Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review
Abstract
:1. Introduction
2. Methodology
Literature Search
3. Results
3.1. Botanical Description and Distribution
3.2. Phytochemistry of A. afra and A. annua
3.3. Anti-Malarial Properties, Anti-Inflammatory and Immunomodulating Effects of A. annua and A. afra
3.4. Anti-Malarial Properties, Anti-Inflammatory and Immunomodulating Effects of Secondary Metabolites
3.5. Pharmacokinetics and Bioavailability of Secondary Metabolites of A. annua and A. afra
3.6. Toxicity of Crude Extracts of A. annua and A. afra and Their Secondary Metabolites
3.7. Resistance to ACTs and Broad-Spectrum Pharmacology of Artemisia-Based Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO. World Malaria Report 2021. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 31 October 2022).
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. Genus: A Review of Bioactive Essential Oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [Green Version]
- Bora, K.S.; Sharma, A. The Genus Artemisia: A Comprehensive Review. Pharm. Biol. 2010, 49, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Milani, B.; Scholten, W. The World Medicines Situation 2011: Access to Controlled Medicines, 3rd ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Jeremić, D.; Jokić, A.; Behbud, A.; Stefanović, M. A new type of sesqiterpene lactone isolated from Artemisia annua L. arteannuin B. Tetrahedron Lett. 1973, 14, 3039–3042. [Google Scholar] [CrossRef]
- Brown, G.D. The Biosynthesis of Artemisinin (Qinghaosu) and the Phytochemistry of Artemisia annua L. (Qinghao). Molecules 2010, 15, 7603–7698. [Google Scholar] [CrossRef] [Green Version]
- Klayman, D.L. Qinghaosu (Artemisinin): An Antimalarial Drug from China. Science 1985, 228, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Ćavar, S.; Maksimović, M.; Vidic, D.; Parić, A. Chemical composition and antioxidant and antimicrobial activity of essential oil of Artemisia annua L. from Bosnia. Ind. Crop. Prod. 2011, 37, 479–485. [Google Scholar] [CrossRef]
- Mueller, M.; Karhagomba, I.; Hirt, H.; Wemakor, E. The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: Agricultural, chemical and clinical aspects. J. Ethnopharmacol. 2000, 73, 487–493. [Google Scholar] [CrossRef]
- Gouveia, S.C.; Castilho, P.C. Artemisia annua L.: Essential oil and acetone extract composition and antioxidant capacity. Ind. Crop. Prod. 2013, 45, 170–181. [Google Scholar] [CrossRef]
- Price, R.; Nosten, F.; Luxemburger, C.; ter Kuile, F.; Paiphun, L.; Chongsuphajaisiddhi, T.; White, N. Effects of artemisinin derivatives on malaria transmissibility. Lancet 1996, 347, 1654–1658. [Google Scholar] [CrossRef]
- Weathers, P.J.; Towler, M.; Hassanali, A.; Lutgen, P.; Engeu, P.O. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries? World J. Pharmacol. 2014, 3, 39–55. [Google Scholar] [CrossRef]
- Karl, S.; Gurarie, D.; Zimmerman, P.A.; King, C.H.; Pierre, T.G.S.; Davis, T.M.E. A Sub-Microscopic Gametocyte Reservoir Can Sustain Malaria Transmission. PLoS ONE 2011, 6, e20805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyo, P.; Kunyane, P.; Selepe, M.A.; Eloff, J.N.; Niemand, J.; Louw, A.I.; Maharaj, V.J.; Birkholtz, L.-M. Bioassay-guided isolation and identification of gametocytocidal compounds from Artemisia afra (Asteraceae). Malar. J. 2019, 18, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wyk, B.-E. The potential of South African plants in the development of new medicinal products. S. Afr. J. Bot. 2011, 77, 812–829. [Google Scholar] [CrossRef] [Green Version]
- Parada, M.; Carrió, E.; Bonet, M.; Vallès, J. Ethnobotany of the Alt Empordà region (Catalonia, Iberian Peninsula): Plants used in human traditional medicine. J. Ethnopharmacol. 2009, 124, 609–618. [Google Scholar] [CrossRef]
- Rajendra, S.B.; Dharam, C.J.; Ram, P.S. Phytochemistry of Artemisia annua and The Development of Artemisinin-Derived Antimalarial Agents. In Artemisia; CRC Press: Boca Raton, FL, USA, 2001; pp. 184–213. [Google Scholar] [CrossRef]
- Pharmacopoeia. Chinese Pharmacopoeia Commission. In Pharmacopoeia of the People’s Republic of China 2010; China Medical Science and Technology Press: Beijing, China, 2010; Available online: https://www.scirp.org (accessed on 31 October 2022).
- Ma, J.; Clemants, S. A history and overview of the Flora Reipublicae Popularis Sinicae (FRPS, Flora of China, Chinese edition, 1959–2004). Taxon 2006, 55, 451–460. [Google Scholar] [CrossRef]
- Ferreira, J.; Janick, J. Production and Detection of Artemisinin from Artemisia annua. Acta Hortic. 1995, 390, 41–50. [Google Scholar] [CrossRef]
- Discover Life. Annual Mugwort. Available online: https://www.discoverlife.org/20/q?search=Artemi (accessed on 10 April 2023).
- Roberts, M. Indigenous Healing Plants by Roberts, Margaret: Very Good Hardcover, 1st ed.; Southern Book Publishers: Capetown, South Africa, 1990; Available online: https://www.abebooks.com/first-edition/Indigenous-Healing-Plants-Roberts-Margaret-Southern/22732613283/bd (accessed on 31 October 2022).
- Czechowski, T.; Larson, T.R.; Catania, T.M.; Harvey, D.; Wei, C.; Essome, M.; Brown, G.D.; Graham, I.A. Detailed Phytochemical Analysis of High- and Low Artemisinin-Producing Chemotypes of Artemisia annua. Front. Plant Sci. 2018, 9, 641. [Google Scholar] [CrossRef] [Green Version]
- Sotenjwa, V.Z.; Chen, W.; Veale, C.G.; Anokwuru, C.P.; Tankeu, S.Y.; Combrinck, S.; Kamatou, G.P.; Viljoen, A.M. Chemotypic variation of non-volatile constituents of Artemisia afra (African wormwood) from South Africa. Fitoterapia 2020, 147, 104740. [Google Scholar] [CrossRef]
- Qin, D.-P.; Li, T.; Shao, J.-R.; He, X.-Q.; Shi, D.-F.; Wang, Z.-Z.; Xiao, W.; Yao, X.-S.; Li, H.-B.; Yu, Y. Arteannoides U–Z: Six undescribed sesquiterpenoids with anti-inflammatory activities from the aerial parts of Artemisia annua (Qinghao). Fitoterapia 2021, 154, 105002. [Google Scholar] [CrossRef]
- Qin, D.-P.; Pan, D.-B.; Xiao, W.; Li, H.-B.; Yang, B.; Yao, X.-J.; Dai, Y.; Yu, Y.; Yao, X.-S. Dimeric Cadinane Sesquiterpenoid Derivatives from Artemisia annua. Org. Lett. 2018, 20, 453–456. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, G.M.; Li, D.Y.; Li, Z.L. A new coumarin glycoside isolated from Artemisia annua. Chin. Tradit. Herb. Drugs 2018, 49, 2953–2958. [Google Scholar] [CrossRef]
- Takenaka, Y.; Seki, S.; Nishi, T.; Tanahashi, T. Two new sesquiterpenes from Artemisia annua L. J. Nat. Med. 2020, 74, 811–818. [Google Scholar] [CrossRef]
- Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.-R.; Guo, D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 516–525. [Google Scholar] [CrossRef]
- Goel, D.; Singh, V.; Ali, M.; Mir, S.R.; Ali, C.M.; Sultana, S. New Phytoconstituents from the shoots of Artemisia annua L. Cultivar. J. Med. Plants Stud. 2017, 5, 136–139. [Google Scholar]
- Carbonara, T.; Pascale, R.; Argentieri, M.P.; Papadia, P.; Fanizzi, F.P.; Villanova, L.; Avato, P. Phytochemical analysis of a herbal tea from Artemisia annua L. J. Pharm. Biomed. Anal. 2012, 62, 79–86. [Google Scholar] [CrossRef]
- Mouton, J.; van de Kooy, F. View of Identification of cis- and trans- Melilotoside within an Artemisia annua Tea Infusion. Eur. J. Med. Plants 2013, 4, 52–63. Available online: https://journalejmp.com/index.php/EJMP/article/view/585/1173 (accessed on 31 October 2022). [CrossRef]
- Hu, J.; Li, K.-M.; Dong, X.; Ma, Y.-N.; Wu, Z.-H.; Yan, Y.-M.; Cheng, Y.-X. Terpenoids and flavonoids from Artemisia species. Planta Med. 2000, 66, 391–393. [Google Scholar]
- de Magalhães, P.M.; Dupont, I.; Hendrickx, A.; Joly, A.; Raas, T.; Dessy, S.; Sergent, T.; Schneider, Y.-J. Anti-inflammatory effect and modulation of cytochrome P450 activities by Artemisia annua tea infusions in human intestinal Caco-2 cells. Food Chem. 2012, 134, 864–871. [Google Scholar] [CrossRef]
- Youyou, T.; Muyun, N.; Yurong, Z.; Lanna, L.; Shulian, G.; Muqun, Z.; Xiuzhen, W.; Xiaotian, L. Studies on the constit-uents of Artemisia annua L. Pharm. Sin. 2015, 50, 366–370. (In Chinese) [Google Scholar]
- Gakuba, B.E. Isolation and Characterisation of Secondary Metabolites of Two Asteraceae Species, Artemisia afra and Elytropappus Rhinocerotis. Available online: https://researchspace.ukzn.ac.za/handle/10413/639 (accessed on 8 November 2022).
- Braünlich, P.M.; Inngjerdingen, K.T.; Inngjerdingen, M.; Johnson, Q.; Paulsen, B.S.; Mabusela, W. Polysaccharides from the South African medicinal plant Artemisia afra: Structure and activity studies. Fitoterapia 2018, 124, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Chai, Y.; Lv, C.; Chen, Q.; Liu, J.; Wang, Y.; Chou, G. Sesquiterpenes from Artemisia annua and Their Cytotoxic Activities. Molecules 2022, 27, 5079. [Google Scholar] [CrossRef]
- Qin, D.-P.; Li, H.-B.; Pang, Q.-Q.; Huang, Y.-X.; Pan, D.-B.; Su, Z.-Z.; Yao, X.-J.; Yao, X.-S.; Xiao, W.; Yu, Y. Structurally diverse sesquiterpenoids from the aerial parts of Artemisia annua (Qinghao) and their striking systemically anti-inflammatory activities. Bioorganic Chem. 2020, 103, 104221. [Google Scholar] [CrossRef]
- Goel, D.; Singh, V.; Ali, M.; Mir, S.R.; Ali, C.M.; Sultana, S.L. Composition of the essential oil from the root of Artemisia annua. J. Nat. Med. 2007, 61, 458–461. [Google Scholar] [CrossRef]
- Snider, D.; Weathers, P.J. In vitro reduction of Plasmodium falciparum gametocytes: Artemisia spp. tea infusions vs. artemisinin. J. Ethnopharmacol. 2020, 268, 113638. [Google Scholar] [CrossRef] [PubMed]
- de Ridder, S.; van der Kooy, F.; Verpoorte, R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J. Ethnopharmacol. 2008, 120, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Gruessner, B.M.; Weathers, P.J. In vitro analyses of Artemisia extracts on Plasmodium falciparum suggest a complex antimalarial effect. PLoS ONE 2021, 16, e0240874. [Google Scholar] [CrossRef] [PubMed]
- Dua, V.K.; Verma, G.; Agarwal, D.D.; Kaiser, M.; Brun, R. Antiprotozoal activities of traditional medicinal plants from the Garhwal region of Northwest Himalaya, India. J. Ethnopharmacol. 2011, 136, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.M.; Seddek, A.-L.S.; Abdelmageed, N.; Badry, M.O.; Nishikawa, Y. Wild Egyptian medicinal plants show in vitro and in vivo cytotoxicity and antimalarial activities. BMC Complement. Med. Ther. 2022, 22, 130. [Google Scholar] [CrossRef]
- Tasdemir, D.; Tierney, M.; Sen, R.; Bergonzi, M.C.; Demirci, B.; Bilia, A.R.; Baser, K.H.C.; Brun, R.; Chatterjee, M. Antiprotozoal Effect of Artemisia indica Extracts and Essential Oil. Planta Med. 2015, 81, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Kane, N.; Kyama, M.; Nganga, J.; Hassanali, A.; Diallo, M.; Kimani, F. Comparison of phytochemical profiles and antimalarial activities of Artemisia afra plant collected from five countries in Africa. South Afr. J. Bot. 2019, 125, 126–133. [Google Scholar] [CrossRef]
- Ogbole, E.A.; Ogbole, Y.; Peter, J.Y.; Builders, M.I.; Aguiyi, J.C. Phytochemical Screening and In vivo Antiplasmodial Sensitivity Study of Locally Cultivated Artemisia annua Leaf Extract Against Plasmodium berghei. Am. J. Ethnomedicine 2014, 1. [Google Scholar]
- Mojarrab, M.; Shiravand, A.; Delazar, A.; Afshar, F.H. Evaluation of In Vitro Antimalarial Activity of Different Extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and Fractions of the Most Potent Extracts. Sci. World J. 2014, 2014, 825370. [Google Scholar] [CrossRef] [Green Version]
- Sankhuan, D.; Niramolyanun, G.; Kangwanrangsan, N.; Nakano, M.; Supaibulwatana, K. Variation in terpenoids in leaves of Artemisia annua grown under different LED spectra resulting in diverse antimalarial activities against Plasmodium falciparum. BMC Plant Biol. 2022, 22, 128. [Google Scholar] [CrossRef]
- Afshar, F.H.; Delazar, A.; Janneh, O.; Nazemiyeh, H.; Pasdaran, A.; Nahar, L.; Sarker, S.D. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. Spicigera, Asteraceae. Rev. Bras. Farm. 2011, 21, 986–990. [Google Scholar] [CrossRef] [Green Version]
- Kane, N.F.; Kiani, B.H.; Desrosiers, M.R.; Towler, M.J.; and Weathers, P.J. Artemisia extracts differ from artemisinin effects on human hepatic CYP450s 2B6 and 3A4 in vitro. J. Ethnopharmacol. 2022, 298, 115587. [Google Scholar] [CrossRef]
- Oma, G.P.E.; Mouhamadou, D.; Bineta, D.A.; Sadikh, B.A.; Mare, D.D.; Ambroise, A.; Ndiay, A.A.; Thérése, D.; Pierre, L.; Souleymane, M.; et al. Tea Artemisia annua inhibits Plasmodium falciparum isolates collected in Pikine, Senegal. Afr. J. Biochem. Res. 2013, 7, 107–113. [Google Scholar] [CrossRef]
- De Donno, A.; Grassi, T.; Idolo, A.; Guido, M.; Papadia, P.; Caccioppola, A.; Villanova, L.; Merendino, A.; Bagordo, F.; Fanizzi, F.P. First-time comparison of the in vitro antimalarial activity of Artemisia annua herbal tea and artemisinin. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 696–700. [Google Scholar] [CrossRef]
- Weathers, P.J.; Elfawal, M.A.; Towler, M.J.; Acquaah-Mensah, G.; Rich, S.M. Pharmacokinetics of artemisinin delivered by oral consumption of Artemisia annua dried leaves in healthy vs. Plasmodium chabaudi-infected mice. J. Ethnopharmacol. 2014, 153, 732–736. [Google Scholar] [CrossRef] [Green Version]
- Ortet, R.; Thomas, O.P.; Regalado, E.L.; Pino, J.A.; Filippi, J.-J.; Fernández, M.D. Composition and Biological Properties of the Volatile Oil of Artemisia gorgonum Webb. Chem. Biodivers. 2010, 7, 1325–1332. [Google Scholar] [CrossRef]
- Mojarrab, M.; Emami, S.A.; Gheibi, S.; Taleb, A.M.; Afshar, F.H. Evaluation of Anti-Malarial Activity of Artemisia Turcomanica and A. Kopetdaghensis by Cell-Free β-Hematin formation Assay. Res. J. Pharmacogn. 2016, 3, 59–65. [Google Scholar]
- Rustaiyan, A.; Nahrevanian, H.; Kazemi, M.; Larijani, K. A new antimalarial agent; effects of extracts of Artemisia diffusa against Plasmodium berghei. Planta Med. 2007, 73, 219. [Google Scholar] [CrossRef]
- Panda, S.; Rout, J.R.; Pati, P.; Ranjit, M.; Sahoo, S.L. Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum. J. Parasit. Dis. 2017, 42, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Mojarrab, M.; Naderi, R.; Afshar, F.H. Screening of Different Extracts from Artemisia Species for Their Potential Antimalarial Activity. Iran. J. Pharm. Res. 2015, 14, 603–608. [Google Scholar]
- Adugna, M.; Feyera, T.; Taddese, W.; Admasu, P. In vivo Antimalarial Activity of Crude Extract of Aerial Part of Artemisia abyssinica Against Plasmodium berghei in Mice. Glob. J. Pharmacol. 2014, 8, 460–468. [Google Scholar] [CrossRef]
- Bamunuarachchi, G.S.; Ratnasooriya, W.D.; Premakumara, S.; Udagama, P.V. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model. J. Vector Borne Dis. 2013, 50, 278–284. [Google Scholar] [PubMed]
- Udagama, P.; Ratnasooriya, W.; Kodippili, K.; Premakumara, S. An investigation of the antimalarial activity of Artemisia vulgaris leaf extract in a rodent malaria model. Int. J. Green Pharm. 2011, 5, 276. [Google Scholar] [CrossRef]
- Mueller, M.S.; Runyambo, N.; Wagner, I.; Borrmann, S.; Dietz, K.; Heide, L. Randomized controlled trial of a traditional preparation of Artemisia annua L. (Annual Wormwood) in the treatment of malaria. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 318–321. [Google Scholar] [CrossRef]
- Blanke, C.H.; Naisabha, G.B.; Balema, M.B.; Mbaruku, G.M.; Heide, L.; Müller, M.S. Herba Artemisiae annuae tea preparation compared to sulfadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria in adults: A randomized double-blind clinical trial. Trop. Dr. 2008, 38, 113–116. [Google Scholar] [CrossRef]
- Liu, N.; Van der Kooy, F.; Verpoorte, R. Artemisia afra: A potential flagship for African medicinal plants? South Afr. J. Bot. 2009, 75, 185–195. [Google Scholar] [CrossRef] [Green Version]
- du Toit, A.; van der Kooy, F. Artemisia afra, a controversial herbal remedy or a treasure trove of new drugs? J. Ethnopharmacol. 2019, 244, 112127. [Google Scholar] [CrossRef]
- Narsaria, N.; Mohanty, C.; Das, B.K.; Mishra, S.P.; Prasad, R. Oxidative Stress in Children with Severe Malaria. J. Trop. Pediatr. 2011, 58, 147–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwalokun, B.A.; Bamiro, S.B.; Ogunledun, A. Levels and interactions of plasma xanthine oxidase, catalase and liver function parameters in Nigerian children with Plasmodium falciparum infection. Apmis 2006, 114, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Guermonprez, P.; Helft, J.; Claser, C.; Deroubaix, S.; Karanje, H.; Gazumyan, A.; Darrasse-Jeze, G.; Telerman, S.B.; Breton, G.; Schreiber, H.A.; et al. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat. Med. 2013, 19, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Ty, M.C.; Zuniga, M.; Götz, A.; Kayal, S.; Sahu, P.K.; Mohanty, A.; Mohanty, S.; Wassmer, S.C.; Rodriguez, A. Malaria inflammation by xanthine oxidase-produced reactive oxygen species. EMBO Mol. Med. 2019, 11, e9903. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Hu, Y.; Wang, L.; Ao, C. Ethanol Extract of Artemisia annua Prevents LPS-Induced Inflammation and Blood–Milk Barrier Disruption in Bovine Mammary Epithelial Cells. Animals 2022, 12, 1228. [Google Scholar] [CrossRef]
- Abate, G.; Zhang, L.; Pucci, M.; Morbini, G.; Mac Sweeney, E.; Maccarinelli, G.; Ribaudo, G.; Gianoncelli, A.; Uberti, D.; Memo, M.; et al. Phytochemical Analysis and Anti-Inflammatory Activity of Different Ethanolic Phyto-Extracts of Artemisia annua L. Biomolecules 2021, 11, 975. [Google Scholar] [CrossRef]
- Muleya, E.; Ahmed, A.S.; Sipamla, A.; Mtunzi, F.; Mutatu, W. Evaluation of Anti-Microbial, Anti-Inflammatory and Anti-Oxidative Properties Artemisia afra, Gunnera perpensa and Eucomis autumnalis. J. Nutr. Food Sci. 2014, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Stratosphere. 11 Different Types of Artemisia Flowers. Available online: https://www.homestratosphere.com/types-of-artemisia-flowers/ (accessed on 31 October 2022).
- Ali, A.H.; Sudi, S.; Shi-Jing, N.; Hassan, W.R.M.; Basir, R.; Agustar, H.K.; Embi, N.; Sidek, H.M.; Latip, J. Dual Anti-Malarial and GSK3β-Mediated Cytokine-Modulating Activities of Quercetin Are Requisite of Its Potential as a Plant-Derived Therapeutic in Malaria. Pharmaceuticals 2021, 14, 248. [Google Scholar] [CrossRef]
- Jansen, O.; Tchinda, A.T.; Loua, J.; Esters, V.; Cieckiewicz, E.; Ledoux, A.; Toukam, P.D.; Angenot, L.; Tits, M.; Balde, A.M.; et al. Antiplasmodial activity of Mezoneuron benthamianum leaves and identification of its active constituents. J. Ethnopharmacol. 2017, 203, 20–26. [Google Scholar] [CrossRef]
- Ganesh, D.; Fuehrer, H.-P.; Starzengrüber, P.; Swoboda, P.; Khan, W.A.; Reismann, J.A.B.; Mueller, M.S.K.; Chiba, P.; Noedl, H. Antiplasmodial activity of flavonol quercetin and its analogues in Plasmodium falciparum: Evidence from clinical isolates in Bangladesh and standardized parasite clones. Parasitol. Res. 2012, 110, 2289–2295. [Google Scholar] [CrossRef]
- Willcox, M. Artemisia Species: From Traditional Medicines to Modern Antimalarials—And Back Again. J. Altern. Complement. Med. 2009, 15, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Gong, F.Y.-H.; Chang, T.-L. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J. Ethnopharmacol. 2008, 120, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Nourian, A.; Khoshkam, M.; Ramazani, A. Apigenin inhibits growth of the Plasmodium berghei and disrupts some metabolic pathways in mice. Phytother. Res. 2018, 32, 1795–1802. [Google Scholar] [CrossRef] [PubMed]
- Fallatah, O.; Georges, E. Apigenin-induced ABCC1-mediated efflux of glutathione from mature erythrocytes inhibits the proliferation of Plasmodium falciparum. Int. J. Antimicrob. Agents 2017, 50, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Somsak, V.; Damkaew, A.; Onrak, P. Antimalarial Activity of Kaempferol and Its Combination with Chloroquine in Plasmodium berghei Infection in Mice. J. Pathog. 2018, 2018, 3912090. [Google Scholar] [CrossRef] [Green Version]
- Sok, K.W.; Jann, M.L.S.; Sudi, S.; Hassan, W.R.M.; Lee, P.C.; Embi, N.; Sidek, H.M.; Wong, S.K. Anti-malarial and Anti-inflammatory Effects of Gynura procumbens are Mediated by Kaempferol via Inhibition of Glycogen Synthase Kinase-3β (GSK3β). Sains Malays. 2015, 44, 1489–1500. [Google Scholar] [CrossRef]
- Barliana, M.I.; Suradji, E.W.; Abdulah, R.; Diantini, A.; Hatabu, T.; Nakajima-Shimada, J.; Subarnas, A.; Koyama, H. Antiplasmodial properties of kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii against chloroquine-resistant Plasmodium falciparum. Biomed. Rep. 2014, 2, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, C.; Gong, M.; Wang, M. Combination of artemisinin-based natural compounds from Artemisia annua L. for the treatment of malaria: Pharmacodynamic and pharmacokinetic studies. Phytother. Res. 2018, 32, 1415–1420. [Google Scholar] [CrossRef]
- Chen, N.; LaCrue, A.N.; Teuscher, F.; Waters, N.C.; Gatton, M.L.; Kyle, D.E.; Cheng, Q. Fatty Acid Synthesis and Pyruvate Metabolism Pathways Remain Active in Dihydroartemisinin-Induced Dormant Ring Stages of Plasmodium falciparum. Antimicrob. Agents Chemother. 2014, 58, 4773–4781. [Google Scholar] [CrossRef] [Green Version]
- Nibret, E.; Wink, M. Volatile components of four Ethiopian Artemisia species extracts and their in vitro antitrypanosomal and cytotoxic activities. Phytomedicine 2010, 17, 369–374. [Google Scholar] [CrossRef]
- Abass, K.; Reponen, P.; Mattila, S.; Pelkonen, O. Metabolism of α-thujone in human hepatic preparations in vitro. Xenobiotica 2010, 41, 101–111. [Google Scholar] [CrossRef]
- Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res. 2015, 99, 21. [Google Scholar] [CrossRef]
- Kim, W.-S.; Choi, W.J.; Lee, S.; Kim, W.J.; Lee, D.C.; Sohn, U.D.; Shin, H.-S.; Kim, W. Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts from Artemisia annua L. Korean J. Physiol. Pharmacol. 2014, 19, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Huai, M.; Zeng, J.; Ge, W. Artemisinin ameliorates intestinal inflammation by skewing macrophages to the M2 phenotype and inhibiting epithelial–mesenchymal transition. Int. Immunopharmacol. 2020, 91, 107284. [Google Scholar] [CrossRef]
- Cai, T.-Y.; Zhang, Y.-R.; Ji, J.-B.; Xing, J. Investigation of the component in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin via regulation of its metabolism. J. Ethnopharmacol. 2017, 207, 86–91. [Google Scholar] [CrossRef]
- Kriel, Y. The Immune-Modulating Activity of Artemisia afra. Available online: https://etd.uwc.ac.za/xmlui/handle/11394/2020 (accessed on 21 October 2022).
- Suberu, J.O.; Gorka, A.P.; Jacobs, L.; Roepe, P.D.; Sullivan, N.; Barker, G.C.; Lapkin, A.A. Anti-Plasmodial Polyvalent Interactions in Artemisia annua L. Aqueous Extract—Possible Synergistic and Resistance Mechanisms. PLoS ONE 2013, 8, e80790, Corrigendum in PLoS ONE 2013, 8, e80790. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, G.; Zhu, C.; Cheng, B.; Zhang, C.; Ma, Y.; Dong, Y. Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling. Eur. J. Pharmacol. 2010, 649, 277–284. [Google Scholar] [CrossRef]
- Cheng, A.-S.; Cheng, Y.-H.; Chang, T.-L. Scopoletin attenuates allergy by inhibiting Th2 cytokines production in EL-4 T cells. Food Funct. 2012, 3, 886–890. [Google Scholar] [CrossRef]
- Min, S.-W.; Kim, N.-J.; Baek, N.-I.; Kim, D.-H. Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan-induced inflammation in mice. J. Ethnopharmacol. 2009, 125, 497–500. [Google Scholar] [CrossRef]
- Ferreira, J.; Laughlin, J.C.; Delabays, N.; de Magalhães, P. Cultivation and genetics of Artemisia annua L. for increased production of the antimalarial artemisinin. Plant Genet. Resour. Charact. Util. 2005, 3, 206–229. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Kushnoor, A.; Saini, V.; Singhal, S.; Kumar, S.; Yadav, Y. In vitro antioxidant properties of Scopoletin. J. Chem. Pharm. Res. 2011, 3, 659–665. [Google Scholar]
- Ritter, J.M.; Rod, J.F.; Henderson, G.; Loke, Y.K.; MacEwan, D.; Rang, H.P. Rang and Dale’s Pharmacology, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2018; p. 808. [Google Scholar]
- Räth, K.; Heide, L.; Gleiter, C.H.; Taxis, K.; Li, S.-M.; Walz, G. Pharmacokinetic study of artemisinin after oral intake of a traditional preparation of Artemisia annua L. (Annual wormwood). Am. J. Trop. Med. Hyg. 2004, 70, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, M.R.; Mittleman, A.; Weathers, P.J. Dried Leaf Artemisia annua Improves Bioavailability of Artemisinin via Cytochrome P450 Inhibition and Enhances Artemisinin Efficacy Downstream. Biomolecules 2020, 10, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, C.; Zhang, K.; Wang, M.; Qiu, F. Multi-component pharmacokinetics assessment of Artemisia annua L. in rats based on LC-ESI-MS/MS quantification combined with molecular docking. Arab. J. Chem. 2022, 15, 2920–2925. [Google Scholar] [CrossRef]
- Wang, X.; Ren, J.; Zhu, S.; Ren, G.; Wang, L.; Chen, X.; Qiu, Z.; Zhang, C. Pharmacokinetics and tissue distribution of eupatilin and its metabolite in rats by an HPLC-MS/MS method. J. Pharm. Biomed. Anal. 2018, 159, 113–118. [Google Scholar] [CrossRef]
- Crespy, V.; Morand, C.; Besson, C.; Manach, C.; Demigne, C.; Remesy, C. Quercetin, but not Its Glycosides, Is Absorbed from the Rat Stomach. J. Agric. Food Chem. 2001, 50, 618–621. [Google Scholar] [CrossRef]
- Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur. J. Clin. Pharmacol. 2000, 56, 545–553. [Google Scholar] [CrossRef]
- van der Woude, H.; Boersma, M.G.; Vervoort, J.; Rietjens, I.M.C.M. Identification of 14 Quercetin Phase II Mono- and Mixed Conjugates and Their Formation by Rat and Human Phase II in Vitro Model Systems. Chem. Res. Toxicol. 2004, 17, 1520–1530. [Google Scholar] [CrossRef]
- Gradolatto, A.; Canivenc-Lavier, M.-C.; Basly, J.-P.; Siess, M.-H.; Teyssier, C. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab. Dispos. 2004, 32, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Zhou, J.; Yang, C.-H.; Xia, B.-J.; Hu, M.; Liu, Z.-Q. Systematic Studies of Sulfation and Glucuronidation of 12 Flavonoids in the Mouse Liver S9 Fraction Reveal both Unique and Shared Positional Preferences. J. Agric. Food Chem. 2012, 60, 3223–3233. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Zhao, L.; Wang, Y.; Xue, L.; Han, T.; Zheng, C.; Qin, L. Quantitative determination and pharmacokinetic study of casticin in rat plasma by liquid chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2012, 61, 242–246. [Google Scholar] [CrossRef]
- Barve, A.; Chen, C.; Hebbar, V.; Desiderio, J.; Saw, C.L.-L.; Kong, A.-N. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm. Drug Dispos. 2009, 30, 356–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabela, V.; Sampath, C.; Oufir, M.; Moradi-Afrapoli, F.; Butterweck, V.; Hamburger, M. Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats. Fitoterapia 2016, 115, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukinda, J.T.; Syce, J.A.; Fisher, D.; Meyer, M. Effect of the Plant Matrix on the Uptake of Luteolin Derivatives-containing Artemisia afra Aqueous-extract in Caco-2 cells. J. Ethnopharmacol. 2010, 130, 439–449. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. No Toxicity Detected for Artemisia annua or Artemisia afra. Available online: https://www.malariaworld.org (accessed on 13 April 2023).
- Motshudi, M.; Olaokun, O.; Mkolo, N. Evaluation of GC × GC-TOF-MS untargeted metabolomics, cytotoxicity and antimicrobial activity of leaf extracts of Artemisia afra (Jacq.) purchased from three local vendors. J. King Saud Univ. Sci. 2021, 33, 101422. [Google Scholar] [CrossRef]
- van Loggenberg, S.; Willers, C.; van der Kooy, F.; Gouws, C.; Hamman, J.H.; Steyn, J.D. Evaluating in vitro cytotoxic effects of Artemisia afra and Artemisia annua infusions against selected lung cancer cell lines. South Afr. J. Bot. 2022, 150, 404–411. [Google Scholar] [CrossRef]
- Mekonen, K.; Afework, M.; Makonnen, E.; Debela, A.; Ergete, W.; Tolessa, T. Evaluation of Acute and Sub-Acute Toxicity of Aqueous Extracts of Artemisia afra Leaves on Brain, Heart and Suprarenal Glands in Swiss Albino Mice. Ethiop. J. Health Sci. 2020, 30, 981–990. [Google Scholar] [CrossRef]
- Kane, N.F.; Kyama, M.C.; Nganga, J.K.; Hassanali, A.; Diallo, M.; Kimani, F.T. Acute Toxicity Effect of Artemisia afra Plant Extracts on the Liver, Kidney, Spleen and in Vivo Antimalarial Assay on Swiss Albino Mice. Adv. Biosci. Bioeng. 2019, 7, 64. [Google Scholar] [CrossRef]
- Siddiqui, M.; Waghmare, S.; Hajare, S.; Deshmukh, R.S.I.; Chepte, S.; Ali, S.A. Phytochemical analysis and acute toxicity studies of Artemisia annua in Swiss albino mice. J. Pharmacogn. Phyto-Chem. 2018, 7, 1893–1895. [Google Scholar]
- Mukinda, J.T.; Syce, J.A. Acute and chronic toxicity of the aqueous extract of Artemisia afra in rodents. J. Ethnopharmacol. 2017, 112, 138–144. [Google Scholar] [CrossRef]
- Loomis, T.A.; Hayes, A.W. Loomis’s Essential of Toxicology, 4th ed.; Academic Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Tsuji, P.; Walle, T. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chem. Interactions 2008, 171, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Cheng, J.; Kandhare, A.D.; Mukherjee-Kandhare, A.A.; Bodhankar, S.L.; Lu, G. Toxicological evaluation of a flavonoid, chrysin: Morphological, behavioral, biochemical and histopathological assessments in rats. Drug Chem. Toxicol. 2019, 44, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, P.; Patton, E.; Vanderveen, B.N.; Unger, C.; Aladhami, A.; Enos, R.T.; Madero, S.; Chatzistamou, I.; Fan, D.; Murphy, E.A.; et al. Sub-chronic oral toxicity screening of quercetin in mice. BMC Comple. Ment. Med. 2022, 22, 279. [Google Scholar] [CrossRef] [PubMed]
- Lucida, H.; Primadini, Y.; Suhatri. A Study on the acute toxicity of quercetin solid dispersion as a potential nephron-protector. Rasayan J. Chem. 2019, 12, 727–732. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Dolci, G.S.; Grando, T.H.; Sagrillo, M.R.; Vaucher, R.A.; da Luz, S.C.; Silveira, S.O.; Duarte, M.M.; Duarte, T.; et al. Monoterpene alpha-terpinene induced hepatic oxidative, cytotoxic and genotoxic damage is associated to caspase activation in rats. J. Appl. Biomed. 2017, 15, 187–195. [Google Scholar] [CrossRef]
- Efferth, T.; Kaina, B. Toxicity of the antimalarial artemisinin and its dervatives. Crit. Rev. Toxicol. 2010, 40, 405–421. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A. Toxicity of Selected Monoterpenes and Essential Oils Rich in These Compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef]
- Alker, A.P.; Lim, P.; Sem, R.; Shah, N.K.; Yi, P.; Bouth, D.M.; Tsuyuoka, R.; Maguire, J.D.; Fandeur, T.; Ariey, F.; et al. Pfmdr1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the Cambodian-Thai border. Am. J. Trop. Med. Hyg. 2007, 76, 641–647. [Google Scholar] [CrossRef]
- Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; et al. Artemisinin Resistance in Plasmodium falciparum Malaria. N. Engl. J. Med. 2009, 361, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Isozumi, R.; Uemura, H.; Kimata, I.; Ichinose, Y.; Logedi, J.; Omar, A.H.; Kaneko, A. Novel Mutations in K13 Propeller Gene of Artemisinin-Resistant Plasmodium falciparum. Emerg. Infect. Dis. 2015, 21, 490–492. [Google Scholar] [CrossRef] [Green Version]
- Zime-Diawara, H.; Ganfon, H.; Gbaguidi, F.; Yemoa, A.; Bero, J.; Jansen, O.; Evrard, B.; Moudachirou, M.; Frederich, M.; Quetin-Leclercq, J. The antimalarial action of aqueous and hydro alcoholic extracts of Artemisia annua L. cultivated in Benin: In vitro and in vivo studies. J. Chem. Pharm. Res. 2015, 7, 817–823. [Google Scholar]
- Liu, N.Q.; Cao, M.; Frédérich, M.; Choi, Y.H.; Verpoorte, R.; van der Kooy, F. Metabolomic investigation of the ethnopharmacological use of Artemisia afra with NMR spectroscopy and multivariate data analysis. J. Ethnopharmacol. 2010, 128, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Brown, G. 13C-2H correlation NMR spectroscopy studies of the in vivo transformations of natural products from Artemisia annua. Phytochem. Rev. 2003, 2, 45–59. [Google Scholar] [CrossRef]
- Tian, J.; Feng, W.; He, B. Study on volatile constituents of Artemisia annua and its preparation by GC-MS. Shizen Guoyi Guoyao 2007, 18, 1840–1842. [Google Scholar]
- Goel, D.; Singh, G.; Ali, M.; Mallavarupu, G.R.; Kumar, S. Essential oils of petal, leaf and stem of the antimalarial plant Artemisia annua. J. Nat. Med. 2006, 61, 187–191. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Yao, J.; Yang, Y.-L.; Wang, Y.-F.; Zeng, J.-Y. Studies on the chemical constituents of the essential oil of Artemisia tournefortiana Reichb. Sichuan Daxue Xuebao (Ziran Kexueban) 2004, 41, 1287–1289. [Google Scholar]
- Viljoen, A.M.; van Vuuren, S.F.; Gwebu, T.; Demirci, B.; Başer, K.H.C. The Geographical Variation and Antimicrobial Activity of African Wormwood (Artemisia afra Jacq.) Essential Oil. J. Essent. Oil Res. 2006, 18, 19–25. [Google Scholar] [CrossRef]
- Bilia, A.R.; Flamini, G.; Morgenni, F.; Isacchi, B.; FrancescoVincieri, F. GC MS Analysis of the Volatile Constituents of Essential Oil and Aromatic Waters of Artemisia annua L. at Different Developmental Stages. Nat. Prod. Commun. 2008, 3, 2075–2078. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Wang, H.; Lu, X.; Li, H.; Liu, B.; Xu, G. Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2007, 1150, 50–53. [Google Scholar] [CrossRef]
- Yakobashvili, N.Z.; Kuchukhidze, N.M.; Chikvanya, V.E. Chemical Profile Characterization of Artemisia annua L. Essential Oils from South India Through GC-FID and GC-MS Analyses. J. Essent. Oil-Bear. Plants JEOP 2014, 17, 1249–1256. [Google Scholar] [CrossRef]
- Georgiev, E.; Gevov, N.; Khristov, N. Yield and Quality Changes in the Essential Oil of Annual Wormwood (Artemisia annua L.) During Vegetation. Plant Sci. 1981, 18, 95–102. [Google Scholar]
- Chagonda, L.S.; Makanda, C.; Chalchat, J.-C. The essential oil of cultivated Artemisia afra (Jacq.) from Zimbabwe. Flavour Fragr. J. 1999, 14, 140–142. [Google Scholar] [CrossRef]
- Muyima, N.Y.O.; Zulu, G.; Bhengu, T.; Popplewell, D. The potential application of some novel essential oils as natural cosmetic preservatives in an aqueous cream formulation. Flavour Fragr. J. 2002, 17, 258–266. [Google Scholar] [CrossRef]
- Mukhtar, H.M.; Ansari, S.; Ali, M.; Mir, S.; Abdin, M.; Singh, P. GC-MS Analysis of Volatile Oil of Aerial Parts of Artemisia annua Linn. J. Essent. Oil Bear. Plants 2007, 10, 168–171. [Google Scholar] [CrossRef]
- Jain, N.; Srivastava, S.K.; Aggarwal, K.K.; Kumar, S.; Syamasundar, K.V. Essential Oil Composition of Artemisia annua L. ‘Asha’ from the Plains of Northern India. J. Essent. Oil Res. 2002, 14, 305–307. [Google Scholar] [CrossRef]
- Misra, L.N. Arteannuin-C, a sesquiterpene lactone from Artemisia annua. Phytochemistry 1986, 25, 2892–2893. [Google Scholar] [CrossRef]
- Burits, M.; Asres, K.; Bucar, F. The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytother. Res. 2001, 15, 103–108. [Google Scholar] [CrossRef]
- Ali, M.; Singh, V.; Archana, M.; Sultana, S. New aliphatic constituents from the aerial parts of Artemisia annua L. Alger. J. Nat. Prod. 2017, 5, 515–523. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Ouyang, F.; Ye, H.; Li, G. Advances in artemisinin research. Prog. Chem. 1999, 11, 41. [Google Scholar]
- Ahmad, A.; Misra, L.N. Terpenoids from Artemisia annua and constituents of its essential oil. Phytochemistry 1994, 37, 183–186. [Google Scholar] [CrossRef]
- Woerdenbag, H.J.; Pras, N.; Van Uden, W.; De Boer, A.; Batterman, S.; Visser, J.F.; Malingré, T.M. High Peroxidase Activity in Cell Cultures of Artemisia annua with Minute Artemisinin Contents. Nat. Prod. Lett. 1992, 1, 121–128. [Google Scholar] [CrossRef]
- Moody, J.O.; Adeleye, S.A.; Gundidza, M.G.; Wyllie, G. Analysis of the Essential oil of Artemisia afra. Pharmazie 1994, 49, 935–936. [Google Scholar]
- Nguyen, X.D.; Leclercq, P.A.; Dinh, H.K.; Nguyen, M.T. Chemical Composition of essential oil of Vietnamese Artemisia annua L. Tap. Chi. Duoc Hoc 1990, 2, 11–13. [Google Scholar]
- Asfaw, N.; Licence, P.; Novitskii, A.A.; Poliakoff, M. Green Chemistry in Ethiopia: The cleaner extraction of essential oils from Artemisia afra: A comparison of clean technology with conventional methodology. Green Chem. 2005, 7, 352–356. [Google Scholar] [CrossRef]
- Sy, L.-K.; Brown, G.D. Deoxyarteannuin B, dihydro-deoxyarteannuin B and trans-5-hydroxy-2-isopropenyl-5-methylhex-3-en-1-ol from Artemisia anuua. Phytochemistry 2001, 58, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y. The development of new antimalarial drugs: Qinghaosu and dihydro-qinghaosu. Chin. Med. J. 1999, 112, 976–977. [Google Scholar] [PubMed]
- Verdian-rizi, M.; Sadat-Ebrahimi, E.; Hadjiakhoondi, A.; Fazeli, M.; Hamedani, M.P. Chemical Composition and Antimicrobial Activity of Artemisia annua L. Essential Oil from Iran. J. Med. Plants 2008, 7, 58–62. [Google Scholar]
- Bertea, C.M.; Freije, J.R.; van der Woude, H.; Verstappen, F.W.A.; Perk, L.; Marquez, V.; De Kraker, J.-W.; Posthumus, M.A.; Jansen, B.J.M.; de Groot, A.; et al. Identification of Intermediates and Enzymes Involved in the Early Steps of Artemisinin Biosynthesis in Artemisia annua. Planta Med. 2005, 71, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, Y. Structure and synthesis of arteannuin and related compounds. XI, Identification of epoxyarte-annuic acid. Acta Chim. Sin. 1984, 42, 596–598. [Google Scholar]
- Brown, G.D. Cadinanes from Artemisia annua that may be intermediates in the biosynthesis of artemisinin. Phytochemistry 1994, 36, 637–641. [Google Scholar] [CrossRef]
- Perazzo, F.F.; Carvalho, J.C.T.; Rehder, V.L.G. Central properties of the essential oil and the crude ethanol extract from aerial parts of Artemisia annua L. Pharmacol. Res. 2003, 48, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.R. Chemical constituents of volatile oils of Artemisia annua. Zhong Yao Tong Bao 1983, 8, 31–32. [Google Scholar] [PubMed]
- Zhai, D.D.; Jin, H.Z.; Zhong, J.J. A new sesquiterpene from hairy root culture of Artemisia annua. Chin. Chem. Lett. 2010, 21, 590–592. [Google Scholar] [CrossRef]
- More, G.; Lall, N.; Hussein, A.; Tshikalange, T.E. Antimicrobial Constituents of Artemisia afra Jacq. ex Willd. against Periodontal Pathogens. Evid.-Based Complement. Altern. Med. 2012, 2012, 252758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.-Y.; Feng, L.-L.; Yang, X.-Q.; Yin, L.-L.; Xu, X.-L.; Zeng, Q.-P. Quantitative Transcript Profiling Reveals Down-Regulation of A Sterol Pathway Relevant Gene and Overexpression of Artemisinin Biogenetic Genes in Transgenic Artemisia annua Plants. Planta Med. 2008, 74, 1510–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sy, L.-K.; Brown, G.D. Three sesquiterpenes from Artemisia annua. Phytochemistry 1998, 48, 1207–1211. [Google Scholar] [CrossRef]
- Roth, R.J.; Acton, N. Isolation of Epi-Deoxyarteannuin B from Artemisia annua. Planta Med. 1987, 53, 576. [Google Scholar] [CrossRef]
- Picaud, S.; Olofsson, L.; Brodelius, M.; Brodelius, P.E. Expression, purification, and characterization of recombinant amorpha-4,11-diene synthase from Artemisia annua L. Arch. Biochem. Biophys. 2005, 436, 215–226. [Google Scholar] [CrossRef]
- Zheng, G.-Q. Cytotoxic Terpenoids and Flavonoids from Artemisia annua. Planta Med. 1994, 60, 54–57. [Google Scholar] [CrossRef]
- Jakupovic, J.; Klemeyer, H.; Bohlmann, F.; Graven, E. Glaucolides and guaianolides from Artemisia afra. Phytochemistry 1988, 27, 1129–1133. [Google Scholar] [CrossRef]
- Bolt, A.J.N.; Cocker, W.; McMurry, T.B.H. 998. The stereochemistry of artemisin. J. Chem. Soc. 1963, 5235–5238. [Google Scholar] [CrossRef]
- Wei, Z.-X.; Pan, J.-P.; Li, Y. Artemisinin G: A Sesquiterpene from Artemisia annua. Planta Med. 1992, 58, 300. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, S.; Liu, B.; Fan, G.; Liu, J.; Xu, R. Study on antibacterial constituents of Qing Hao (Artemisia annua L.). Zhongcaoyao (Chin. Trad. Heb. Drug) 1982, 13, 54. [Google Scholar]
- Nkunya, M.M.H.; Weenen, H.; Kinabo, L.S. Constituents of Artemisia afra. Fitoterapia 1992, 63, 279–280. [Google Scholar]
- Acton, N.; Klayman, D.L. Artemisitene, a New Sesquiterpene Lactone Endoperoxide from Artemisia annua. Planta Med. 1985, 51, 441–442. [Google Scholar] [CrossRef]
- Wallaart, T.E.; van Uden, W.; Lubberink, H.G.M.; Woerdenbag, H.J.; Pras, N.; Quax, W.J. Isolation and Identification of Dihydroartemisinic Acid from Artemisia annua and Its Possible Role in the Biosynthesis of Artemisinin. J. Nat. Prod. 1999, 62, 430–433. [Google Scholar] [CrossRef]
- Brown, G. Phytene-1,2-diol from Artemisia annua. Phytochemistry 1994, 36, 1553–1554. [Google Scholar] [CrossRef]
- Venables, L.; Koekemoer, T.; Van de Venter, M.; Goosen, E. Isoalantolactone, a sesquiterpene lactone from Artemisia afra Jacq. ex Willd and its in vitro mechanism of induced cell death in HeLa cells. South Afr. J. Bot. 2016, 103, 216–221. [Google Scholar] [CrossRef]
- Goodson, J.A. The Constituents of the Flowering Tops of Artemisia afra, Jacq. Biochem. J. 1922, 16, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, B.M. Progress in Essential Oils, 2001. Available online: www.PerfumerFlavorist.com (accessed on 3 November 2022).
- Pinhey, J.; Sternhell, S. Structure of α-hydroxysantonin and some aspects of the stereochemistry of related eudesmanolides and guaianolides. Aust. J. Chem. 1965, 18, 543–557. [Google Scholar] [CrossRef]
- Kraft, C.; Jenett-Siems, K.; Siems, K.; Jakupovic, J.; Mavi, S.; Bienzle, U.; Eich, E. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother. Res. 2003, 17, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-W.; Ni, F.-Y.; Song, Y.-L.; Wang, S.-Y.; Huang, W.-Z.; Wang, Z.-Z.; Xiao, W. Chemical constituents from Artemisia annua. China J. Chin. Mater. Med. 2014, 39, 4816–4821. [Google Scholar]
- . Marco, J.A.; Sanz, J.F.; Bea, J.F.; Barbera, O. Phenolic constituents from Artemisia annua. Pharmazie 1990, 45, 382–383. [Google Scholar]
- Dube, A. The Design, Preparation and Evaluation of Artemisia afra and Placebos in Tea Bag Dosage form Suitable for Use in Clinical Trials. Master’s Thesis, University of the Western Cape, Bellville, South Africa, June 2006. [Google Scholar]
- Lai-King, S.; Brown, G.D. Novel seco-cycloartanes from Kadsura coccinea and the assisted autoxidation of a tri-substituted alkene. Tetrahedron 1999, 55, 119–132. [Google Scholar] [CrossRef]
- Shilin, Y.; Roberts, M.F.; Phillipson, J.D. Methoxylated flavones and coumarins from Artemisia annua. Phytochemistry 1989, 28, 1509–1511. [Google Scholar] [CrossRef]
- Yang, S.-L.; Roberts, M.F.; O’Neill, M.J.; Bucar, F.; Phillipson, J. Flavonoids and chromenes from Artemisia annua. Phytochemistry 1995, 38, 255–257. [Google Scholar] [CrossRef]
- Khan, M.A.A.; Jain, D.; Bhakuni, R.; Zaim, M.; Thakur, R. Occurrence of some antiviral sterols in Artemisia annua. Plant Sci. 1991, 75, 161–165. [Google Scholar] [CrossRef]
- Takemoto, T.; Nakajima, T. Studies on the Essential Oil of Artemisia annua L. IV. Yakugaku Zasshi 1957, 77, 1344–1347. [Google Scholar] [CrossRef] [Green Version]
- Sy, L.-K.; Brown, G.D.; Haynes, R. A novel endoperoxide and related sesquiterpenes from Artemisia annua which are possibly derived from allylic hydroperoxides. Tetrahedron 1998, 54, 4345–4356. [Google Scholar] [CrossRef]
- Shukla, A.; Farooqi, A.; Shukla, Y. A New Adenine Derivative from Artemisia annua. J. Indian Chem. Soc. 1997, 74, 59. [Google Scholar]
- Chen, J.; Zhou, Y.; Zhang, X.; Huang, L.; Sun, W.; Wang, J. Chemical constituents of Artemisia annua L. J. Shenyang Pharm Univ. 2008, 25, 866–870. [Google Scholar]
- Chu, Y.; Wang, H.; Chen, J.; Hou, Y. New Sesquiterpene and Polymethoxy-Flavonoids from Artemisia annua L. Pharmacogn. Mag. 2014, 10, 213–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.-H.; Li, H.-B.; Huang, Y.-X.; Qin, D.-P.; Zhang, C.-F.; Wang, Z.-Z.; Yu, Y. Research on chemical constituents from Artemisia annua I. China J. Chin. Mater. Med. 2021, 46, 1160–1167. [Google Scholar]
Plant | Compound Name | Classification | References |
---|---|---|---|
Artemisia annua | Abeo-amorphane sesquiterpene | Sesquiterpene | [23] |
(Z)-7-Acetoxy-methyl-11-methyl-3-methylenedodeca-1,6,10-triene | Sesquiterpenes | [24] | |
Apigenin-6-C-hexoside-8-C-pentoside | Flavonoid | [10] | |
Arteannoides A to E | Sesquiterpene | [25] | |
Arteannoides F to R | Sesquiterpene | [26] | |
Arteannoides U to Z | Sesquiterpenes | [25] | |
Artemisinic acid, 6α-peroxy ester | Sesquiterpene | [23] | |
Artemisiannuside A | Coumarin glycoside | [27] | |
Artemanin A | Sesquiterpene | [28] | |
Artemanin B | Sesquiterpene | ||
Arteannuin P | Monoterpene | [23,29] | |
Arteannuin Q | Monoterpene | ||
Arteannuin S | Sesquiterpene | ||
Arteannuin T | Sesquiterpene | ||
Arteannuin U | Sesquiterpene | ||
Arteannuin V | Sesquiterpene | ||
Arteannuin W | Sesquiterpene | ||
Arteannuin Y | Sesquiterpene | ||
Arteannuin Z | Monoterpene | ||
Cadinanolide | Sesquiterpene | [27] | |
Caffeoylcoumaroyltartaric acid | Phenolic acid | [10] | |
n-Cos-(Z)-9-enoic acid. | unsaturated fatty acid | [30] | |
n-Cos-(Z)-10-enoic acid | unsaturated fatty acid | ||
3-p-o-Coumaroyl-5-O-caffeoylquinic acid | Flavonoid | [10] | |
Chrysoeriol rutinoside | Flavonoid | [31] | |
Cis-melilotoside | Coumarin | [32] | |
Dehydroarteannuin L | Sesquiterpene | [23] | |
Deoxyartemistene | Sesquiterpene | ||
Dihydroxy-dimethoxyl-O-hexoside | Sugar | [10] | |
3,4-Dihydroxybenzyl 2′,3′,4′-trihydroxybenzoate | dihydroxybenzyl ester | [30] | |
3,4-Dihydroxybenzyl 2′,3′,4′- trihydroxybenzoate 4,4′-β-D-dixylopyranoside | dihydroxybenzyl ester | ||
4α, 5α-Epoxy-6α- hydroxyartemisinic acid methyl ester | Sesquiterpene | [23] | |
3-(2-(2,5-dihydrofuran-3-yl) ethyl)-2,2-Dimethyl-4-methylenecyclohexan-1-one | Sesquiterpene | ||
(R)-15,16-Didehydrocoriolic acid | - | [27] | |
Eriodictyol-7-O-hexoside | Flavonoid | [10] | |
Epi-11-hydroxy-arteannuin I | Sesquiterpene | [23] | |
6,7-Epoxy-6,7-dihydro-β-farnesene | Monoterpene | ||
n-Heptadecanyl-ß-D-glucopyronoside | aliphatic | [30] | |
alcoholic glucoside | |||
n-Heptadecanyl linoleate | unsaturated fatty acid | ||
Homoeriodictyol | - | [27] | |
5β-Hydroperoxy-eudesma-4(15),11-diene | Sesquiterpene | [23] | |
7α-Hydroxy-artemisinic acid | Sesquiterpene | ||
11-Hydroxy-arteannuin I | Sesquiterpene | ||
6α-Hydroxy-arteannuin J | Sesquiterpene | ||
(E)-7-Hydroxy-2,7-dimethylocta-2,5-dien-4-one | Monoterpene | ||
(E)-7-Hydroperoxy-2,7-dimethylocta-2,5-dien-4-one | Monoterpene | ||
6- Hydroxy-γ-humulene | Monoterpene | ||
Isoarteannuin A | Sesquiterpene | ||
Isodocosanol | Aliphatic alcohol | [30] | |
Isorhamnetin-O-hexoside | Flavonoid | [10] | |
Isononadecano | Aliphatic alcohol | [30] | |
Luteolin 7-O-pentoside | Flavonoid | [10] | |
1-Octacosanol | Aliphatic alcohol | [30] | |
n-Octadecanyl n-octadec-9,12,-dienoate | unsaturated fatty acid | ||
n-Nonacosanyl n-octadec-9,12-dienoate | unsaturated fatty acid | ||
(±)-Qinghaocoumarin A | Coumarin | [33] | |
Qinghaocoumarin B | Coumarin | ||
Qinghaolignan A | Lignan | ||
Qinghaolignan B | Lignan | ||
Qinghaosu I and III | Sesquiterpene | ||
Quinic acid | Organic acid | [10] | |
Rosmarinic acid | Phenolic acid | [34] | |
Trans-melilotoside | Coumarin | [32] | |
5,7,4′-Trimethoxy-8,3″-dihydroxyflavone | Flavonoid | [23] | |
Trimethoxy-coumarin | Coumarin | [35] | |
Artemisia afra | Artemin | Sesquiterpene | [36] |
Artesin | Sesquiterpene | ||
Arabinose | Sugar | [37] | |
Fucose | Sugar | ||
1α,4α-Dihydroxybishopsolicepolide | Guaianolide | [14] | |
2,4-Dihydroxy-6 methoxyacetophenone | - | [36] | |
Galacturonic acid | Organic acid | [37] | |
Galactose | Sugar | ||
Glucose | Sugar | ||
Glucuronic acid | Organic acid | ||
p-Hydroxyacetophenone | - | [36] | |
Mannose | Sugar | [37] | |
Maritimin | Sesquiterpene | [36] | |
4-O-Methylglucuronic acid | Organic acid | [37] | |
Reynosin | Sesquiterpene | [36] | |
Rhamnose | Sugar | [37] | |
Rutin | Flavonoid | [36] | |
Santolinifolide | Sesquiterpene | ||
Santolinifolide A | Sesquiterpene | ||
Scopolin | Coumarin | [24] | |
Yomogiartemin | Guaianolide | [38] |
Plant Species | Plant Part/Extract | Model | Stage of Parasite | IC50 or %Inhibition | References |
---|---|---|---|---|---|
Artemisia absinthium | Leaves/CF | In vitro | Erythrocytic | 0.42 μg/mL | [44] |
Leaves/MeOH | In vitro | Erythrocytic | 20.00 μg/mL | [45] | |
Leaves/EtOH | In vivo | Erythrocytic | 60% inhibition at 100 mg/Kg/day | [45] | |
Artemisia abyssinica | Leaves/PE | In vitro | Erythrocytic | 2.10 μg/mL | [46] |
Artemisia afra | Leaves/ethanolic | In vitro | Erythrocytic | 2.66 μg/mL | [47] |
Leaves/hexanolic | In vitro | Erythrocytic | 0.71 μg/mL | [46] | |
Leaves/CF | In vitro | Erythrocytic | 8.55 μg/mL | [48] | |
Leaves/DCM | In vitro | Erythrocytic | 6.58 μg Artemisinin/L | [43] | |
Leaves/tea infusion | In vitro | Erythrocytic | 100% inhibition of parasite growth at 4 g/L | [41] | |
Leaves/tea infusion | In vitro | Pre-erythrocytic | 100% inhibition of parasite growth at 4 g/L | [41] | |
Leaves and twigs/tea infusion | In vitro | Erythrocytic | Significant decrease in parasitemia at 5 g/L | [41] | |
Leaves and twigs/tea infusion | In vitro | Gametocytes | Significant decrease in gametocytaemia at 5 g/L | [41] | |
Leaves/hydro-ethanol | In vitro | erythrocytic | 0.46 μg/mL | [45] | |
Leaves/DCM | In vivo | Erythrocytic | 94.28% inhibition at a dose of 200 mg/kg body weight | [45] | |
Artemisia armeniaca | Aerial part/PE | In vitro | Erythrocytic | 0.90 mg/mL | [49] |
Aerial part/DCM | In vitro | Erythrocytic | 1.04 mg/mL | [49] | |
Artemisia annua | Leaves/twigs | Leaves/crude extracts | Erythrocytic | 0.51, 0.52, and 1.11 μg/mL for W, B, and R respectively | [50] |
Leaves/tea infusion | Leaves/tea infusion | Pre-erythrocytic | 85% inhibition of parasite growth at 10 g/L | [51] | |
Leaves/tea infusion | In vitro | Erythrocytic | 100% inhibition of parasite growth at 10 g/L | [51] | |
Leaves and twigs/tea infusion | In vitro | Erythrocytic | Significant decrease in parasitemia at 5 g/L | [41] | |
Leaves and twigs/tea infusion | In vitro | Gametocytes | Significant decrease in gametocytaemia at 5 g/L | [41] | |
Leaves/tea infusion | In vitro | Erythrocytic | 7.21 μg artemisinin/L | [43] | |
Leaves/DCM | In vitro | Erythrocytic | 3.79 μg artemisinin/L | [43] | |
Leaves/methanol | In vitro | Erythrocytic | 3.00 artemisinin/L | [43] | |
Leaves/aqueous | In vitro | Erythrocytic | 4.95 nM | [50,52] | |
Leaves/ethanolic | In vivo | Erythrocytic | 80% inhibition at 20 mg/kg artemisinin per day for 5 days. | [50,52] | |
Leaves/ethanolic | In vitro | Erythrocytic | 3.27 nM | [50,52] | |
Leaves/hexane | In vivo | Erythrocytic | 26% suppression of parasitemia after 4 days of treatment at 75 mg/kg/day of extract | [50] | |
Leaves/tea infusion | In vitro | Erythrocytic | 0.095 μg/mL | [53] | |
Leaves/tea infusion | In vitro | Erythrocytic | 1.11 μg/mL and 0.88 μg/mL for CQ-sensitive and CQ-resistant strains, respectively | [54] | |
Leaves/DCM | In vivo | Erythrocytic | 83.28% inhibition at a dose of 200 mg/kg body weight | [42] | |
Leaves/tea | Clinical trial | Erythrocytic | 92% inhibition of parasitemia at 5 g/L | [55] | |
Leaves/Acetone | In vitro | Gametocidal | <10 μg/mL | [14] | |
Leaves/DCM | In vitro | Erythrocytic | 3.04 μg/mL | [46] | |
Artemisia aucheri | Leaves/DCM | In vitro | Erythrocytic | 1.00 mg/mL | [51] |
Aerial part/DCM | In vitro | Erythrocytic | 1.95 mg/mL | [49] | |
Artemisia biennis | Aerial part/DCM | In vitro | Erythrocytic | 5.2 μg/mL | [56] |
Leaves/DCM | In vitro | Erythrocytic | 0.78 mg/mL | [51] | |
Artemisia gorgonum | Aerial part/EtOH | In vitro | Erythrocytic | 2.64 mg/mL | [57] |
Artemisia indica | Leaves/hexane | In vitro | Erythrocytic | 4.40 μg/mL | [46] |
Aerial part/Combination of EtOH, MeOH, PE (1:1:1) | In vivo | Erythrocytic | - | [58] | |
Leaves/CF | In vitro | Erythrocytic | 7.09 μg/mL | [59] | |
Leaves/PE | In vitro | Erythrocytic | 10.24 μg/mL | [59] | |
Leaves/hexane | In vitro | Erythrocytic | 9.88 μg/mL | [59] | |
Leaves/MeOH | In vitro | Erythrocytic | 5.76 μg/mL | [59] | |
Leaves/EtOH | In vitro | Erythrocytic | 11.37 μg/mL | [59] | |
Artemisia judaica | Leaves/EtOAC | In vitro | Erythrocytic | 1.35 mg/mL | [60] |
Leaves/DCM | In vitro | Erythrocytic | 9.02 mg/mL | [60] | |
Artemisia roxburghiana | Leaves/DCM | In vitro | Erythrocytic | 1.93 mg/mL | [60] |
A. scoparia | Leaves/DCM | In vitro | Erythrocytic | 0.78 mg/mL | [51] |
Artemisia siebera | Leaves/PE | In vitro | Erythrocytic | 2.88 mg/mL | [60] |
Artemisia spicigera | Leaves/DCM | In vitro | Erythrocytic | 1.00 mg/mL | [51] |
Artemisia turanica | Leaves/DCM | In vitro | Erythrocytic | 0.92 mg/mL | [60] |
Artemisia turcomanica | Aerial part/methanol | In vivo | Erythrocytic | 82.40% inhibition at 500 mg/kg | [61] |
Leaves/DCM | In vitro | Erythrocytic | 4.90 μg/mL | [46] | |
Artemisia vulgaris | Leaves/H2O | In vitro | Erythrocytic | 20 μg/mL | [46] |
Leaves/Acetone | In vitro | Erythrocytic | 1.9 μg/mL | [46] | |
Aerial part/ethanol | In vivo | Erythrocytic | 87.30% inhibition at 1000 mg/kg | [62] | |
Leaves/combination of MeOH, PE and water (1:1:1) | In vivo | Erythrocytic | 65.16% inhibition of parasitemia at 500 mg/kg | [63] |
N | Compound | Biological Effect | Pharmacodynamics | Pharmacokinetics | References |
---|---|---|---|---|---|
1 | α-Amaryn |
| N | N | [94] |
| |||||
2 | β-Amyrin |
| N | N | [94] |
| |||||
3 | Apigenin |
|
| N | [81] |
4 | Arteannoides |
|
| N | [26] |
| |||||
5 | Artemisinic acid |
| N | N | [95] |
6 | Artemetin |
| N | N | [79] |
7 | Artemisinin (Qinghaosu) |
|
|
| [73,96] |
|
| ||||
| |||||
8 | Artemisitene |
| N | N | [95] |
9 | Artennuin B |
|
| - | [93,97] |
| |||||
| |||||
10 | Artennuic acid |
| N | N | [80] |
| |||||
11 | Artemisia ketone |
|
| N | [88] |
| |||||
12 | Casticin |
| N | N | [79] |
13 | Chlorogenic acid |
| N | N | [34] |
| |||||
14 | Chrysosplenetin |
| N | N | [79] |
15 | Chrysosplenol-D |
| N | N | [79] |
16 | Cirsilineol |
| N | N | [79] |
17 | 1α,4α-Dihydroxybishopsolicepolide |
| N | N | [14] |
18 | 9-Epi-artemisinin |
| N | N | [95] |
19 | Eupalitin |
| N | N | [98] |
20 | Eupatorin |
| N | N | [79] |
21 | Friedelin |
| N | N | [94] |
22 | Jasceolidin |
| N | N | [98] |
23 | Kaempferol |
|
| N | [83] |
| |||||
24 | Luteolin |
| N | N | [80,99] |
25 | Mono caffeoylquinic acid |
| N | N | [95] |
26 | Nerolidol |
|
| N | [88] |
|
| ||||
27 | Quercetin |
|
| N | [76] |
| |||||
| |||||
| |||||
28 | Quercetin-3-galactoside |
| N | N | [34] |
29 | Quercetin-3-glucoside |
| N | N | [78] |
30 | Rhamnetin |
| N | N | [78] |
31 | Rosmarinic acid |
| N | N | [34] |
| |||||
| |||||
32 | Rutin |
| N | N | [78] |
33 | Scopoletin |
|
| N | [80,100] |
| |||||
34 | Thujone |
|
| N | [88,89] |
35 | Tri-caffeoylquinic acids |
| N | N | [95] |
36 | Yomogiartemin |
| N | N | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinyuy, L.M.; Loe, G.E.; Jansen, O.; Mamede, L.; Ledoux, A.; Noukimi, S.F.; Abenwie, S.N.; Ghogomu, S.M.; Souopgui, J.; Robert, A.; et al. Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review. Metabolites 2023, 13, 613. https://doi.org/10.3390/metabo13050613
Shinyuy LM, Loe GE, Jansen O, Mamede L, Ledoux A, Noukimi SF, Abenwie SN, Ghogomu SM, Souopgui J, Robert A, et al. Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review. Metabolites. 2023; 13(5):613. https://doi.org/10.3390/metabo13050613
Chicago/Turabian StyleShinyuy, Lahngong Methodius, Gisèle E. Loe, Olivia Jansen, Lúcia Mamede, Allison Ledoux, Sandra Fankem Noukimi, Suh Nchang Abenwie, Stephen Mbigha Ghogomu, Jacob Souopgui, Annie Robert, and et al. 2023. "Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review" Metabolites 13, no. 5: 613. https://doi.org/10.3390/metabo13050613
APA StyleShinyuy, L. M., Loe, G. E., Jansen, O., Mamede, L., Ledoux, A., Noukimi, S. F., Abenwie, S. N., Ghogomu, S. M., Souopgui, J., Robert, A., Demeyer, K., & Frederich, M. (2023). Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review. Metabolites, 13(5), 613. https://doi.org/10.3390/metabo13050613