidomics Reveals Metabolic Mechanisms of Triclosan-Induced Toxicity in Human Hepatocytes. Environ. Sci. Technol. 2019, 53, 5406–5415. [Google Scholar] [CrossRef]
- Yue, S.; Yu, J.; Kong, Y.; Chen, H.; Mao, M.; Ji, C.; Shao, S.; Zhu, J.; Gu, J.; Zhao, M. Metabolomic Modulations of HepG2 Cells Exposed to Bisphenol Analogues. Environ. Int. 2019, 129, 59–67. [Google Scholar] [CrossRef]
- Jia, S.; Li, C.; Fang, M.; Marques Dos Santos, M.; Snyder, S.A. Non-Targeted Metabolomics Revealing the Effects of Bisphenol Analogues on Human Liver Cancer Cells. Chemosphere 2022, 297, 134088. [Google Scholar] [CrossRef]
- Chen, L.; Chen, F.; Liu, T.; Feng, F.; Guo, W.; Zhang, Y.; Feng, X.; Lin, J.-M.; Zhang, F. Lipidomics Profiling of HepG2 Cells and Interference by Mycotoxins Based on UPLC-TOF-IMS. Anal. Chem. 2022, 94, 6719–6727. [Google Scholar] [CrossRef]
- Meissen, J.K.; Hirahatake, K.M.; Adams, S.H.; Fiehn, O. Temporal Metabolomic Responses of Cultured HepG2 Liver Cells to High Fructose and High Glucose Exposures. Metabolomics 2015, 11, 707–721. [Google Scholar] [CrossRef]
- Skolik, R.A.; Solocinski, J.; Konkle, M.E.; Chakraborty, N.; Menze, M.A. Global Changes to HepG2 Cell Metabolism in Response to Galactose Treatment. Am. J. Physiol. Cell Physiol. 2021, 320, C778–C793. [Google Scholar] [CrossRef]
- Shih, L.-M.; Tang, H.-Y.; Lynn, K.-S.; Huang, C.-Y.; Ho, H.-Y.; Cheng, M.-L. Stable Isotope-Labeled Lipidomics to Unravel the Heterogeneous Development Lipotoxicity. Molecules 2018, 23, 2862. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Liu, S.; Chen, L.; Wu, B. Combined Effects of Arsenic and Palmitic Acid on Oxidative Stress and Lipid Metabolism Disorder in Human Hepatoma HepG2 Cells. Sci. Total Environ. 2021, 769, 144849. [Google Scholar] [CrossRef]
- Shigematsu, M.; Tomonaga, S.; Shimokawa, F.; Murakami, M.; Imamura, T.; Matsui, T.; Funaba, M. Regulatory Responses of Hepatocytes, Macrophages and Vascular Endothelial Cells to Magnesium Deficiency. J. Nutr. Biochem. 2018, 56, 35–47. [Google Scholar] [CrossRef]
- Abdalkader, R.; Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C.E.; Kamei, K. Untargeted LC-MS Metabolomics for the Analysis of Micro-Scaled Extracellular Metabolites from Hepatocytes. Anal. Sci. 2021, 37, 1049–1052. [Google Scholar] [CrossRef]
- Hu, Y.; Chai, X.; Men, J.; Rao, S.; Cong, X.; Cheng, S.; Qiao, Z. Does Methionine Status Influence the Outcome of Selenomethinione Supplementation? A Comparative Study of Metabolic and Selenium Levels in HepG2 Cells. Nutrients 2022, 14, 3705. [Google Scholar] [CrossRef]
- Wang, M.; Keogh, A.; Treves, S.; Idle, J.R.; Beyoğlu, D. The Metabolomic Profile of Gamma-Irradiated Human Hepatoma and Muscle Cells Reveals Metabolic Changes Consistent with the Warburg Effect. PeerJ 2016, 4, e1624. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, N.; Yang, J.; Yoon, D.; Kim, S.; Joo, S.-W.; Choi, J. Differential Crosstalk between Global DNA Methylation and Metabolomics Associated with Cell Type Specific Stress Response by Pristine and Functionalized MWCNT. Biomaterials 2017, 115, 167–180. [Google Scholar] [CrossRef]
- Kitchin, K.T.; Stirdivant, S.; Robinette, B.L.; Castellon, B.T.; Liang, X. Metabolomic Effects of CeO2, SiO2 and CuO Metal Oxide Nanomaterials on HepG2 Cells. Part. Fibre Toxicol. 2017, 14, 50. [Google Scholar] [CrossRef] [Green Version]
- Lindeque, J.Z.; Matthyser, A.; Mason, S.; Louw, R.; Taute, C.J.F. Metabolomics Reveals the Depletion of Intracellular Metabolites in HepG2 Cells after Treatment with Gold Nanoparticles. Nanotoxicology 2018, 12, 251–262. [Google Scholar] [CrossRef]
- Carrola, J.; Pinto, R.J.B.; Nasirpour, M.; Freire, C.S.R.; Gil, A.M.; Santos, C.; Oliveira, H.; Duarte, I.F. NMR Metabolomics Reveals Metabolism-Mediated Protective Effects in Liver (HepG2) Cells Exposed to Subtoxic Levels of Silver Nanoparticles. J. Proteome Res. 2018, 17, 1636–1646. [Google Scholar] [CrossRef]
- Al-Malki, A.L.; Bakkar, A.; Huwait, E.A.; Barbour, E.K.; Abulnaja, K.O.; Kumosani, T.A.; Moselhy, S.S. Strigol1/Albumin/Chitosan Nanoparticles Decrease Cell Viability, Induce Apoptosis and Alter Metabolomics Profile in HepG2 Cancer Cell Line. Biomed. Pharmacother. 2021, 142, 111960. [Google Scholar] [CrossRef]
- Menéndez-Pedriza, A.; Jaumot, J.; Bedia, C. Lipidomic Analysis of Single and Combined Effects of Polyethylene Microplastics and Polychlorinated Biphenyls on Human Hepatoma Cells. J. Hazard. Mater. 2022, 421, 126777. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Ding, D.; Gao, H.; Chi, Y.; Chen, J.; Wu, Z.; Lin, Y.; Dong, S. Comprehensive Metabolic Responses of HepG2 Cells to Fine Particulate Matter Exposure: Insights from an Untargeted Metabolomics. Sci. Total Environ. 2019, 691, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.; Hong, S.H.; Seo, S.; Jeong, C.H.; Kim, J.; Bae, E.; Lee, D.; Shin, J.H.; Shim, M.; Han, S.B.; et al. Hepatocellular Metabolic Abnormalities Induced by Long-Term Exposure to Novel Brominated Flame Retardant, Hexabromobenzene. Toxics 2023, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Mousa, S.; Glinsky, G.; Lin, H.-Y.; Ashur-Fabian, O.; Hercbergs, A.; Keating, K.; Davis, P. Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines 2018, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Petrak, J.; Ivanek, R.; Toman, O.; Cmejla, R.; Cmejlova, J.; Vyoral, D.; Zivny, J.; Vulpe, C.D. Déjà vu in Proteomics. A Hit Parade of Repeatedly Identified Differentially Expressed Proteins. Proteomics 2008, 8, 1744–1749. [Google Scholar] [CrossRef]
- Spicer, R.A.; Steinbeck, C. A Lost Opportunity for Science: Journals Promote Data Sharing in Metabolomics but Do Not Enforce It. Metabolomics 2018, 14, 16. [Google Scholar] [CrossRef] [Green Version]
- Harrieder, E.-M.; Kretschmer, F.; Dunn, W.; Böcker, S.; Witting, M. Critical Assessment of Chromatographic Metadata in Publicly Available Metabolomics Data Repositories. Metabolomics 2022, 18, 97. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Kodra, D.; Pousinis, P.; Vorkas, P.A.; Kademoglou, K.; Liapikos, T.; Pechlivanis, A.; Virgiliou, C.; Wilson, I.D.; Gika, H.; Theodoridis, G. Is Current Practice Adhering to Guidelines Proposed for Metabolite Identification in LC-MS Untargeted Metabolomics? A Meta-Analysis of the Literature. J. Proteome Res. 2022, 21, 590–598. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Sansone, S.-A.; Fan, T.; Goodacre, R.; Griffin, J.L.; Hardy, N.W.; Kaddurah-Daouk, R.; Kristal, B.S.; Lindon, J.; Mendes, P.; Morrison, N.; et al. The Metabolomics Standards Initiative. Nat. Biotechnol. 2007, 25, 846–848. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; Da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [Green Version]
- Keane, T.M.; O’Donovan, C.; Vizcaíno, J.A. The Growing Need for Controlled Data Access Models in Clinical Proteomics and Metabolomics. Nat. Commun. 2021, 12, 5787. [Google Scholar] [CrossRef]
- Ebbels, T.M.D.; Van Der Hooft, J.J.J.; Chatelaine, H.; Broeckling, C.; Zamboni, N.; Hassoun, S.; Mathé, E.A. Recent Advances in Mass Spectrometry-Based Computational Metabolomics. Curr. Opin. Chem. Biol. 2023, 74, 102288. [Google Scholar] [CrossRef]
- Matsuda, F. Technical Challenges in Mass Spectrometry-Based Metabolomics. Mass Spectrom. 2016, 5, S0052. [Google Scholar] [CrossRef] [Green Version]
- Castagné, R.; Boulangé, C.L.; Karaman, I.; Campanella, G.; Santos Ferreira, D.L.; Kaluarachchi, M.R.; Lehne, B.; Moayyeri, A.; Lewis, M.R.; Spagou, K.; et al. Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted 1 H NMR Metabolic Profiling. J. Proteome Res. 2017, 16, 3623–3633. [Google Scholar] [CrossRef] [Green Version]
- Stancliffe, E.; Patti, G.J. Quick Tips for Re-Using Metabolomics Data. Nat. Cell Biol 2022, 24, 1560–1562. [Google Scholar] [CrossRef]
- Tenenbaum, J.D.; Blach, C. Best Practices and Lessons Learned from Reuse of 4 Patient-Derived Metabolomics Datasets in Alzheimer’s Disease. Pac. Symp. Biocomput. 2018, 23, 280–291. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, O.I.; Kurbatov, I.Y.; Arzumanian, V.A.; Ilgisonis, E.V.; Zakharov, S.V.; Poverennaya, E.V. The Expectation and Reality of the HepG2 Core Metabolic Profile. Metabolites 2023, 13, 908. https://doi.org/10.3390/metabo13080908
Kiseleva OI, Kurbatov IY, Arzumanian VA, Ilgisonis EV, Zakharov SV, Poverennaya EV. The Expectation and Reality of the HepG2 Core Metabolic Profile. Metabolites. 2023; 13(8):908. https://doi.org/10.3390/metabo13080908
Chicago/Turabian StyleKiseleva, Olga I., Ilya Y. Kurbatov, Viktoriia A. Arzumanian, Ekaterina V. Ilgisonis, Svyatoslav V. Zakharov, and Ekaterina V. Poverennaya. 2023. "The Expectation and Reality of the HepG2 Core Metabolic Profile" Metabolites 13, no. 8: 908. https://doi.org/10.3390/metabo13080908
APA StyleKiseleva, O. I., Kurbatov, I. Y., Arzumanian, V. A., Ilgisonis, E. V., Zakharov, S. V., & Poverennaya, E. V. (2023). The Expectation and Reality of the HepG2 Core Metabolic Profile. Metabolites, 13(8), 908. https://doi.org/10.3390/metabo13080908