Biliary Amino Acids and Telocytes in Gallstone Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stinton, L.M.; Shaffer, E.A. Epidemiology of gallbladder disease: Cholelithiasis and cancer. Gut Liver 2012, 6, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, W.; Mason, R.A.; Kachele, V. Prevalence of gallstones in sonographic surveys worldwide. J. Clin. Ultrasound 1999, 27, 1–7. [Google Scholar] [CrossRef]
- Adeva-Andany, M.; Souto-Adeva, G.; Ameneiros-Rodríguez, E.; Fernández-Fernández, C.; Donapetry-García, C.; Domínguez-Montero, A. Insulin resistance and glycine metabolism in humans. Amino Acids 2018, 50, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Monte, M.J.; Marin, J.J.G.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol. 2009, 15, 804–816. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Kang, D.-J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Li, T.; Portincasa, P.; Ford, D.A.; Neuschwander-Tetri, B.A.; Tso, P.; Wang, D.Q.-H. New insights into the role of Lith genes in the formation of cholesterol-supersaturated bile. Liver Res. 2017, 1, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.-C.; Hsi, E.; Lee, K.-T. Mucin genes in gallstone disease. Clin. Chim. Acta 2012, 413, 1466–1471. [Google Scholar] [CrossRef]
- Kuipers, E.J. Encyclopedia of Gastroenterology; Academic Press: Cambridge, MA, USA, 2019; ISBN 012818728X. [Google Scholar]
- Carey, M.C.; Small, D.M. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J. Clin. Investig. 1978, 61, 998–1026. [Google Scholar] [CrossRef]
- Carey, M.C. Critical tables for calculating the cholesterol saturation of native bile. J. Clin. Investig. 1978, 19, 945–955. [Google Scholar] [CrossRef]
- Pasternak, A.; Bugajska, J.; Szura, M.; Walocha, J.A.; Matyja, A.; Gajda, M.; Sztefko, K.; Gil, K. Biliary Polyunsaturated Fatty Acids and Telocytes in Gallstone Disease. Cell Transplant. 2017, 26, 125–133. [Google Scholar] [CrossRef]
- Matyja, A.; Gil, K.; Pasternak, A.; Sztefko, K.; Gajda, M.; Tomaszewski, K.A.; Matyja, M.; Walocha, J.A.; Kulig, J.; Thor, P. Telocytes: New insight into the pathogenesis of gallstone disease. J. Cell. Mol. Med. 2013, 17, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Hinescu, M.E.; Ardeleanu, C.; Gherghiceanu, M.; Popescu, L.M. Interstitial Cajal-like cells in human gallbladder. J. Mol. Histol. 2007, 38, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, A.; Gil, K.; Matyja, A.; Gajda, M.; Sztefko, K.; Walocha, J.A.; Kulig, J.; Thor, P. Loss of gallbladder interstitial Cajal-like cells in patients with cholelithiasis. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2013, 25, e17–e24. [Google Scholar] [CrossRef]
- Bugajska, J.; Gotfryd-Bugajska, K.; Szura, M.; Berska, J.; Pasternak, A.; Sztefko, K. Characteristics of amino acid profiles and incretin hormones in patients with gallstone disease: A pilot study. Pol. Arch. Intern. Med. 2019, 129, 883–888. [Google Scholar] [CrossRef]
- Bugajska, J.; Berska, J.; Hodorowicz-Zaniewska, D.; Sztefko, K. Walidacja metody oznaczania kwasów tłuszczowych frakcji fosfolipidów w surowicy krwi. Diagnostyka Lab. 2010, 46, 125–130. [Google Scholar]
- Mall, A.S. Analysis of mucins: Role in laboratory diagnosis. J. Clin. Pathol. 2008, 61, 1018–1024. [Google Scholar] [CrossRef]
- Inoue, T.; Mishima, Y. The pathophysiological characteristics of bile from patients with gallstones: The role of prostaglandins and mucin in gallstone formation. Jpn J. Surg. 1990, 20, 10–18. [Google Scholar] [CrossRef]
- Dowling, R.H. Review: Pathogenesis of gallstones. Aliment. Pharmacol. Ther. 2000, 14 (Suppl. S2), 39–47. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Wu, T.; Li, D.; Cui, Y. Therapeutic effect of yinchenhao decoction on cholelithiasis via mucin from gallbladder-intestine. Res. Sq. 2021, in press. [Google Scholar]
- Van Klinken, B.J.; Van Dijken, T.C.; Oussoren, E.; Büller, H.A.; Dekker, J.; Einerhand, A.W. Molecular cloning of human MUC3 cDNA reveals a novel 59 amino acid tandem repeat region. Biochem. Biophys. Res. Commun. 1997, 238, 143–148. [Google Scholar] [CrossRef]
- Toribara, N.W.; Ho, S.B.; Gum, E.; Gum, J.R.J.; Lau, P.; Kim, Y.S. The carboxyl-terminal sequence of the human secretory mucin, MUC6. Analysis Of the primary amino acid sequence. J. Biol. Chem. 1997, 272, 16398–16403. [Google Scholar] [CrossRef] [PubMed]
- Toribara, N.W.; Roberton, A.M.; Ho, S.B.; Kuo, W.L.; Gum, E.; Hicks, J.W.; Gum, J.R.J.; Byrd, J.C.; Siddiki, B.; Kim, Y.S. Human gastric mucin. Identification of a unique species by expression cloning. J. Biol. Chem. 1993, 268, 5879–5885. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-T.; Liu, T.-S. Mucin gene expression in gallbladder epithelium. J. Formos. Med. Assoc. 2002, 101, 762–768. [Google Scholar] [PubMed]
- Hu, F.-L.; Chen, H.-T.; Guo, F.-F.; Yang, M.; Jiang, X.; Yu, J.-H.; Zhang, F.-M.; Xu, G.-Q. Biliary microbiota and mucin 4 impact the calcification of cholesterol gallstones. Hepatobiliary Pancreat. Dis. Int. 2021, 20, 61–66. [Google Scholar] [CrossRef]
- Lagow, E.; DeSouza, M.M.; Carson, D.D. Mammalian reproductive tract mucins. Hum. Reprod. Update 1999, 5, 280–292. [Google Scholar] [CrossRef]
- Kim, Y.S.; Gum, J.R.J.; Byrd, J.C.; Toribara, N.W. The structure of human intestinal apomucins. Am. Rev. Respir. Dis. 1991, 144, S10–S14. [Google Scholar] [CrossRef]
- Shimizu, S.; Sabsay, B.; Veis, A.; Ostrow, J.D.; Rege, R.V.; Dawes, L.G. Isolation of an acidic protein from cholesterol gallstones, which inhibits the precipitation of calcium carbonate in vitro. J. Clin. Investig. 1989, 84, 1990–1996. [Google Scholar] [CrossRef]
- Peters, W.H.M.; van Schaik, A.; Peters, J.H.; van Goor, H. Oxidised- and total non-protein bound glutathione and related thiols in gallbladder bile of patients with various gastrointestinal disorders. BMC Gastroenterol. 2007, 7, 7. [Google Scholar] [CrossRef]
- Bannai, S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J. Biol. Chem. 1986, 261, 2256–2263. [Google Scholar] [CrossRef]
- Combs, J.A.; DeNicola, G.M. The Non-Essential Amino Acid Cysteine Becomes Essential for Tumor Proliferation and Survival. Cancers 2019, 11, 678. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Zhu, S.; Bao, X.; Fu, Z.; Zhen, T.; Yuan, Z.; Li, Q.; Deng, Z.; Sun, J.; et al. Changes in plasma bile acids are associated with gallbladder stones and polyps. BMC Gastroenterol. 2020, 20, 363. [Google Scholar] [CrossRef] [PubMed]
Fatty Acid | Control Group | Study Group | |
---|---|---|---|
Percentage of Total FAs Mean (SD) or Median (Interquartile Range) | p | ||
SFAs | |||
C 12 | 0.03 (0.02–0.04) | 0.03 (0.02–0.04) | 0.72 |
C 14 | 0.45 (0.20) | 0.51 (0.18) | 0.43 |
C 16 | 42.5 (40.9–43.5) | 40.4 (40.0–41.2) | 0.04 |
C 18 | 5.91 (5.04–6.57) | 6.13 (5.43–6.80) | 0.61 |
MUFAs | |||
C 16:1 (n-7) | 2.42 (1.22) | 2.10 (0.97) | 0.41 |
C 18:1 (n-9) | 12.2 (10.3–13.6) | 11.2 (9.9–13.0) | 0.39 |
PUFAs | |||
C 18:2 (n-6) | 23.4 (22.2–25.5) | 28.8 (25.8–31.2) | 0.008 |
C 18:3 (n-3) | 0.39 (0.20) | 0.58 (0.21) | 0.01 |
C 20:2 (n-6) | 0.14 (0.10–0.15) | 0.16 (0.13–0.20) | 0.15 |
C 20:4 (n-6) | 6.77 (3.64) | 6.54 (1.28) | 0.78 |
C 20:5 (n-3) | 1.26 (1.03) | 1.15 (0.61) | 0.68 |
C 22:6 (n-3) | 2.26 (0.79) | 1.97 (0.65) | 0.26 |
C 20 + C 18:3 (n-6) | 0.25 (0.15–0.50) | 0.28 (0.20–0.40) | 0.77 |
Bile Acids | Control Group | Study Group | |
---|---|---|---|
Percentage of Total BAs Mean (SD) or Median (Interquartile Range) | p | ||
Primary bile acids | |||
GCA | 33.8 (27.8–39.9) | 27.0 (24.2–30.8) | 0.03 |
TCA | 10.4 (6.42–19.1) | 7.57 (5.59–10.7) | 0.22 |
GCDCA | 19.9 (16.5–29.6) | 25.8 (22.5–29.7) | 0.16 |
TCDCA | 10.8 (7.0) | 8.6 (4.6) | 0.22 |
Secondary bile acids | |||
GDCA | 13.7 (9.9) | 23.4 (8.9) | 0.001 |
TDCA | 2.02 (1.74–3.21) | 3.9 (2.4–5.0) | 0.03 |
Amino Acids | Control Group | Study Group | |
---|---|---|---|
Percentage of Total AAs Mean (SD) or Median (Interquartile Range) | p | ||
Valine | 0.93 (0.41–2.92) | 3.38 (1.92–4.51) | 0.01 |
Isoleucine | 0.89 (0.46–2.65) | 2.01 (1.50–2.56) | 0.03 |
Leucine | 0.66 (0.45–4.97) | 2.68 (1.81–3.85) | 0.06 |
Threonine | 1.89 (1.56) | 2.97 (0.92) | 0.01 |
Methionine | 0.02 (0.01–0.04) | 0.05 (0.03–0.19) | 0.02 |
Phenylalanine | 0.30 (0.11–1.16) | 1.09 (0.68–1.50) | 0.045 |
Lysine | 4.11 (2.87) | 4.98 (2.01) | 0.30 |
Tryptophan | 0.38 (0.20) | 0.48 (0.24) | 0.18 |
Histidine | 0.78 (0.49–1.13) | 0.67 (0.33–0.94) | 0.46 |
Arginine | 2.15 (1.70–3.17) | 1.60 (1.11–2.27) | 0.10 |
Tyrosine | 0.45 (0.32–0.90) | 1.09 (0.74–1.71) | 0.01 |
Aspartic acid | 1.65 (0.85–1.89) | 2.08 (1.45–2.35) | 0.09 |
Glutamic acid | 5.10 (2.48) | 11.4 (3.45) | <0.001 |
Serine | 2.37 (1.96) | 4.03 (1.20) | 0.004 |
Asparagine | 0.08 (0.00–0.36) | 0.16 (0.05–0.43) | 0.45 |
Glycine | 38.8 (20.4) | 27.0 (13.8) | 0.05 |
Taurine | 15.2 (9.7–25.4) | 10.0 (6.09–19.0) | 0.14 |
Citrulline | 0.01 (0.00–0.19) | 0.10 (0.01–0.19) | 0.13 |
Alanine | 3.3 (2.18–6.14) | 10.0 (7.9–13.7) | <0.001 |
Proline | 1.22 (0.62–2.02) | 3.49 (2.65–4.39) | <0.001 |
Ornithine | 3.31 (2.10–4.62) | 3.04 (2.36–4.16) | 0.79 |
3-methyl-histidine | 0.05 (0.02–0.07) | 0.03 (0.03–0.06) | 0.93 |
Cystine | 2.86 (1.84–5.96) | 1.04 (0.59–1.97) | 0.003 |
α-Aminobutyric acid | 0.32 (0.20–0.39) | 0.23 (0.12–0.35) | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bugajska, J.; Berska, J.; Pasternak, A.; Sztefko, K. Biliary Amino Acids and Telocytes in Gallstone Disease. Metabolites 2023, 13, 753. https://doi.org/10.3390/metabo13060753
Bugajska J, Berska J, Pasternak A, Sztefko K. Biliary Amino Acids and Telocytes in Gallstone Disease. Metabolites. 2023; 13(6):753. https://doi.org/10.3390/metabo13060753
Chicago/Turabian StyleBugajska, Jolanta, Joanna Berska, Artur Pasternak, and Krystyna Sztefko. 2023. "Biliary Amino Acids and Telocytes in Gallstone Disease" Metabolites 13, no. 6: 753. https://doi.org/10.3390/metabo13060753
APA StyleBugajska, J., Berska, J., Pasternak, A., & Sztefko, K. (2023). Biliary Amino Acids and Telocytes in Gallstone Disease. Metabolites, 13(6), 753. https://doi.org/10.3390/metabo13060753