Decreased 25-Hydroxy Vitamin D Level Is Associated with All-Cause Mortality in Patients with Type 2 Diabetes at High Cardiovascular Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cardiovascular and Mortality Data Collection
2.3. Laboratory Measurements
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Incidence of Cardiovascular Events
3.3. Associations of Selected Biomarkers with the Primary Outcome
3.4. Associations of Selected Biomarkers with the Components of Primary Outcome
3.5. Multivariable Logistic Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.P., 3rd; Tracy, R.E.; Wattigney, W.A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef]
- Ma, C.X.; Ma, X.N.; Guan, C.H.; Li, Y.D.; Mauricio, D.; Fu, S.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar]
- Li, Y.; Zhong, X.; Cheng, G.; Zhao, C.; Zhang, L.; Hong, Y.; Wan, Q.; He, R.; Wang, Z. Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: A meta-analysis. Atherosclerosis 2017, 259, 75–82. [Google Scholar]
- Nordestgaard, B.G.; Zacho, J. Lipids, atherosclerosis and CVD risk: Is CRP an innocent bystander? Nutr. Metab. Cardiovasc. Dis. 2009, 19, 521–524. [Google Scholar]
- Gutsmann, T.; Müller, M.; Carroll, S.F.; MacKenzie, R.C.; Wiese, A.; Seydel, U. Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mononuclear cells. Infect. Immun. 2001, 69, 6942–6950. [Google Scholar]
- Lepper, P.M.; Schumann, C.; Triantafilou, K.; Rasche, F.M.; Schuster, T.; Frank, H.; Schneider, E.M.; Triantafilou, M.; von Eynatten, M. Association of lipopolysaccharide-binding protein and coronary artery disease in men. J. Am. Coll. Cardiol. 2007, 50, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Lepper, P.M.; Kleber, M.E.; Grammer, T.B.; Hoffmann, K.; Dietz, S.; Winkelmann, B.R.; Boehm, B.O.; März, W. Lipopolysaccharide-binding protein (LBP) is associated with total and cardiovascular mortality in individuals with or without stable coronary artery disease--results from the Ludwigshafen Risk and Cardiovascular Health Study (LURIC). Atherosclerosis 2011, 219, 291–297. [Google Scholar] [CrossRef]
- van der Toorn, J.E.; Rueda-Ochoa, O.L.; van der Schaft, N.; Vernoij, M.W.; Arfan Ikram, M.; Bos, D.; Kavousi, M. Arterial calcification at multiple sites: Sexspecific cardiovascular risk profiles and mortality risk–the Rotterdam study. BMC Med. 2020, 18, 263. [Google Scholar] [CrossRef]
- Greenland, P.; LaBree, L.; Azen, S.P.; Doherty, T.M.; Detrano, R.C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004, 291, 210–215. [Google Scholar]
- Greenland, P.; Bonow, R.O.; Brundage, B.H.; Budoff, M.J.; Eisenberg, M.J.; Grundy, S.M.; Lauer, M.S.; Post, W.S.; Raggi, P.; Redberg, R.F.; et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: A report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation 2007, 115, 402–426. [Google Scholar]
- Golüke, N.M.S.; Schoffelmeer, M.A.; De Jonghe, A.; Emmelot-Vonk, M.H.; De Jong, P.A.; Koek, H.L. Serum biomarkers for arterial calcification in humans: A systematic review. Bone Rep. 2022, 17, 101599. [Google Scholar]
- Lee, S.J.; Lee, I.-K.; Jeon, J.-H. Vascular calcification–new insights into its mechanism. Int. J. Mol. Sci. 2020, 21, 2685. [Google Scholar] [CrossRef] [Green Version]
- Rochette, L.; Meloux, A.; Rigal, E.; Zeller, M.; Malka, G.; Cottin, Y.; Vergely, C. The role of steoprotegerin in vascular calcification and bone metabolism: The basis for developing new treatments. Calcif. Tissue Int. 2019, 105, 239–251. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Venuraju, S.M.; Yerramasu, A.; Corder, R.; Lahiri, A. Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J. Am. Coll. Cardiol. 2010, 55, 2049–2061. [Google Scholar] [CrossRef] [Green Version]
- Demková, K.; Kozárová, M.; Malachovská, Z.; Javorský, M.; Tkáč, I. Osteoprotegerin concentration is associated with the presence and severity of peripheral arterial disease in type 2 diabetes mellitus. VASA 2018, 47, 131–135. [Google Scholar] [CrossRef]
- Brøndum-Jacobsen, P.; Benn, M.; Jensen, G.B.; Nordestgaard, B.G. 25-hydroxyvitamin d levels and risk of ischemic heart disease, myocardial infarction, and early death: Population-based study and meta-analyses of 18 and 17 studies. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2794–2802. [Google Scholar]
- Schöttker, B.; Jorde, R.; Peasey, A.; Thorand, B.; Jansen, E.H.; de Groot, L.; Streppel, M.; Gardiner, J.; Ordóñez-Mena, J.M.; Perna, L.; et al. Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ 2014, 348, g3656. [Google Scholar]
- Dowsett, L.; Higgins, E.; Alanazi, S.; Alshuwayer, N.A.; Leiper, F.C.; Leiper, J. ADMA: A Key Player in the Relationship between Vascular Dysfunction and Inflammation in Atherosclerosis. J. Clin. Med. 2020, 9, 3026. [Google Scholar] [CrossRef]
- Miyazaki, H.; Matsuoka, H.; Cooke, J.P.; Usui, M.; Ueda, S.; Okuda, S.; Imaizumi, T. Endogenous nitric oxide synthase inhibitor: A novel marker of atherosclerosis. Circulation 1999, 99, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Furuki, K.; Adachi, H.; Matsuoka, H.; Enomoto, M.; Satoh, A.; Hino, A.; Hirai, Y.; Imaizumi, T. Plasma levels of asymmetric dimethylarginine (ADMA) are related to intima-media thickness of the carotid artery: An epidemiological study. Atherosclerosis 2007, 191, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Furuki, K.; Adachi, H.; Enomoto, M.; Otsuka, M.; Fukami, A.; Kumagae, S.; Matsuoka, H.; Nanjo, Y.; Kakuma, T.; Imaizumi, T. Plasma level of asymmetric dimethylarginine (ADMA) as a predictor of carotid intima-media thickness progression: Six-Year prospective study using carotid ultrasonography. Hypertens. Res. 2008, 31, 1185–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, C.; Tian, Q.; Li, H.; Bei-Bei, Z.; He, G.; Lun, L. Levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and risk of coronary artery disease: A meta-analysis based on 4713 participants. Eur. J. Prev. Cardiol. 2015, 23, 502–510. [Google Scholar] [PubMed]
- Zeller, M.; Korandji, C.; Guilland, J.; Sicard, P.; Vergely, C.; Lorgis, L.; Beer, J.; Duvillard, L.; Lagrost, A.; Moreau, D.; et al. Impact of asymmetric dimethylarginine on mortality after acute myocardial infarction. Arter. Thromb. Vasc. Biol. 2008, 28, 954–960. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013, 36 (Suppl. 1), S67–S74. [Google Scholar] [CrossRef] [Green Version]
- eMortes ÚDZS. Available online: https://emortes.portaludzs.sk/web/emortes/ (accessed on 10 March 2022).
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar]
- Wang, L.; Song, Y.; Manson, J.E.; Pilz, S.; März, W.; Michaëlsson, K.; Lundqvist, A.; Jassal, S.K.; Barrett-Connor, E.; Zhang, C.; et al. Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: A meta-analysis of prospective studies. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Kunutsor, S.; Vitezova, A.; Oliver-Williams, C.; Chowdhury, S.; Kiefte-de-Jong, J.C.; Khan, H.; Baena, C.P.; Prabhakaran, D.; Hoshen, M.B.; et al. Vitamin D and risk of cause specific death: Systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ 2014, 348, g1903. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Guo, J.; Pan, A.; Chen, C.; Liu, L.; Liu, G. Association of Serum 25-Hydroxyvitamin D Concentrations With All-Cause and Cause-Specific Mortality Among Individuals With Diabetes. Diabetes Care 2021, 44, 350–357. [Google Scholar]
- Durup, D.; Jørgensen, H.L.; Christensen, J.; Schwarz, P.; Heegaard, A.M.; Lind, B. A reverse J-shaped association of all-cause mortality with serum 25-hydroxyvitamin D in general practice: The CopD study. J. Clin. Endocrinol. Metab. 2012, 97, 2644–2652. [Google Scholar]
- Zittermann, A.; Iodice, S.; Pilz, S.; Grant, W.B.; Bagnardi, V.; Gandini, S. Vitamin D deficiency and mortality risk in the general population: A meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2012, 95, 91–100. [Google Scholar]
- de la Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and cardiovascular health. Clin. Nutr. 2021, 40, 2946–2957. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Meza, C.A.; Clarke, H.; Kim, J.S.; Hickner, R.C. Vitamin D and endothelial function. Nutrients 2020, 12, 575. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.J.; Scott, D.; Srikanth, V.; Ebeling, P. Effect of vitamin D supplementation on measures of arterial stiffness: A systematic review and meta-analysis of randomized controlled trials. Clin. Endocrinol. 2016, 84, 645–657. [Google Scholar]
- Achinger, S.G.; Ayus, J.C. The role of vitamin D in left ventricular hypertrophy and cardiac function. Kidney Int. Suppl. 2005, 95, S37–S42. [Google Scholar]
- Schöttker, B.; Haug, U.; Schomburg, L.; Köhrle, J.; Perna, L.; Müller, H.; Holleczek, B.; Brenner, H. Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am. J. Clin. Nutr. 2013, 97, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Pilz, S.; März, W.; Wellnitz, B.; Seelhorst, U.; Fahrleitner-Pammer, A.; Dimai, H.P.; Boehm, B.O.; Dobnig, H. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J. Clin. Endocrinol. Metab. 2008, 93, 3927–3935. [Google Scholar] [PubMed] [Green Version]
- Zittermann, A.; Kuhn, J.; Dreier, J.; Knabbe, C.; Gummert, J.F.; Börgermann, J. Vitamin D status and the risk of major adverse cardiac and cerebrovascular events in cardiac surgery. Eur. Heart J. 2013, 34, 1358–1364. [Google Scholar] [CrossRef] [Green Version]
- Durup, D.; Jørgensen, H.L.; Christensen, J.; Tjønneland, A.; Olsen, A.; Halkjær, J.; Lind, B.; Heegaard, A.M.; Schwarz, P. A Reverse J-shaped association between serum 25-hydroxyvitamin D and cardiovascular disease mortality: The CopD Study. J. Clin. Endocrinol. Metab. 2015, 100, 2339–2346. [Google Scholar]
- Pilz, S.; Kienreich, K.; Tomaschitz, A.; Ritz, E.; Lerchbaum, E.; Obermayer-Pietsch, B.; Matzi, V.; Lindenmann, J.; März, W.; Gandini, S.; et al. Vitamin D and cancer mortality: Systematic review of prospective epidemiological studies. Anticancer. Agents Med. Chem. 2013, 13, 107–117. [Google Scholar] [CrossRef]
- Yin, L.; Ordóñez-Mena, J.M.; Chen, T.; Schöttker, B.; Arndt, V.; Brenner, H. Circulating 25-hydroxyvitamin D serum concentration and total cancer incidence and mortality: A systematic review and meta-analysis. Prev. Med. 2013, 57, 753–764. [Google Scholar] [CrossRef]
- Mohr, S.B.; Gorham, E.D.; Kim, J.; Hofflich, H.; Garland, C.F. Meta-analysis of vitamin D sufficiency for improving survival of patients with breast cancer. Anticancer. Res. 2014, 34, 1163–1166. [Google Scholar]
- Afzal, S.; Brøndum-Jacobsen, P.; Bojesen, S.E.; Nordestgaard, B.G. Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ 2014, 349, g6330. [Google Scholar]
- Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association between vitamin D supplementation and mortality: Systematic review and meta-analysis. BMJ 2019, 366, l4673. [Google Scholar] [CrossRef] [Green Version]
- Smaha, J.; Kužma, M.; Brázdilová, K.; Nachtmann, S.; Jankovský, M.; Pastírová, K.; Gažová, A.; Jackuliak, P.; Killinger, Z.; Kyselovič, J.; et al. Patients with COVID-19 pneumonia with 25(OH)D levels lower than 12 ng/ml are at increased risk of death. Int. J. Infect. Dis. 2022, 116, 313–318. [Google Scholar] [CrossRef]
- Browner, W.S.; Lui, L.Y.; Cummings, S.R. Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J. Clin. Endocrinol. Metab. 2001, 86, 631–637. [Google Scholar]
- Amer, M.; Qayyum, R. Relation between serum 25-hydroxyvitamin D and C-reactive protein in asymptomatic adults (from the continuous National Health and Nutrition Examination Survey 2001 to 2006). Am. J. Cardiol. 2012, 109, 226–230. [Google Scholar] [CrossRef]
- Chen, N.; Wan, Z.; Han, S.F.; Li, B.Y.; Zhang, Z.L.; Qin, L.Q. Effect of vitamin D supplementation on the level of circulating high-sensitivity C-reactive protein: A meta-analysis of randomized controlled trials. Nutrients 2014, 6, 2206–2216. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef]
- C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC); Wensley, F.; Gao, P.; Burgess, S.; Kaptoge, S.; Di Angelantonio, E.; Shah, T.; Engert, J.C.; Clarke, R.; Davey-Smith, G.; et al. Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data. BMJ 2011, 342, d548. [Google Scholar]
- Torzewski, M.; Rist, C.; Mortensen, R.F.; Zwaka, T.P.; Bienek, M.; Waltenberger, J.; Koenig, W.; Schmitz, G.; Hombach, V.; Torzewski, J. C-reactive protein in the arterial intima: Role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arter. Thromb. Vasc. Biol. 2000, 20, 2094–2099. [Google Scholar] [CrossRef] [Green Version]
- Danesh, J.; Collins, R.; Peto, R. Chronic infections and coronary heart disease: Is there a link? Lancet 1997, 350, 430–436. [Google Scholar] [CrossRef]
- Pludowski, P.; Takacs, I.; Boyanov, M.; Belaya, Z.; Diaconu, C.C.; Mokhort, T.; Zherdova, N.; Rasa, I.; Payer, J.; Pilz, S. Clinical Practice in the Prevention, Diagnosis and Treatment of Vitamin D Deficiency: A Central and Eastern European Expert Consensus Statement. Nutrients 2022, 14, 1483. [Google Scholar] [CrossRef]
Any Cardiovascular Event or Death (n = 89) | No Cardiovascular Event and Alive (n = 101) | p | |
---|---|---|---|
Age (years) | 68.8 ± 8.6 | 62.2 ± 9.0 | <0.001 |
Sex (% women) | 51.5 | 36.6 | 0.040 |
Duration of diabetes | 7.1 ± 6.6 | 12.5 ± 8.5 | <0.001 |
Hypertension (%) | 88.5 | 93.9 | 0.202 |
Smoking (%) | - | - | 0.033 |
Never | 42.7 | 61.0 | |
Previous | 18.0 | 15.0 | |
Current | 39.3 | 24.0 | |
CVD at baseline (%) | - | - | <0.001 |
None | 13.6 | 59.4 | |
1 vascular bed | 46.6 | 27.1 | |
2 vascular beds | 35.2 | 11.5 | |
3 vascular beds | 4.5 | 2.1 | |
BMI (kg/m2) | 29.4 ± 5.6 | 31.0 ± 4.8 | 0.043 |
HbA1c (%) | 7.93 ± 1.64 | 7.31 ± 1.67 | 0.012 |
LDL cholesterol (mmol/L) | 2.61 ± 0.81 | 2.76 ± 0.74 | 0.170 |
Creatinine (µmol/L) | 88.9 ± 44.5 | 78.3 ± 19.6 | 0.031 |
Biomarkers (median, IQR) | |||
25(OH)D (ng/mL) | 7.82 (1.27–16.7) | 18.2 (14.3–24.2) | <0.001 |
OPG (pmol/L) | 19.7 (10.1–27.5) | 7.76 (5.83–20.2) | <0.001 |
CRP (mg/L) | 8.03 (2.36–11.6) | 3.65 (1.64–7.71) | 0.018 |
LBP (nmol/L) | 49.0 (36.9–62.7) | 45.8 (27.5–59.7) | 0.123 |
ADMA (µmol/L) | 0.40 (0.34–0.53) | 0.44 (0.36–0.56) | 0.076 |
Antidiabetic medication (%) | |||
Insulin | 48.3 | 18.8 | <0.001 |
Sulfonylurea | 23.3 | 35.4 | 0.073 |
Metformin | 47.7 | 79.2 | <0.001 |
Glitazones | 0 | 1.0 | 0.347 |
DPP-4 inhibitors | 11.5 | 18.8 | 0.173 |
GLP-1 agonists | 1.2 | 3.1 | 0.367 |
SGLT2 inhibitors | 0.1 | 5.2 | 0.031 |
Antihypertensive medication (%) | |||
ACE inhibitors | 69.2 | 83.3 | 0.031 |
Calcium blockers | 37.2 | 44.0 | 0.372 |
Diuretics | 39.7 | 35.2 | 0.539 |
Beta-blockers | 53.8 | 58.2 | 0.566 |
Centrally acting drugs | 20.5 | 20.9 | 0.953 |
Lipid-lowering medication (%) | |||
Statin | 65.0 | 70.1 | 0.480 |
Fibrate | 8.9 | 16.1 | 0.162 |
Ezetimibe | 3.8 | 2.3 | 0.573 |
Unadjusted Analysis | Adjusted Analysis | ||||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | p * | |
25(OH)D | 0.35 | 0.24–0.51 | <0.001 | 0.41 | 0.26–0.65 | <0.001 | 0.005 |
OPG | 1.50 | 1.02–1.07 | <0.001 | 1.20 | 0.82–1.76 | 0.339 | 0.703 |
CRP | 1.10 | 1.04–1.18 | <0.001 | 1.87 | 1.24–2.82 | 0.003 | 0.008 |
LBP | 1.32 | 0.98–1.78 | 0.064 | 1.60 | 1.06–2.42 | 0.025 | 0.037 |
ADMA | 0.75 | 0.55–1.02 | 0.071 | 0.96 | 0.64–1.43 | 0.831 | 0.501 |
Unadjusted Analysis | Adjusted Analysis | ||||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | p * | |
25(OH)D | 0.44 | 0.30–0.64 | <0.001 | 0.56 | 0.36–0.86 | 0.008 | 0.032 |
OPG | 1.80 | 1.28–2.52 | 0.001 | 1.37 | 0.94–2.01 | 0.104 | 0.237 |
CRP | 1.59 | 1.16–2.19 | 0.004 | 1.60 | 1.24–2.82 | 0.019 | 0.035 |
LBP | 1.41 | 1.02–1.94 | 0.037 | 1.51 | 1.03–2.23 | 0.036 | 0.093 |
ADMA | 0.85 | 0.61–1.18 | 0.318 | 1.10 | 0.68–1.51 | 0.968 | 0.604 |
Independent Variables | All Cardiovascular Events or All-Cause Death | All Cardiovascular Events | All-Cause Death | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Age (year) | 1.10 | 1.04–1.15 | <0.001 | 1.12 | 1.06–1.17 | <0.001 | |||
CVD baseline | 2.58 | 1.61–4.15 | <0.001 | 3.11 | 1.93–5.00 | <0.001 | |||
25(OH)D (SD) | 0.43 | 0.28–0.66 | <0.001 | 0.50 | 0.33–0.76 | 0.001 | |||
Sex (men/women) | 0.32 | 0.14–0.71 | 0.005 | 0.37 | 0.17–0.79 | 0.011 | |||
BMI (kg/m2) | 0.92 | 0.85–0.99 | 0.032 | ||||||
HbA1c (%) | 1.38 | 1.11–1.71 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stančáková Yaluri, A.; Tkáč, I.; Tokarčíková, K.; Kozelová, Z.; Rašiová, M.; Javorský, M.; Kozárová, M. Decreased 25-Hydroxy Vitamin D Level Is Associated with All-Cause Mortality in Patients with Type 2 Diabetes at High Cardiovascular Risk. Metabolites 2023, 13, 887. https://doi.org/10.3390/metabo13080887
Stančáková Yaluri A, Tkáč I, Tokarčíková K, Kozelová Z, Rašiová M, Javorský M, Kozárová M. Decreased 25-Hydroxy Vitamin D Level Is Associated with All-Cause Mortality in Patients with Type 2 Diabetes at High Cardiovascular Risk. Metabolites. 2023; 13(8):887. https://doi.org/10.3390/metabo13080887
Chicago/Turabian StyleStančáková Yaluri, Alena, Ivan Tkáč, Katarína Tokarčíková, Zuzana Kozelová, Mária Rašiová, Martin Javorský, and Miriam Kozárová. 2023. "Decreased 25-Hydroxy Vitamin D Level Is Associated with All-Cause Mortality in Patients with Type 2 Diabetes at High Cardiovascular Risk" Metabolites 13, no. 8: 887. https://doi.org/10.3390/metabo13080887
APA StyleStančáková Yaluri, A., Tkáč, I., Tokarčíková, K., Kozelová, Z., Rašiová, M., Javorský, M., & Kozárová, M. (2023). Decreased 25-Hydroxy Vitamin D Level Is Associated with All-Cause Mortality in Patients with Type 2 Diabetes at High Cardiovascular Risk. Metabolites, 13(8), 887. https://doi.org/10.3390/metabo13080887