Association of Metabolites, Nutrients, and Toxins in Maternal and Cord Serum with Asthma, IgE, SPT, FeNO, and Lung Function in Offspring
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Exposures in the F0 and F2 Generations
2.3. Sample Preparation and Processing
2.4. Profiling of MNTs Using Liquid Chromatography/High Resolution Mass Spectrometry (LC/HRMS)
2.5. Statistical Preprocessing of MNT Data
- (1)
- Reducing batch effects: In some batches, serum samples from F0 and F2 generations were analyzed together for MNTs. In other batches, only F2 serum samples were analyzed. We observed that some F0 compounds may have been oxidized due to storage duration (approximately 30 years). Thus, some differences in MNTs between batches reflect the variations in MNTs between F0 and F2 resulting from storage time, rather than pure batch effects. Removing such batch effects using the ComBat method eliminates differences in MNTs between F0 and F2 generations [25], due to, for instance, oxidation. Thus, batch effects were estimated based on signals for stable isotope-labeled internal standards added to each serum specimen at constant amounts, with most being detected exclusively in the polar fractions. We identified five negative-ion lipids considered stable to auto-oxidation (annotated with retention times and masses by Progenesis QI software and manually in parentheses) as 17.29_804.5762m/z (PC 34:1), 17.53_785.6000n (PC 36:2), 16.75_781.5628n (PC 36:4), 16.28_702.5676n (SM (d34:1)), 18.49_812.6716n (SM (d42:1)) and six stable positive-ion lipids (0.28_814.6822m/z (TG 48:5), 0.28_822.7629m/z (TG 48:1), 0.28_846.7610m/z (TG 50:3), 0.28_369.3562m/z (cholesterol ester fragment ion), 0.28_820.7478m/z (TG 48:2), 0.28_872.7728m/z (TG 52:4). These stable lipids have low degrees of unsaturation, were judged not to be affected by oxidation owing to the lack of detected oxidized forms, and can be used to check pure batch effects. Using these stable MNTs, factor analyses were conducted that provided two important principal components, which were prepared for potential adjustments. However, the principal components of these stable lipids were not significantly different across batches. Hence, for positive- and negative-ion analyses of the non-polar fractions (lipids), there was no need to adjust for batches. For polar MNTs, we measured signals of four internal standards: cotinine-d3 [1.22_180.1208m/z], [13C3]caffeine [1.05_215.1008n], valine-d8 [6.94_125.1291n], and phenylalanine-d5 [5.71_170.1102n] and identified two principal components (factors), which were related to batches. Supplementary Figure S1 shows that factor 1 in batch 19, 24, 29, and 15 deviates from the remaining batches, and so does factor 2 for batches 1–9. To mark these, two dummy variables (combined to one variable) were used (Supplementary Figure S1: dummy 1: batches 19, 24, 29, and 15; dummy 2: batches 1–9), which capture differences among batches (Supplementary Figure S1). The batch-group variable is adjusted as covariates in the statistical analyses.
- (2)
- Ranking MNTs: owing to the use of low thresholds for data import and peak detection, >50% of the MNTs had a relatively large (>30%) percentage of zeros. These zeros may include technical zero (e.g., values below detection limit or accidental technical errors in peak detection or thresholding) or biological zero (e.g., zero or near zero abundance). To deal with a large number of values below the detection limit with minimal sacrificing of relatively rare exposure markers, a quantile regression imputation of left-censored data (QRILC) approach can be applied for the imputation of left-censored missing, not at random data [26]. However, this approach may introduce a problem. MNT levels are often strongly right-skewed (severe outliers). If MNT measurements are used as continuous data, log transformation will be needed before implementing any normality-dependent statistical analyses. Though, if a large number (>30%) of zeros were imputed with a random small value, the log-transformation would exaggerate the influence of these small randomly imputed values and may bias the parameter estimation in the downstream analyses. Instead of imputing the excessive zeros (>30%) for a large number of MNTs (>50% of all MNTs), we ranked all MNTs based on signal abundances allowing up to five ranks (0/1/2/3/4) using PROC RANK in SAS by keeping all zeros still as zeros in ranking. This conservative approach also minimizes effects due to outliers.
- (3)
- Given that many MNTs had extremely low variances since these variables mainly consisted of non-detects (zeros), including these near zero-variance predictors into statistical models such as regression results in misleading findings or causes errors due to lack of variability. To avoid near zero-variance predictors, from the ranked data we removed MNTs which had more than 80% zeros [27,28].
2.6. Outcomes in the F1- and F2-Generations
2.7. Covariates in the F1- and F2-Generations
2.8. Analyses of Associations between MNTs and Multiple Allergic and Respiratory Outcomes
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barouki, R.; Gluckman, P.D.; Grandjean, P.; Hanson, M.; Heindel, J.J. Developmental origins of non-communicable disease: Implications for research and public health. Environ. Health 2012, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, J.M.; Hector, E.C.; Tang, L.; Labarre, J.L.; Dolinoy, D.C.; Mercado-Garcia, A.; Cantoral, A.; Song, P.X.; Téllez-Rojo, M.M.; E Peterson, K. Integrative Analysis of Gene-Specific DNA Methylation and Untargeted Metabolomics Data from the ELEMENT Cohort. Epigenetics Insights 2020, 13, 2516865720977888. [Google Scholar] [CrossRef]
- Perng, W.; Hector, E.C.; Song, P.X.; Rojo, M.M.T.; Raskind, S.; Kachman, M.; Cantoral, A.; Burant, C.F.; Peterson, K.E. Metabolomic Determinants of Metabolic Risk in Mexican Adolescents. Obesity 2017, 25, 1594–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perng, W.; Rifas-Shiman, S.L.; Hivert, M.-F.; Chavarro, J.E.; Oken, E. Branched Chain Amino Acids, Androgen Hormones, and Metabolic Risk Across Early Adolescence: A Prospective Study in Project Viva. Obesity 2018, 26, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Turi, K.N.; Romick-Rosendale, L.; Ryckman, K.K.; Hartert, T.V. A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J. Allergy Clin. Immunol. 2018, 141, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Papa, G.F.S.; Pellegrino, G.M.; Pellegrino, R. Asthma and respiratory physiology: Putting lung function into perspective. Respirology 2014, 19, 960–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachim, M.Y.; Alqutami, F.; Hachim, I.Y.; Al Heialy, S.; Busch, H.; Hamoudi, R.; Hamid, Q. The Role of Systems Biology in Deciphering Asthma Heterogeneity. Life 2022, 12, 1562. [Google Scholar] [CrossRef]
- Demoly, P.; Liu, A.H.; del Rio, P.R.; Pedersen, S.; Casale, T.B.; Price, D. A Pragmatic Primary Practice Approach to Using Specific IgE in Allergy Testing in Asthma Diagnosis, Management, and Referral. J. Asthma Allergy 2022, 15, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.; Saltoun, C. Skin testing in allergy. Allergy Asthma Proc. 2019, 40, 366–368. [Google Scholar] [CrossRef]
- Bever, H.P. Early events in atopy. Eur. J. Pediatr. 2002, 161, 542–546. [Google Scholar] [CrossRef]
- Rupani, H.; Kent, B.D. Using Fractional Exhaled Nitric Oxide Measurement in Clinical Asthma Management. Chest 2022, 161, 906–917. [Google Scholar] [CrossRef]
- Chiu, C.-Y.; Lin, G.; Cheng, M.-L.; Chiang, M.-H.; Tsai, M.-H.; Su, K.-W.; Hua, M.-C.; Liao, S.-L.; Lai, S.-H.; Yao, T.-C.; et al. Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood. Pediatr. Allergy Immunol. 2018, 29, 496–503. [Google Scholar] [CrossRef]
- Crestani, E.; Harb, H.; Charbonnier, L.-M.; Leirer, J.; Motsinger-Reif, A.; Rachid, R.; Phipatanakul, W.; Kaddurah-Daouk, R.; Chatila, T.A. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J. Allergy Clin. Immunol. 2020, 145, 897–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, J.; Chalcraft, K.; Mandur, T.S.; Jimenez-Saiz, R.; Walker, T.D.; Goncharova, S.; Gordon, M.E.; Naji, L.; Flader, K.; Larché, M.; et al. Comprehensive metabolomics identifies the alarmin uric acid as a critical signal for the induction of peanut allergy. Allergy 2015, 70, 495–505. [Google Scholar] [CrossRef]
- Yu, B.; Flexeder, C.; McGarrah, R.W.; Wyss, A.; Morrison, A.C.; North, K.E.; Boerwinkle, E.; Kastenmüller, G.; Gieger, C.; Suhre, K.; et al. Metabolomics Identifies Novel Blood Biomarkers of Pulmonary Function and COPD in the General Population. Metabolites 2019, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.S.; Chawes, B.L.; Blighe, K.; Virkud, Y.V.; Croteau-Chonka, D.C.; McGeachie, M.J.; Clish, C.B.; Bullock, K.; Celedón, J.C.; Weiss, S.T.; et al. An Integrative Transcriptomic and Metabolomic Study of Lung Function in Children With Asthma. Chest 2018, 154, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Kelly, R.S.; Chu, S.H.; Kachroo, P.; Gürdeniz, G.; Chawes, B.L.; Bisgaard, H.; Weiss, S.T.; Lasky-Su, J. Maternal Metabolome in Pregnancy and Childhood Asthma or Recurrent Wheeze in the Vitamin D Antenatal Asthma Reduction Trial. Metabolites 2021, 11, 65. [Google Scholar] [CrossRef]
- Patel, R.; Solatikia, F.; Zhang, H.; Wolde, A.; Kadalayil, L.; Karmaus, W.; Ewart, S.; Arathimos, R.; Relton, C.; Ring, S.; et al. Sex-specific associations of asthma acquisition with changes in DNA methylation during adolescence. Clin. Exp. Allergy 2020, 51, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Melén, E.; Bergström, A.; Kull, I.; Almqvist, C.; Andersson, N.; Asarnoj, A.; Borres, M.P.; Georgellis, A.; Pershagen, G.; Westman, M.; et al. Male sex is strongly associated with IgE-sensitization to airborne but not food allergens: Results up to age 24 years from the BAMSE birth cohort. Clin. Transl. Allergy 2020, 10, 15. [Google Scholar] [CrossRef]
- Carey, M.A.; Card, J.W.; Voltz, J.W.; Arbes, S.J., Jr.; Germolec, D.R.; Korach, K.S.; Zeldin, D.C. It's all about sex: Gender, lung development and lung disease. Trends in endocrinology and metabolism. Trends Endocrinol. Metab. 2007, 18, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekström, M.; Schiöler, L.; Grønseth, R.; Johannessen, A.; Svanes, C.; Leynaert, B.; Jarvis, D.; Gislason, T.; Demoly, P.; Probst-Hensch, N.; et al. Absolute values of lung function explain the sex difference in breathlessness in the general population. Eur. Respir. J. 2017, 49, 1602047. [Google Scholar] [CrossRef] [Green Version]
- Arshad, S.H.; Holloway, J.W.; Karmaus, W.; Zhang, H.; Ewart, S.; Mansfield, L.; Matthews, S.; Hodgekiss, C.; Roberts, G.; Kurukulaaratchy, R. Cohort Profile: The Isle Of Wight Whole Population Birth Cohort (IOWBC). Int. J. Epidemiol. 2018, 47, 1043–1044. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.H.; Patil, V.; Mitchell, F.; Potter, S.; Zhang, H.; Ewart, S.; Mansfield, L.; Venter, C.; Holloway, J.; Karmaus, W.J. Cohort Profile Update: The Isle of Wight Whole Population Birth Cohort (IOWBC). Leuk. Res. 2020, 49, 1083–1084. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, W.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef]
- Wei, R.; Wang, J.; Su, M.; Jia, E.; Chen, S.; Chen, T.; Ni, Y. Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data. Sci. Rep. 2018, 8, 663. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Johnson, K. Data pre-processing. In Applied Predictive Modeling; Springer Science Business Media: New York, NY, USA, 2013; pp. 27–59. [Google Scholar]
- Pearce, N.; Weiland, S.; Keil, U.; Langridge, P.; Anderson, H.R.; Strachan, D.; Bauman, A.; Young, L.; Gluyas, P.; Ruffin, D. Self-reported prevalence of asthma symptoms in children in Australia, England, Germany and New Zealand: An international comparison using the ISAAC protocol. Eur. Respir. J. 1993, 6, 1455–1461. [Google Scholar] [CrossRef]
- Everson, T.M.; Lyons, G.; Zhang, H.; Soto-Ramírez, N.; Lockett, G.A.; Patil, V.K.; Merid, S.K.; Söderhäll, C.; Melén, E.; Holloway, J.; et al. DNA methylation loci associated with atopy and high serum IgE: A genome-wide application of recursive Random Forest feature selection. Genome Med. 2015, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors. Am. J. Respir. Crit. Care Med. 1999, 160, 2104–2117.
- American Thoracic Society. Standardization of Spirometry, 1994 Update. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [Google Scholar] [CrossRef] [PubMed]
- Ogbuanu, I.U.; Karmaus, W.; Arshad, S.H.; Kurukulaaratchy, R.J.; Ewart, S. Effect of breastfeeding duration on lung function at age 10 years: A prospective birth cohort study. Thorax 2009, 64, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Mallisetty, Y.; Mukherjee, N.; Jiang, Y.; Chen, S.; Ewart, S.; Arshad, S.H.; Holloway, J.W.; Zhang, H.; Karmaus, W. Epigenome-Wide Association of Infant Feeding and Changes in DNA Methylation from Birth to 10 Years. Nutrients 2020, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.; Tong, X.; Lockett, G.A.; Zhang, H.; Karmaus, W. An Efficient Approach to Screening Epigenome-Wide Data. Biomed. Res. Int. 2016, 2016, 2615348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner-Golbs, A.; Neuber, S.; Kamlage, B.; Christiansen, N.; Bethan, B.; Rennefahrt, U.; Schatz, P.; Lind, L. Effects of Long-Term Storage at −80 degrees C on the Human Plasma Metabolome. Metabolites 2019, 9, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haid, M.; Muschet, C.; Wahl, S.; Römisch-Margl, W.; Prehn, C.; Möller, G.; Adamski, J. Long-Term Stability of Human Plasma Metabolites during Storage at −80 degrees C. J. Proteome Res. 2018, 17, 203–211. [Google Scholar] [CrossRef]
- Servillo, L.; Giovane, A.; Cautela, D.; Castaldo, D.; Balestrieri, M.L. Where does N(epsilon)-trimethyllysine for the carnitine biosynthesis in mammals come from? PLoS ONE 2014, 9, e84589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimabad, P.K.; Anthony, T.M.; Jones, A.D.; Eslamimehr, S.; Mukherjee, N.; Ewart, S.; Holloway, J.W.; Arshad, H.; Commodore, S.; Karmaus, W. Nicotine and Its Downstream Metabolites in Maternal and Cord Sera: Biomarkers of Prenatal Smoking Exposure Associated with Offspring DNA Methylation. Int. J. Environ. Res. Public Health 2020, 17, 9552. [Google Scholar] [CrossRef]
- Eslamimehr, S.; Jones, A.D.; Anthony, T.M.; Arshad, S.H.; Holloway, J.W.; Ewart, S.; Luo, R.; Mukherjee, N.; Rahimabad, P.K.; Chen, S.; et al. Association of prenatal acetaminophen use and acetaminophen metabolites with DNA methylation of newborns: Analysis of two consecutive generations of the Isle of Wight birth cohort. Environ. Epigenetics 2022, 8, dvac002. [Google Scholar] [CrossRef]
- Just, A.C.; Whyatt, R.M.; Miller, R.L.; Rundle, A.G.; Chen, Q.; Calafat, A.M.; Divjan, A.; Rosa, M.J.; Zhang, H.; Perera, F.P.; et al. Children’s Urinary Phthalate Metabolites and Fractional Exhaled Nitric Oxide in an Urban Cohort. Am. J. Respir. Crit. Care Med. 2012, 186, 830–837. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-M.; Kim, J.; Cheong, H.-K.; Jeon, B.-H.; Ahn, K. Exposure to phthalates aggravates pulmonary function and airway inflammation in asthmatic children. PLoS ONE 2018, 13, e0208553. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.; Miller, R.L. The Impact of Bisphenol A and Phthalates on Allergy, Asthma, and Immune Function: A Review of Latest Findings. Curr. Environ. Health Rep. 2015, 2, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Wang, I.-J.; Karmaus, W.J.; Chen, S.-L.; Holloway, J.W.; Ewart, S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin. Epigenetics 2015, 7, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfardan, A.S.; Nadeem, A.; Ahmad, S.F.; Al-Harbi, N.O.; Al-Harbi, M.M.; AlSharari, S.D. Plasticizer, di(2-ethylhexyl)phthalate (DEHP) enhances cockroach allergen extract-driven airway inflammation by enhancing pulmonary Th2 as well as Th17 immune responses in mice. Environ. Res. 2018, 164, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Krishnan, A.; Preetha, K.; Mohankar, A. A review of antihistamines used during pregnancy. J. Pharmacol. Pharmacother. 2012, 3, 105–108. [Google Scholar] [CrossRef]
- Faisal, M.; Saeed, A. Chemical Insights Into the Synthetic Chemistry of Quinazolines: Recent Advances. Front. Chem. 2021, 8, 594717. [Google Scholar] [CrossRef]
- Pakrashi, C.S.; Bhattacharyya, J.; Johnson, L.F.; Budzikiewicz, H. Studies on indian medicinal plants—VI. Tetrahedron 1963, 19, 1011–1026. [Google Scholar] [CrossRef]
- Zabeer, A.; Bhagat, A.; Gupta, O.; Singh, G.; Youssouf, M.; Dhar, K.; Suri, O.; Suri, K.; Satti, N.; Gupta, B.; et al. Synthesis and bronchodilator activity of new quinazolin derivative. Eur. J. Med. Chem. 2006, 41, 429–434. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kobayashi, M.; Arihara, S. Flower Fragrance Precursors from FIower Citrus unshiu Marcov. Nat. Med. 1996, 50, 176–178. [Google Scholar]
- Schubert, K.; Olde Damink, S.W.M.; Von Bergen, M.; Schaap, F.G. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol. Rev. 2017, 279, 23–35. [Google Scholar] [CrossRef]
- Marschall, H.-U.; Egestad, B.; Matern, H.; Matern, S.; Sjövall, J. Evidence for bile acid glucosides as normal constituents in human urine. FEBS Lett. 1987, 213, 411–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sittipo, P.; Shim, J.-W.; Lee, Y.K. Microbial Metabolites Determine Host Health and the Status of Some Diseases. Int. J. Mol. Sci. 2019, 20, 5296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gérard, P. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens 2013, 3, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephen-Victor, E.; Crestani, E.; Chatila, T.A. Dietary and Microbial Determinants in Food Allergy. Immunity 2020, 53, 277–289. [Google Scholar] [CrossRef]
- Lee-Sarwar, K.A.; Chen, Y.; Lasky-Su, J.; Kelly, R.S.; Zeiger, R.S.; O'Connor, G.T.; Bacharier, L.B.; Jia, X.; Beigelman, A.; Gold, D.R.; et al. Early-life fecal metabolomics of food allergy. Allergy 2022, 78, 512–521. [Google Scholar] [CrossRef]
- Lee-Sarwar, K.A.; Lasky-Su, J.; Kelly, R.S.; Litonjua, A.A.; Weiss, S.T. Gut Microbial-Derived Metabolomics of Asthma. Metabolites 2020, 10, 97. [Google Scholar] [CrossRef] [Green Version]
- Gostner, J.M.; Becker, K.; Kofler, H.; Strasser, B.; Fuchs, D. Tryptophan Metabolism in Allergic Disorders. Int. Arch. Allergy Immunol. 2016, 169, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, M.T.; Carlson, J.R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am. J. Clin. Nutr. 1979, 32, 173–178. [Google Scholar] [CrossRef]
- Islam, J.; Sato, S.; Watanabe, K.; Watanabe, T.; Ardiansyah, A.; Hirahara, K.; Aoyama, Y.; Tomita, S.; Aso, H.; Komai, M.; et al. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice. J. Nutr. Biochem. 2017, 42, 43–50. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Z.; Jin, L.; Wang, M.; Liao, W. Decreased expression of indolamine 2,3-dioxygenase in childhood allergic asthma and its inverse correlation with fractional concentration of exhaled nitric oxide. Ann. Allergy Asthma Immunol. 2017, 119, 429–434. [Google Scholar] [CrossRef]
- Licari, A.; Fuchs, D.; Marseglia, G.L.; Ciprandi, G. Tryptophan metabolic pathway and neopterin in asthmatic children in clinical practice. Ital. J. Pediatr. 2019, 45, 114. [Google Scholar] [CrossRef]
- Pounis, G.; Arcari, A.; Costanzo, S.; Di Castelnuovo, A.; Bonaccio, M.; Persichillo, M.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Favorable association of polyphenol-rich diets with lung function: Cross-sectional findings from the Moli-sani study. Respir. Med. 2018, 136, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabak, C.; Arts, I.C.W.; Smit, H.A.; Heederik, D.; Kromhout, D. Chronic Obstructive Pulmonary Disease and Intake of Catechins, Flavonols, and Flavones. Am. J. Respir. Crit. Care Med. 2001, 164, 61–64. [Google Scholar] [CrossRef]
- Fessler, M.B.; Summer, R.S. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am. J. Respir. Cell Mol. Biol. 2016, 54, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010, 51, 3299–3305. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.; Brandenburg, K.; Dedrick, R.; Schromm, A.B.; Seydel, U. Phospholipids Inhibit Lipopolysaccharide (LPS)-Induced Cell Activation: A Role for LPS-Binding Protein. J. Immunol. 2005, 174, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agudelo, C.W.; Kumley, B.K.; Area-Gomez, E.; Xu, Y.; Dabo, A.J.; Geraghty, P.; Campos, M.; Foronjy, R.; Garcia-Arcos, I. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS ONE 2020, 15, e0228279. [Google Scholar] [CrossRef]
- Karki, P.; Birukov, K.G. Oxidized Phospholipids in Healthy and Diseased Lung Endothelium. Cells 2020, 9, 981. [Google Scholar] [CrossRef] [Green Version]
- Polak, J.; Grąz, M.; Wlizło, K.; Szałapata, K.; Kapral-Piotrowska, J.; Paduch, R.; Jarosz-Wilkołazka, A. Bioactive Properties of a Novel Antibacterial Dye Obtained from Laccase-Mediated Oxidation of 8-Anilino-1-naphthalenesulfonic Acid. Molecules 2022, 27, 487. [Google Scholar] [CrossRef]
- Liang, Y.; Gai, X.Y.; Chang, C.; Zhang, X.; Wang, J.; Li, T.T. Metabolomic Profiling Differences among Asthma, COPD, and Healthy Subjects: A LC-MS-based Metabolomic Analysis. Biomed. Environ. Sci. 2019, 32, 659–672. [Google Scholar] [PubMed]
- Laguna, T.A.; Reilly, C.S.; Williams, C.B.; Welchlin, C.; Wendt, C.H. Metabolomics analysis identifies novel plasma biomarkers of cystic fibrosis pulmonary exacerbation. Pediatr. Pulmonol. 2015, 50, 869–877. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, M.; Sato, N.; Okamoto, K. Hypoxanthine Reduces Radiation Damage in Vascular Endothelial Cells and Mouse Skin by Enhancing ATP Production via the Salvage Pathway. Radiat. Res. 2022, 197, 583–593. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Wei, L.-Y.; Yao, H.-W.; Jin, L.; Wang, J.; Zhang, J.; Zhao, X.-M.; Cai, J.; Bai, Z.-G.; Deng, W. Effects of compound porcine cerebroside and ganglioside on neurotoxicity caused by oxaliplatin chemotherapy: Preliminary results. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5441–5448. [Google Scholar] [PubMed]
- Esther, C.R., Jr.; Peden, D.B.; Alexis, N.E.; Hernandez, M. LAirway purinergic responses in healthy, atopic nonasthmatic, and atopic asthmatic subjects exposed to ozone. Inhal. Toxicol. 2011, 23, 324–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virág, L.; Szabó, C. Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J. 2001, 15, 99–107. [Google Scholar] [CrossRef]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’donovan, C. MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020, 48, D440–D444. [Google Scholar] [CrossRef] [Green Version]
(a) | |||||||
Outcome Variables | Age (yrs) | Female Participants | Male Participants | ||||
Complete Cohort, n = 721 n (%) | Subsample with MNT, n = 298, n (%) | p-Value | Complete Cohort, n = 735, n (%) | Subsample with MNT n = 287, n (%) | p-Value | ||
Asthma | 10 | 672 83 (12.4%) | 290 36 (12.4%) | 0.98 | 696 118 (17%) | 284 58 (20.4%) | 0.20 |
18 | 659 128 (19.4%) | 285 57 (20%) | 0.84 | 646 103 (15.9%) | 266 52 (19.6%) | 0.19 | |
26 | 560 97 (17.3%) | 253 48 (19%) | 0.57 | 470 63 (13.4%) | 203 32 (15.8%) | 0.42 | |
Skin prick test (SPT) positivity | 4 | 488 82 (16.8%) | 218 42 (19.3%) | 0.45 | 486 109 (22.4%) | 215 56 (26.1%) | 0.30 |
10 | 518 119 (22.9%) | 256 61 (23.8%) | 0.79 | 509 159 (31.2%) | 256 85 (33.2%) | 0.58 | |
18 | 444 159 (35.8%) | 219 78 (35.6%) | 0.96 | 397 189 (47.6%) | 196 101 (51.5%) | 0.38 | |
IgE (kU/L, geometric mean) | 10 | 474 1.87 (0.74) | 238 1.88 (0.73) | 0.88 | 479 1.94 (0.75) | 238 2 (0.75) | 0.23 |
18 | 235 1.9 (0.7) | 141 1.88 (0.70) | 0.68 | 221 2.03 (0.76) | 135 2.04 (0.79) | 0.87 | |
FeNO (ppb, geometric mean) | 18 | 435 1.19 (0.3) | 212 1.19 (0.31) | 0.87 | 387 1.34 (0.35) | 188 1.37 (0.37) | 0.22 |
26 | 304 1.16 (0.3) | 151 1.17 (0.29) | 0.62 | 232 1.27 (0.32) | 109 1.27 (0.32) | 0.90 | |
FVC (L) | 10 | 493 2.24 (0.33) | 244 2.22 (0.32) | 0.24 | 488 2.35 (0.34) | 245 2.33 (0.35) | 0.48 |
18 | 443 3.96 (0.53) | 219 3.97 (0.55) | 0.89 | 395 5.35 (0.72) | 196 5.33 (0.73) | 0.72 | |
26 | 311 4.24 (0.54) | 156 4.27 (0.54) | 0.43 | 236 5.85 (0.82) | 108 5.78 (0.85) | 0.39 | |
FEV1 (L) | 10 | 492 2.0 (0.29) | 242 1.98 (0.29) | 0.27 | 488 2.06 (0.3) | 245 2.05 (0.32) | 0.51 |
18 | 443 3.47 (0.45) | 219 3.49 (0.49) | 0.66 | 396 4.62 (0.62) | 197 4.6 (0.64) | 0.72 | |
26 | 311 3.42 (0.43) | 156 3.47 (0.43) | 0.17 | 236 4.61 (0.72) | 108 4.52 (0.72) | 0.18 | |
FEV1/FVC | 10 | 492 0.90 (0.06) | 244 0.90 (0.05) | 0.23 | 488 0.88 (0.06) | 245 0.88 (0.06) | 0.63 |
18 | 443 0.88 (0.07) | 219 0.88 (0.07) | 0.80 | 396 0.87 (0.07) | 197 0.87 (0.07) | 0.39 | |
26 | 311 0.81 (0.06) | 156 0.81 (0.06) | 0.46 | 236 0.79 (0.07) | 108 0.78 (0.07) | 0.39 | |
FEF25–75% (L) | 10 | 493 2.48 (0.56) | 244 2.47 (0.55) | 0.71 | 488 2.38 (0.56) | 245 2.37 (0.56) | 0.80 |
18 | 443 3.95 (0.87) | 219 4 (0.93) | 0.47 | 396 4.99 (1.16) | 197 5 (1.2) | 0.94 | |
26 | 311 3.44 (0.84) | 156 3.52 (0.85) | 0.28 | 236 4.37 (1.24) | 108 4.2 (1.2) | 0.15 | |
(b) | |||||||
Outcome Variables | Age (yrs) | Female Participants | Male Participants | ||||
Complete Cohort, n = 339, n (%) | Subsample with MNT n = 118, n (%) | p-Value | Complete Cohort, n = 268, n (%) | Subsample with MNT n = 112, n (%) | p-Value | ||
Asthma | 6 | 268 16 (5.97%) | 112 11 (9.82%) | 0.09 | 339 28 (8.26%) | 118 14 (11.86%) | 0.16 |
SPT | 1–6 | 190 76 (40.0%) | 88 43 (48.86) | 0.09 | 260 100 (38.46%) | 102 42 (41.18%) | 0.57 |
IgE (kU/L, geometric mean) | 6–7 | 69 0.228 (3.71) | 65 0.206 (3.88) | 0.51 | 72 0.11 (3.98) | 69 0.025 (0.73) | 0.93 |
FeNO (ppb, geometric mean) | 6–7 | 69 7.2 (2.15) | 38 6.78 (2.31) | 0.66 | 85 8.06 (2.4) | 40 9.19 (2.21) | 0.31 |
FVC (L) | 6–7 | 69 1.48 (0.36) | 38 1.44 (0.25) | 0.33 | 94 1.67 (0.56) | 42 1.51 (0.29) | 0.0008 |
FEV1(L) | 6–7 | 69 1.34 (0.31) | 38 1.3 (0.20) | 0.22 | 93 1.47 (0.49) | 42 1.32 (0.27) | 0.0008 |
FEV1/FVC | 6–7 | 69 0.91 (0.06) | 38 0.91 (0.057) | 0.78 | 93 0.88 (0.08) | 42 0.88 (0.08) | 0.97 |
FEF25–75% (L) | 6–7 | 69 1.74 (0.46) | 38 1.71 (0.41) | 0.64 | 94 1.7 (0.68) | 42 1.51 (0.43) | 0.01 |
(a) | ||||||
Health Outcome and Associated MNTs | Interaction with Time | Annotation | Compound Class | Chemical Formula | p-Value # | FDR Adjusted p-Value |
Asthma at 4, 10, 18, and/or 26 years | ||||||
plp1_52_182_1835m_z | Dicyclohexylamine | Organic amine | C12H23N | 0.035 | 0.04 | |
plp2_12_180_0878m_z | Dimethylguanine | Hypoxanthine | C7H9N5O | 0.004 | 0.012 | |
Skin prick test positivity at 4, 10, and/or 18 years | ||||||
plp0_79_858_7164m_z | yes | 20:1-Glc-cholesterol | Cholesterol derivative | C53H92O7 | 0.0008 | 0.004 |
plp0_79_884_7325m_z | yes | 22:2-Glc-cholesterol | Cholesterol derivative | C55H94O7 | 0.005 | 0.008 |
plp0_79_900_7263m_z | yes | 22:2-Glc-cholesterol (ox) | Cholesterol derivative (oxidized) | C55H94O8 | 0.0004 | 0.003 |
plp0_80_710_5683m_z | yes | DG 42:8 | Diacylglycerol, polyunsaturated | C45H72O5 | 0.02 | 0.02 |
plp0_80_834_7158m_z | yes | Unknown | Unknown | 0.02 | 0.02 | |
plp0_80_958_7302m_z | yes | Unknown | Unknown | 0.01 | 0.02 | |
plp0_82_581_4911m_z | yes | Unknown | Unknown | 0.01 | 0.02 | |
plp0_84_620_5956m_z | Cer (d18:2/22:0) | Ceramide | C40H77NO3 | 0.005 | 0.01 | |
plp0_90_768_6313m_z | Unknown | Unknown | 0.01 | 0.02 | ||
plp1_23_840_5319m_z | Unknown | Unknown | 0.03 | 0.03 | ||
plp1_45_242_1558m_z | Desmethyldiphenhydramine | OTC antihistamine/ sedative metabolite | C16H19NO | 0.003 | 0.01 | |
plp5_44_554_2593m_z | Aldosterone 18-glucuronide | Aldosterone (steroid) metabolite | C27H36O11 | 0.00004 | 0.0004 | |
plp7_09_116_0671m_z | Unknown | Unknown | 0.002 | 0.01 | ||
plp7_09_241_0847m_z | Unknown | Unknown | 0.005 | 0.01 | ||
plp8_04_132_0726m_z | Unknown | Unknown | 0.00003 | 0.0005 | ||
plp8_90_242_0790m_z | N-Benzoylanthranilic acid | Food additive | C14H11NO3 | 0.0007 | 0.004 | |
Immunoglobulin E levels | ||||||
plp4_49_138_0549m_z | Anthranilic acid | Tryptophan metabolite | C7H7NO2 | 0.001 | 0.004 | |
plp10_25_189_1597m_z | N6,N6,N6-Trimethyl-L-lysine | Amino acid derivative, carnitine precursor | C9H20N2O2 | 0.002 | 0.004 | |
plp2_03_100_0287m_z | Unknown | Unknown | 0.004 | 0.005 | ||
plp5_66_110_0964m_z | 1,2,5-Trimethyl-1H-pyrrole | Pyrrole | C7H11N | 0.009 | 0.01 | |
slp0_28_918_7488m_z | TG 56:9 | Triacylglycerol (polyunsaturated) | C59H96O6 | 0.02 | 0.04 | |
slp0_28_928_8330m_z | TG 56:4 | Triacylglycerol | C59H106O6 | 0.04 | 0.04 | |
Fractional exhaled nitric oxide (FeNO) at 10 and/or 18 years | ||||||
plp1_60_369_2086m_z | Benzyl (2-ethylhexyl)phthalate | Phthalate plasticizer | C23H28O4 | 0.002 | 0.01 | |
plp3_46_202_0860m_z | 1-Methyl-3-(2-oxo-propylidene)indol-2-one | Tryptophan metabolite (indole) | C12H11NO2 | 0.002 | 0.01 | |
plp1_45_242_1558m_z | Desmethyldiphenhydramine | OTC Antihistamine/sedative metabolite | C16H16O | 0.006 | 0.02 | |
Forced vital capacity (FVC) at 10, 18, and/or 26 years | ||||||
plp1_05_188_0947n | Indolepropionamide | Tryptophan-metabolite | C11H12N2O | 0.01 | 0.02 | |
plp1_47_399_1925m_z | DiHDoHE | Oxidized Fatty acid (DHA) | C22H32O4 | 0.002 | 0.005 | |
plp7_24_598_5132m_z | Unknown | Unknown | 0.0005 | 0.002 | ||
plp6_96_202_0376m_z | 4-Amino-2-methyl-5-phosphooxymethylpyrimidine | Aminopyrimidine metabolite | C6H10N3O4P | 0.0002 | 0.002 | |
plp6_18_273_1202m_z | Unknown | Unknown | 0.0003 | 0.002 | ||
Forced expiratory volume in 1 s (FEV1) at 10, 18, and/or 26 years | ||||||
plp6_96_202_0376m_z | 4-Amino-2-methyl-5-phosphooxymethylpyrimidine | Aminopyrimidine metabolite | C6H10N3O4P | 0.0008 | 0.008 | |
FEV1/FVC ratio (none) | ||||||
Forced mid-expiratory flow FEF25–75% at 10, 18, and/or 26 years | ||||||
plp5_20_358_2207n | Asn-Ile-Ile or Gln-Val-Ile | Tripeptide | C16H30N4O5 | 0.003 | 0.01 | |
plp2_03_235_1185m_z | Cyclo(His-Pro) | Dipeptide | C11H14N4O2 | 0.004 | 0.01 | |
(b) | ||||||
Health Outcome and Associated MNTs | Interaction with Time | Annotation | Compound Class | Chemical Formula | p-Value # | FDR Adjusted p-Value |
Asthma at 4, 10, 18, and/or 26 years | ||||||
plp0_95_237_1019m_z | Glycosminine | Quinazoline alkaloid | C15H12N2O | 0.004 | 0.012 | |
Skin prick test positivity at 4, 10, and/or 18 years (none) | ||||||
Immunoglobulin E levels at 10 and/or 18 years | ||||||
plp5_65_195_0764m_z | 4-Aminohippuric acid | Acyl glycine | C9H10N2O3 | 0.0002 | 0.003 | |
plp4_71_187_1208n | Piperidione | Cough medicine Sedulon | C9H15NO2 | 0.0006 | 0.004 | |
plp6_90_164_0686n | Fucose | Hexose | C6H12O5 | 0.0008 | 0.004 | |
plp5_10_266_1161n | Unknown, numerous isomers | Unknown | C14H18O5 | 0.002 | 0.005 | |
plp5_10_91_0535m_z | N-(Hydroxymethyl)urea | Urea derivative | C2H6N2O2 | 0.002 | 0.007 | |
plp5_70_588_3739m_z | 3α-[(β-D-Glucopyranosyl)oxy]-7α,12α-dihydroxy-5β-cholanic acid | Steroid metabolite; bile acid (cholic acid) glucoside | C30H50O10 | 0.002 | 0.005 | |
plp5_90_231_1698m_z | Ile-Val; Val-Ile; Leu-Val;Val-Leu | Dipeptide | C11H22N2O3 | 0.002 | 0.005 | |
plp5_10_91_0515m_z | N-(Hydroxymethyl)urea | Urea derivative | C2H6N2O2 | 0.004 | 0.005 | |
plp0_84_1048_8866m_z | PG 54:0 (27:0/27:0) | Long chain saturated phosphatidylglycerol | C60H119O10P | 0.004 | 0.007 | |
plp5_70_502_2200m_z | Thamnosin | Coumarin | C30H28O6 | 0.009 | 0.01 | |
plp2_19_578_4162m_z | PC(22:1/0:0) | Lyso phosphatidylcholine, monounsaturated | C30H60NO7P | 0.01 | 0.012 | |
plp0_81_244_2138m_z | Unknown | Unknown | 0.01 | 0.012 | ||
plp5_43_116_0818m_z | Unknown | Unknown | 0.01 | 0.012 | ||
plp0_80_563_4818m_z | Unknown | Unknown | 0.04 | 0.045 | ||
Fractional exhaled nitric oxide (FeNO) at 18 and/or 26 years | ||||||
plp1_57_497_2341m_z | Unknown | Unknown | 0.002 | 0.006 | ||
plp1_05_161_1074m_z | yes | Tryptamine | Tryptophan metabolite (indole) | C10H12N2 | 0.0004 | 0.004 |
plp1_67_168_1130m_z | yes | Unknown | Unknown | C8H13N3O | 0.003 | 0.006 |
plp6_70_385_1611m_z | yes | Unknown | C17H24N2O8 | 0.01 | 0.02 | |
plp3_16_370_2424m_z | yes | 2,5,8,11,14,17-Hexaoxadocosan-22-oic acid | Polyether | C16H32O8 | 0.02 | 0.03 |
plp6_58_385_1611m_z | yes | Unknown | C17H24N2O8 | 0.02 | 0.02 | |
plp7_39_311_1459m_z | yes | N-(Dimethylamino)methylene-9-((2-hydroxy-1-(hydroxymethyl)ethoxy)methyl)guanine | Hypoxanthine | C12H18N6O4 | 0.04 | 0.044 |
plp8_60_266_1595m_z | yes | Prenyl glucoside | Hemiterpenoid glycoside | C11H20O6 | 0.04 | 0.044 |
plp6_45_327_1195m_z | Ethyl 8-azido-5-methyl-6-oxo-4H-imidazo [1,5-a][1,4]benzodiazepine-3-carboxylate | Imidazo [1,5-a][1,4]benzodiazepines | C15H14N6O3 | 0.0007 | 0.004 | |
plp3_52_347_2614m_z | Methyl-[10]-shogaol | Dimethoxybenzene | C22H34O3 | 0.002 | 0.006 | |
plp6_70_344_1229n | Unknown | C19H20O6 | 0.003 | 0.006 | ||
slp0_28_976_8400m_z | yes | TG 60:8 | Triacylglycerol (polyunsaturated) | C63H106O6 | 0.002 | 0.004 |
Forced vital capacity (FVC) at 10, 18, and/or 26 years | ||||||
plp7_23_745_6112m_z | Unknown | Unknown | 0.005 | 0.01 | ||
plp1_36_334_2136n | yes | Many isomers possible | Diterpenoid (retinoid) or oxylipin | C20H28O3 | 0.02 | 0.02 |
plp1_41_282_1939n | yes | Unknown | Unknown | C15H23NO3 | 0.02 | 0.02 |
plp1_47_156_0786n | yes | Unknown | Unknown | C8H12O3 | 0.03 | 0.03 |
plp1_62_270_1695m_z | yes | Many isomers possible | Unknown | C14H20O4 | 0.001 | 0.003 |
plp1_99_534_3901m_z | yes | N-Decanoylsphingosine-1-phosphate (CerP(d18:1/10:0)) | Sphingolipid | C28H56NO6P | 0.008 | 0.01 |
plp5_20_364_1857m_z | yes | Phe-Pro-Thr (or isomer) | Tripeptide | C18H25N3O5 | 0.007 | 0.01 |
Forced expiratory volume in 1 s (FEV1) at 10 and/or 18 years ) (none) | ||||||
FEV1/FVC ratio at 10 and/or 18 years | ||||||
slp0_28_694_6473m_z | CE 20:2 | Cholesterol ester | C47H80O2 | 0.01 | 0.01 | |
Forced mid-expiratory flow FEF25–75% at 10 and/or 18 years (none) |
(a) | ||||||
Health Outcome and Associated MNTs | Interaction with Time | Annotation | Compound Class | Chemical Formula | p-Value # | FDR Adjusted p-Value |
Asthma at 4, 10, 18, and/or 26 years (none) | ||||||
Skin prick test positivity at 4, 10, and/or 18 years | ||||||
plp0_85_380_3506m_z | Unknown | Unknown | 0.002 | 0.01 | ||
plp0_90_468_3883m_z | yes | Unknown | Unknown | 0.004 | 0.008 | |
plp1_25_205_0968m_z | L-Tryptophan | Amino acid | C11H12N2O2 | 0.001 | 0.004 | |
plp1_65_444_1957m_z | Met-Phe-Phe | Tripeptide | C23H29N3O4S | 0.001 | 0.004 | |
plp10_25_189_1597m_z | yes | N6,N6,N6-Trimethyl-L-lysine | Amino acid derivative, carnitine precursor | C9H20N2O2 | 0.008 | 0.01 |
plp6_13_119_0928m_z | yes | Unknown | Unknown | 0.01 | 0.02 | |
Immunoglobulin E levels at 10 and/or 18 years (none) | ||||||
Fractional exhaled nitric oxide (FeNO) at 18 and/or 26 years (none) | ||||||
Forced vital capacity (FVC) at 10, 18, and/or 26 years | ||||||
plp3_48_288_2066m_z | Unknown | Unknown | C17H25N3O | 0.001 | 0.003 | |
Forced expiratory volume in 1 s (FEV1) at 10,18, and/or 26 years | ||||||
slp0_28_397_3802m_z | Sitosterol fragment ion (reflects plant sterols) | Plant sterol | C29H49+ | 0.002 | 0.03 | |
plp4_57_692_4474m_z | PS(14:1(9Z)/15:0) | Phosphatidyl serine, monounsaturated | C35H66NO10P | 0.0009 | 0.008 | |
plp6_91_180_0491m_z | Unknown | Unknown | 0.002 | 0.013 | ||
FEV1/FVC ratio at 10, 18, and/or 26 years (none) | ||||||
Forced mid-expiratory flow FEF25–75% at 10, 18, and/or 26 years | ||||||
plp0_86_340_3475m_z | Unknown | Unknown | 0.0001 | 0.001 | ||
nlp16_65_861_5483m_z | yes | Unknown | Unknown | 0.02 | 0.02 | |
(b) | ||||||
Health Outcome and Associated MNTs | Interaction with Time | Annotation | Compound Class | Chemical Formula | p-Value # | FDR Adjusted p-Value |
Asthma at 4, 10, 18, and/or 26 years (none), Skin prick test positivity at 4, 10, and/or 18 years (none) | ||||||
Immunoglobulin E levels at 10 and/or 18 years (none), Fractional exhaled nitric oxide (FeNO) at 18 and/or 26 years (none) | ||||||
Forced vital capacity (FVC) at 10, 18, and/or 26 years | ||||||
plp1_59_201_1384m_z | Tetrahydrozoline | Imidazoline pharma- ceutical | C13H16N2 | 0.045 | 0.045 | |
slp0_28_992_9463m_z | yes | TG 60:0 | Triacylglycerol, fully saturated | C63H122O6 | 0.02 | 0.02 |
plp2_94_799_4893m_z | yes | Unknown | Unknown | 0.00009 | 0.001 | |
plp2_92_351_0460m_z | yes | Unknown | Unknown | C6H16N4O9P2 | 0.0002 | 0.001 |
plp2_94_279_0142m_z | yes | 3,5-Dimethoxy-4-(sulfooxy)benzoic acid | Polyphenol (syringic acid) sulfate conjugate | C9H10O8S | 0.0003 | 0.001 |
Forced expiratory volume in 1 s (FEV1) at 10, 18, and/or 26 years | ||||||
plp0_94_792_5631m_z | MGDG 36:6 | Galactosylglycerol (plant) lipid | C45H74O10 | 0.01 | 0.01 | |
plp2_94_137_0413n | yes | Hypoxanthine [13C1] isotopolog | Hypoxanthine | C5H5N4O | 0.001 | 0.003 |
plp2_94_295_0654m_z | yes | Unknown | Unknown | 0.002 | 0.004 | |
plp2_94_799_4893m_z | yes | PG 40:9 | Phosphatidylglycerol (polyunsaturated) | C41H68NO11P | 0.0005 | 0.002 |
plp2_94_177_0647n | yes | Hypoxanthine, acetonitrile adduct | Hypoxanthine | C5H5N4O | 0.002 | 0.004 |
plp2_95_143_0536m_z | yes | 2,5-Dimethyl-3-(methylthio) furan | Aryl thioether | C7H10OS | 0.0004 | 0.002 |
plp2_92_351_0460m_z | yes | Unknown | Unknown | C6H16N4O9P2 | 0.003 | 0.0045 |
plp2_94_279_0142m_z | yes | 3,5-Dimethoxy-4-(sulfooxy)benzoic acid | Polyphenol (syringic acid), sulfate conjugate | C9H10O8S | 0.004 | 0.005 |
FEV1/FVC ratio at 10, 18, and/or 26 years | ||||||
slp0_28_326_3818m_z | Didecyl dimethylammonium (DDAC) antiseptic | Antiseptic | C22H48N+ | 0.001 | 0.002 | |
plp9_21_215_0557n | Glycero-3-phosphoethanolamine | Glycerophospho-ethanolamines | C5H14NO6P | 0.0008 | 0.0009 | |
plp9_21_260_0267m_z | Unknown | Unknown | 0.0009 | 0.0009 | ||
Forced mid-expiratory flow FEF25–75% at 10, 18, and/or 26 years | ||||||
slp0_28_326_3818m_z | Unknown | Unknown | 0.002 | 0.002 | ||
plp4_08_257_0586m_z | 7-Amino-4-hydroxy-2-naphthalenesulfonic acid | Dye precursor or breakdown product | C10H9NO4S | 0.04 | 0.04 |
Health Outcome and Associated MNTs | Interaction with Time | Annotation | Compound Class | p-Value (F1) | FDR Adjusted p-Value (F1) | p-Value Replication (F2) |
---|---|---|---|---|---|---|
Females F2 | ||||||
Fractional exhaled nitric oxide (log10 of FeNO) at 6–7 years of age | ||||||
plp1_60_369_2086m_z | Benzyl (2-ethylhexyl)phthalate | Phthalate plasticizer | 0.002 | 0.01 | 0.0868 | |
plp1_45_242_1558m_z | Desmethyldiphenhydramine | OTC Antihistamine/sedative metabolite | 0.006 | 0.02 | 0.0050 | |
Males F2 | ||||||
Asthma at 6–7 years of age | ||||||
plp0_95_237_1019m_z | Glycosminine | Quinazoline alkaloid | 0.004 | 0.012 | 0.0066 | |
Immunoglobulin E levels (log10 of IgE) at 6–7 years of age | ||||||
plp5_70_588_3739m_z | 3α-[(β-D-Glucopyranosyl)oxy]-7α,12α-dihydroxy-5 β-cholanic acid | Steroid metabolite; bile acid (cholic acid) glucoside | 0.002 | 0.005 | 0.1308 | |
plp5_90_231_1698m_z | Ile-Val; Val-Ile; Leu-Val; or Val-Leu | Dipeptide | 0.002 | 0.005 | 0.0835 | |
Fractional exhaled nitric oxide (log10 of FeNO) at 6–7 years of age | ||||||
plp1_57_497_2341m_z | Unknown | Unknown | 0.002 | 0.006 | 0.1838 | |
plp1_05_161_1074m_z | yes | Tryptamine | Tryptophan metabolite (indole) | 0.0004 | 0.004 | 0.0046 |
plp8_60_266_1595m_z | yes | Prenyl glucoside | Hemiterpenoid glycoside | 0.04 | 0.044 | 0.1478 |
slp0_28_976_8400m_z | yes | TG 60:8 | Triacylglycerol (polyunsaturated) | 0.002 | 0.004 | 0.0264 |
Health Outcome and Associated MNTs | Interaction with Time | Annotation | Compound Class | p-Value (F1) | FDR Adjusted p-Value (F1) | p-Value Replication (F2) |
---|---|---|---|---|---|---|
Females | ||||||
Skin prick test positivity at 1, 3, and/or 6 years | ||||||
plp10_25_189_1597m_z | yes | N6,N6,N6-Trimethyl-L-lysine | Amino acid derivative | 0.008 | 0.01 | 0.1699 |
plp6_13_119_0928m_z | yes | Unknown | Unknown | 0.01 | 0.02 | 0.0732 |
Forced mid-expiratory flow FEF25–75% at 6–7 years of age | ||||||
nlp16_65_861_5483m_z | yes | Unknown | Unknown | 0.02 | 0.02 | 0.13 |
Males | ||||||
Forced vital capacity (FVC) at 6–7 years of age | ||||||
slp0_28_992_9463m_z | yes | TG 60:0 | Saturated Triacylglycerol | 0.02 | 0.02 | 0.0359 |
plp2_94_799_4893m_z | yes | PE 38:8 | Phosphatidylethanolamine (polyunsaturated) | 0.00009 | 0.001 | 0.0324 |
plp2_92_351_0460m_z | yes | Unknown | Unknown | 0.0002 | 0.001 | 0.0871 |
plp2_94_279_0142m_z | yes | 3,5-Dimethoxy-4-(sulfooxy)benzoic acid | Polyphenol sulfate | 0.0003 | 0.001 | 0.0478 |
Forced expiratory volume in 1 s (FEV1) at 6–7 years of age | ||||||
plp2_94_137_0413n | yes | Hypoxanthine [13C1] isotopolog | Hypoxanthine | 0.001 | 0.003 | 0.0111 |
plp2_94_295_0654m_z | yes | Unknown | Unknown | 0.002 | 0.004 | 0.0156 |
plp2_94_799_4893m_z | yes | PE 38:8 | Phosphatidylethanolamine (polyunsaturated) | 0.0005 | 0.002 | 0.0581 |
plp2_94_177_0647n | yes | Hypoxanthine acetonitrile adduct | Hypoxanthine | 0.002 | 0.004 | 0.1067 |
plp2_95_143_0536m_z | yes | 2,5-Dimethyl-3-(methylthio)furan | Aryl thioether | 0.0004 | 0.002 | 0.0398 |
plp2_92_351_0460m_z | yes | Unknown | Unknown | 0.003 | 0.005 | 0.1575 |
Forced mid-expiratory flow FEF25–75% at 6–7 years of age | ||||||
plp4_08_257_0586m_z | 7-Amino-4-hydroxy-2-naphthalenesulfonic acid | Dye precursor or breakdown product | 0.04 | 0.04 | 0.0145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmaus, W.; Kheirkhah Rahimabad, P.; Pham, N.; Mukherjee, N.; Chen, S.; Anthony, T.M.; Arshad, H.S.; Rathod, A.; Sultana, N.; Jones, A.D. Association of Metabolites, Nutrients, and Toxins in Maternal and Cord Serum with Asthma, IgE, SPT, FeNO, and Lung Function in Offspring. Metabolites 2023, 13, 737. https://doi.org/10.3390/metabo13060737
Karmaus W, Kheirkhah Rahimabad P, Pham N, Mukherjee N, Chen S, Anthony TM, Arshad HS, Rathod A, Sultana N, Jones AD. Association of Metabolites, Nutrients, and Toxins in Maternal and Cord Serum with Asthma, IgE, SPT, FeNO, and Lung Function in Offspring. Metabolites. 2023; 13(6):737. https://doi.org/10.3390/metabo13060737
Chicago/Turabian StyleKarmaus, Wilfried, Parnian Kheirkhah Rahimabad, Ngan Pham, Nandini Mukherjee, Su Chen, Thilani M. Anthony, Hasan S. Arshad, Aniruddha Rathod, Nahid Sultana, and A. Daniel Jones. 2023. "Association of Metabolites, Nutrients, and Toxins in Maternal and Cord Serum with Asthma, IgE, SPT, FeNO, and Lung Function in Offspring" Metabolites 13, no. 6: 737. https://doi.org/10.3390/metabo13060737
APA StyleKarmaus, W., Kheirkhah Rahimabad, P., Pham, N., Mukherjee, N., Chen, S., Anthony, T. M., Arshad, H. S., Rathod, A., Sultana, N., & Jones, A. D. (2023). Association of Metabolites, Nutrients, and Toxins in Maternal and Cord Serum with Asthma, IgE, SPT, FeNO, and Lung Function in Offspring. Metabolites, 13(6), 737. https://doi.org/10.3390/metabo13060737