Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application
Abstract
:1. Introduction
2. Benchtop NMR Technical Developments
2.1. Benchtop NMR Spectrometers
2.2. One-Dimensional Benchtop NMR Spectroscopy
2.3. Two-Dimensional Benchtop NMR Spectroscopy
2.4. New Pulse Sequences
3. Benchtop NMR-Based Metabolomics
3.1. Tuberculosis Research
3.2. Diabetes Research
3.3. Application in Other Conditions
4. Clinical Sample Analysis: Spectral Analysis Automatization
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Pan, Z.; Raftery, D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem. 2007, 387, 525–527. [Google Scholar] [CrossRef]
- Danieli, E.; Perlo, J.; Blumich, B.; Casanova, F. Small magnets for portable NMR spectrometers. Angew. Chem. 2010, 49, 4133–4135. [Google Scholar] [CrossRef]
- Isaac-Lam, M.F. Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment. J. Chem. Educ. 2014, 91, 1264–1266. [Google Scholar] [CrossRef]
- Parker, T.; Limer, E.; Watson, A.D.; Defernez, M.; Williamson, D.; Kemsley, E.K. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils. Trends Analyt. Chem. 2014, 57, 147–158. [Google Scholar] [CrossRef]
- Isaac-Lam, M.F. Determination of Alcohol Content in Alcoholic Beverages Using 45 MHz Benchtop NMR Spectrometer. Int. J. Spectrosc. 2016, 2016, 2526946. [Google Scholar] [CrossRef]
- Castaing-Cordier, T.; Bouillaud, D.; Farjon, J.; Giraudeau, P. Recent advances in benchtop NMR spectroscopy and its applications. Annu. Rep. NMR Spectrosc. 2021, 103, 190–257. [Google Scholar] [CrossRef]
- Giberson, J.; Scicluna, J.; Legge, N.; Longstaffe, J. Developments in benchtop NMR spectroscopy 2015-2020. Annu. Rep. NMR Spectrosc. 2021, 102, 153–246. [Google Scholar] [CrossRef]
- Bruker Fourier 80. Available online: https://www.bruker.com/en/products-and-solutions/mr/nmr/fourier80.html (accessed on 29 December 2022).
- Magritek Spinsolve 60. Available online: https://magritek.com/products/benchtop-nmr-spectrometer-spinsolve/spinsolve-60/ (accessed on 29 December 2022).
- Magritek Spinsolve 80. Available online: https://magritek.com/products/benchtop-nmr-spectrometer-spinsolve/spinsolve-80/ (accessed on 29 December 2022).
- Magritek Spinsolve 90. Available online: https://magritek.com/products/benchtop-nmr-spectrometer-spinsolve/spinsolve-90-mhz/ (accessed on 29 December 2022).
- Nanalysis 60 MHz. Available online: https://www.nanalysis.com/60mhz (accessed on 29 December 2022).
- Nanalysis 100 MHz. Available online: https://www.nanalysis.com/100mhz (accessed on 29 December 2022).
- Oxford Instruments X-Pulse. Available online: https://nmr.oxinst.com/x-pulse (accessed on 29 December 2022).
- ThermoFisher picoSpin 80. Available online: https://www.thermofisher.com/order/catalog/product/912A0913 (accessed on 29 December 2022).
- ThermoFisher picoSpin 45. Available online: https://www.thermofisher.com/order/catalog/product/912A0911 (accessed on 29 December 2022).
- Q Magnetics QM-125. Available online: https://www.qmagnetics.com/ (accessed on 29 December 2022).
- Riegel, S.D.; Leskowitz, G.M. Benchtop NMR spectrometers in academic teaching. TrAc-Trend Anal. Chem. 2016, 83, 27–38. [Google Scholar] [CrossRef]
- Giraudeau, P.; Felpin, F.X. Flow reactors integrated with in-line monitoring using benchtop NMR spectroscopy. React. Chem. Eng. 2018, 3, 399–413. [Google Scholar] [CrossRef]
- Draper, S.L.; McCarney, E.R. Benchtop nuclear magnetic resonance spectroscopy in forensic chemistry. Magn. Reson. Chem. 2023, 61, 106–129. [Google Scholar] [CrossRef]
- Percival, B.C.; Grootveld, M.; Gibson, M.; Osman, Y.; Molinari, M.; Jafari, F.; Sahota, T.; Martin, M.; Casanova, F.; Mather, M.L.; et al. Low-Field, Benchtop NMR Spectroscopy as a Potential Tool for Point-of-Care Diagnostics of Metabolic Conditions: Validation, Protocols and Computational Models. High Throughput 2018, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Myoung, S.; Ahn, S. Recent Applications of Benchtop Nuclear Magnetic Resonance Spectroscopy. Magnetochemistry 2021, 7, 121. [Google Scholar] [CrossRef]
- Bogun, B.; Moore, S. (1)H and (31)P benchtop NMR of liquids and solids used in and/or produced during the manufacture of methamphetamine by the HI reduction of pseudoephedrine/ephedrine. Forensic Sci. Int. 2017, 278, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.D.; Richardson, P.M.; Halse, M.E. Hyperpolarised H-1-C-13 Benchtop NMR Spectroscopy. Appl. Sci. 2019, 9, 1173. [Google Scholar] [CrossRef]
- Adams, R.W.; Aguilar, J.A.; Atkinson, K.D.; Cowley, M.J.; Elliott, P.I.; Duckett, S.B.; Green, G.G.; Khazal, I.G.; Lopez-Serrano, J.; Williamson, D.C. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 2009, 323, 1708–1711. [Google Scholar] [CrossRef]
- Adams, R.W.; Duckett, S.B.; Green, R.A.; Williamson, D.C.; Green, G.G. A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization. J. Chem. Phys. 2009, 131, 194505. [Google Scholar] [CrossRef]
- Tadiello, L.; Drexler, H.J.; Beweries, T. Low-Field Flow 31P NMR Spectroscopy for Organometallic Chemistry: On-Line Analysis of Highly Air-Sensitive Rhodium Diphosphine Complexes. Organometallics 2022, 41, 2833–2843. [Google Scholar] [CrossRef]
- Araneda, J.F.; Hui, P.; Leskowitz, G.M.; Riegel, S.D.; Mercado, R.; Green, C. Lithium-7 qNMR as a method to quantify lithium content in brines using benchtop NMR. Analyst 2021, 146, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Chighine, K.; Léonce, E.; Boutin, C.; Desvaux, H.; Berthault, P. 129Xe ultra-fast Z spectroscopy enables micromolar detection of biosensors on a 1 T benchtop spectrometer. Magn. Reson. 2021, 2, 409–420. [Google Scholar] [CrossRef]
- Bernard, G.M.; Michaelis, V.K. Lead-207 NMR spectroscopy at 1.4 T: Application of benchtop instrumentation to a challenging I = (1/2) nucleus. Magn. Reson. Chem. 2020, 58, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Gouilleux, B.; Charrier, B.; Akoka, S.; Felpin, F.X.; Rodriguez-Zubiri, M.; Giraudeau, P. Ultrafast 2D NMR on a benchtop spectrometer: Applications and perspectives. TrAC Trends Anal. Chem. 2016, 83, 65–75. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Raftery, D. NMR Metabolomics Methods for Investigating Disease. Anal. Chem. 2023, 95, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Steimers, E.; Matviychuk, Y.; Friebel, A.; Munnemann, K.; von Harbou, E.; Holland, D.J. A comparison of non-uniform sampling and model-based analysis of NMR spectra for reaction monitoring. Magn. Reson. Chem. 2021, 59, 221–236. [Google Scholar] [CrossRef]
- Lhoste, C.; Lorandel, B.; Praud, C.; Marchand, A.; Mishra, R.; Dey, A.; Bernard, A.; Dumez, J.N.; Giraudeau, P. Ultrafast 2D NMR for the analysis of complex mixtures. Prog. Nucl. Magn. Reson. Spectrosc. 2022, 130–131, 1–46. [Google Scholar] [CrossRef]
- Zivkovic, A.; Bandolik, J.J.; Skerhut, A.J.; Coesfeld, C.; Zivkovic, N.; Raos, M.; Stark, H. Introducing Students to NMR Methods Using Low-Field H-1 NMR Spectroscopy to Determine the Structure and the Identity of Natural Amino Acids. J. Chem. Educ. 2017, 94, 115–120. [Google Scholar] [CrossRef]
- Gouilleux, B.; Marchand, J.; Charrier, B.; Remaud, G.S.; Giraudeau, P. High-throughput authentication of edible oils with benchtop Ultrafast 2D NMR. Food Chem. 2018, 244, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, T.A. Low-field benchtop NMR spectroscopy: Status and prospects in natural product analysis(dagger). Phytochem. Anal. 2021, 32, 24–37. [Google Scholar] [CrossRef]
- Koos, M.R.M.; Danieli, E.; Casanova, F.; Blumich, B.; Luy, B. Differentiation of enantiomers by 2D NMR spectroscopy at 1T using residual dipolar couplings. Magn. Reson. Chem. 2016, 54, 527–530. [Google Scholar] [CrossRef]
- Friebel, A.; von Harbou, E.; Munnemann, K.; Hasse, H. Reaction Monitoring by Benchtop NMR Spectroscopy Using a Novel Stationary Flow Reactor Setup. Ind. Eng. Chem. Res. 2019, 58, 18125–18133. [Google Scholar] [CrossRef]
- Kasperczyk, J.E. HETCOR NMR study of poly(rac-lactide) and poly(meso-lactide). Polymer 1999, 40, 5455–5458. [Google Scholar] [CrossRef]
- Dumas, M.E.; Canlet, C.; Andre, F.; Vercauteren, J.; Paris, A. Metabonomic assessment of physiological disruptions using H-1-C-13 HMBC-NMR spectroscopy combined with pattern recognition procedures performed on filtered variables. Anal. Chem. 2002, 74, 2261–2273. [Google Scholar] [CrossRef]
- Golowicz, D.; Kazimierczuk, K.; Urbanczyk, M.; Ratajczyk, T. Monitoring Hydrogenation Reactions using Benchtop 2D NMR with Extraordinary Sensitivity and Spectral Resolution. ChemistryOpen 2019, 8, 196–200. [Google Scholar] [CrossRef]
- Leutzsch, M.; Sederman, A.J.; Gladden, L.F.; Mantle, M.D. In situ reaction monitoring in heterogeneous catalysts by a benchtop NMR spectrometer. Magn. Reson. Imaging 2019, 56, 138–143. [Google Scholar] [CrossRef]
- Weber, D.; Mitchell, J.; McGregor, J.; Gladden, L.F. Comparing Strengths of Surface Interactions for Reactants and Solvents in Porous Catalysts Using Two-Dimensional NMR Relaxation Correlations. J. Phys. Chem. C 2009, 113, 6610–6615. [Google Scholar] [CrossRef]
- Weidener, D.; Singh, K.; Blumich, B. Synthesis of alpha-fluoro-alpha, beta-unsaturated esters monitored by 1D and 2D benchtop NMR spectroscopy. Magn. Reson. Chem. 2019, 57, 852–860. [Google Scholar] [CrossRef]
- Horst, J.; Welty, N.; Stuetzle, R.; Wenzel, R.; St Germain, R. Fluorescent Dyes: A New Weapon for Conquering DNAPL Characterization. Ground Water Monit. R 2018, 38, 19–25. [Google Scholar] [CrossRef]
- Fallaise, D.; Balkwill Tweedie, H.; Konzuk, J.; Cheyne, C.; Mack, E.E.; Longstaffe, J.G. Practical application of (1) H benchtop NMR spectroscopy for the characterization of a nonaqueous phase liquid from a contaminated environment. Magn. Reson. Chem. 2018, 57, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Aue, W.P.; Bartholdi, E.; Ernst, R.R. 2-Dimensional Spectroscopy—Application to Nuclear Magnetic-Resonance. J. Chem. Phys. 1976, 64, 2229–2246. [Google Scholar] [CrossRef]
- Fonville, J.M.; Maher, A.D.; Coen, M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Evaluation of Full-Resolution J-Resolved H-1 NMR Projections of Biofluids for Metabonomics Information Retrieval and Biomarker Identification. Anal. Chem. 2010, 82, 1811–1821. [Google Scholar] [CrossRef]
- Dewis, L.; Crouch, R.; Russell, D.; Butts, C. Improving the accuracy of (1) H-(19) F internuclear distance measurement using 2D (1) H-(19) F HOESY. Magn. Reson. Chem. 2019, 57, 1143–1149. [Google Scholar] [CrossRef]
- Gouilleux, B.; Farjon, J.; Giraudeau, P. Gradient-based pulse sequences for benchtop NMR spectroscopy. J. Magn. Reson. 2020, 319, 106810. [Google Scholar] [CrossRef]
- Giraudeau, P.; Silvestre, V.; Akoka, S. Optimizing water suppression for quantitative NMR-based metabolomics: A tutorial review. Metabolomics 2015, 11, 1041–1055. [Google Scholar] [CrossRef]
- Hoult, D.I. Solvent peak saturation with single phase and quadrature fourier transformation. J. Magn. Reson. 1976, 21, 337–347. [Google Scholar] [CrossRef]
- Gouilleux, B.; Charrier, B.; Akoka, S.; Giraudeau, P. Gradient-based solvent suppression methods on a benchtop spectrometer. Magn. Reson. Chem. 2017, 55, 91–98. [Google Scholar] [CrossRef]
- Dumez, J.-N. Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 101–134. [Google Scholar] [CrossRef]
- Gouilleux, B.; Rouger, L.; Giraudeau, P. Chapter Two—Ultrafast 2D NMR: Methods and Applications. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 93, pp. 75–144. [Google Scholar]
- Karamanos, T.K.; Kalverda, A.P.; Thompson, G.S.; Radford, S.E. Mechanisms of amyloid formation revealed by solution NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2015, 88–89, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Castaing-Cordier, T.; Bouillaud, D.; Bowyer, P.; Gonçalves, O.; Giraudeau, P.; Farjon, J. Highly Resolved Pure-Shift Spectra on a Compact NMR Spectrometer. ChemPhysChem 2019, 20, 736–744. [Google Scholar] [CrossRef] [PubMed]
- McCarney, E.R.; Dykstra, R.; Galvosas, P. Evaluation of benchtop NMR Diffusion Ordered Spectroscopy for small molecule mixture analysis. Magn. Reson. Imaging 2019, 56, 103–109. [Google Scholar] [CrossRef]
- Assemat, G.; Gouilleux, B.; Bouillaud, D.; Farjon, J.; Gilard, V.; Giraudeau, P.; Malet-Martino, M. Diffusion-ordered spectroscopy on a benchtop spectrometer for drug analysis. J. Pharm. Biomed. Anal. 2018, 160, 268–275. [Google Scholar] [CrossRef]
- Steimers, E.; Matviychuk, Y.; Holland, D.J.; Hasse, H.; von Harbou, E. Accurate measurements of self-diffusion coefficients with benchtop NMR using a QM model-based approach. Magn. Reson. Chem. 2022, 60, 1113–1130. [Google Scholar] [CrossRef]
- Aue, W.P.; Karhan, J.; Ernst, R.R. Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J. Chem. Phys. 1976, 64, 4226–4227. [Google Scholar] [CrossRef]
- Zangger, K.; Sterk, H. Homonuclear Broadband-Decoupled NMR Spectra. J. Magn. Reson. 1997, 124, 486–489. [Google Scholar] [CrossRef]
- Bahti, A.; Telfah, A.; Lambert, J.; Hergenröder, R.; Suter, D. Optimal control pulses for subspectral editing in low field NMR. J. Magn. Reson. 2021, 328, 106993. [Google Scholar] [CrossRef] [PubMed]
- Foroozandeh, M.; Adams, R.W.; Meharry, N.J.; Jeannerat, D.; Nilsson, M.; Morris, G.A. Ultrahigh-Resolution NMR Spectroscopy. Angew. Chem. Int. Ed. 2014, 53, 6990–6992. [Google Scholar] [CrossRef] [PubMed]
- Paudel, L.; Adams, R.W.; Király, P.; Aguilar, J.A.; Foroozandeh, M.; Cliff, M.J.; Nilsson, M.; Sándor, P.; Waltho, J.P.; Morris, G.A. Simultaneously Enhancing Spectral Resolution and Sensitivity in Heteronuclear Correlation NMR Spectroscopy. Angew. Chem. Int. Ed. 2013, 52, 11616–11619. [Google Scholar] [CrossRef] [PubMed]
- Pfyffer, G.E.; Wittwer, F. Incubation Time of Mycobacterial Cultures: How Long Is Long Enough To Issue a Final Negative Report to the Clinician? J. Clin. Microbiol. 2012, 50, 4188–4189. [Google Scholar] [CrossRef] [PubMed]
- Du Preez, I.; Luies, L.; Loots, D.T. The application of metabolomics toward pulmonary tuberculosis research. Tuberculosis 2019, 115, 126–139. [Google Scholar] [CrossRef]
- Walzl, G.; McNerney, R.; du Plessis, N.; Bates, M.; McHugh, T.D.; Chegou, N.N.; Zumla, A. Tuberculosis: Advances and challenges in development of new diagnostics and biomarkers. Lancet Infect. Dis. 2018, 18, e199–e210. [Google Scholar] [CrossRef]
- Zhou, A.; Ni, J.; Xu, Z.; Wang, Y.; Lu, S.; Sha, W.; Karakousis, P.C.; Yao, Y.-F. Application of 1H NMR Spectroscopy-Based Metabolomics to Sera of Tuberculosis Patients. J. Proteome Res. 2013, 12, 4642–4649. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, W.; Lang, Y.; Qu, Y.; Chen, J.; Cui, L. 1H nuclear magnetic resonance-based metabolic profiling of cerebrospinal fluid to identify metabolic features and markers for tuberculosis meningitis. Infect. Genet. Evol. 2019, 68, 253–264. [Google Scholar] [CrossRef]
- Izquierdo-Garcia, J.L.; Comella-Del-Barrio, P.; Campos-Olivas, R.; Villar-Hernandez, R.; Prat-Aymerich, C.; De Souza-Galvao, M.L.; Jimenez-Fuentes, M.A.; Ruiz-Manzano, J.; Stojanovic, Z.; Gonzalez, A.; et al. Discovery and validation of an NMR-based metabolomic profile in urine as TB biomarker. Sci. Rep. 2020, 10, 22317. [Google Scholar] [CrossRef] [PubMed]
- Comella-Del-Barrio, P.; Izquierdo-Garcia, J.L.; Gautier, J.; Doresca, M.J.C.; Campos-Olivas, R.; Santiveri, C.M.; Muriel-Moreno, B.; Prat-Aymerich, C.; Abellana, R.; Perez-Porcuna, T.M.; et al. Urine NMR-based TB metabolic fingerprinting for the diagnosis of TB in children. Sci. Rep. 2021, 11, 12006. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Cabello, J.; Sevilla, I.A.; Olaizola, E.; Bezos, J.; Miguel-Coello, A.B.; Munoz-Mendoza, M.; Beraza, M.; Garrido, J.M.; Izquierdo-Garcia, J.L. Benchtop nuclear magnetic resonance-based metabolomic approach for the diagnosis of bovine tuberculosis. Transbound Emerg. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Tol, A.; Sharifirad, G.; Shojaezadeh, D.; Tavasoli, E.; Azadbakht, L. Socio-economic factors and diabetes consequences among patients with type 2 diabetes. J. Educ. Health Promot. 2013, 2, 12. [Google Scholar] [CrossRef]
- Standl, E.; Khunti, K.; Hansen, T.B.; Schnell, O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur. J. Prev. Cardiol. 2019, 26, 7–14. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Grootenhuis, P.A.; Snoek, F.J.; Heine, R.J.; Bouter, L.M. Development of a Type 2 Diabetes Symptom Checklist: A Measure of Symptom Severity. Diabet. Med. 1994, 11, 253–261. [Google Scholar] [CrossRef]
- Edgar, M.; Percival, B.C.; Gibson, M.; Jafari, F.; Grootveld, M. Low-field benchtop NMR spectroscopy as a potential non-stationary tool for point-of-care urinary metabolite tracking in diabetic conditions. Diabetes Res. Clin. Pract. 2021, 171, 108554. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, N. Metabolomics in diabetes research. J. Endocrinol. 2012, 215, 29–42. [Google Scholar] [CrossRef]
- Del Coco, L.; Vergara, D.; De Matteis, S.; Mensà, E.; Sabbatinelli, J.; Prattichizzo, F.; Bonfigli, A.R.; Storci, G.; Bravaccini, S.; Pirini, F.; et al. NMR-Based Metabolomic Approach Tracks Potential Serum Biomarkers of Disease Progression in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2019, 8, 720. [Google Scholar] [CrossRef] [PubMed]
- Leenders, J.; Grootveld, M.; Percival, B.; Gibson, M.; Casanova, F.; Wilson, P.B. Benchtop Low-Frequency 60 MHz NMR Analysis of Urine: A Comparative Metabolomics Investigation. Metabolites 2020, 10, 155. [Google Scholar] [CrossRef]
- Edgar, M.; Kuhn, S.; Page, G.; Grootveld, M. Computational simulation of (1) H NMR profiles of complex biofluid analyte mixtures at differential operating frequencies: Applications to low-field benchtop spectra. Magn. Reson. Chem. 2022, 60, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- Finch, N.; Percival, B.; Hunter, E.; Blagg, R.J.; Blackwell, E.; Sagar, J.; Ahmad, Z.; Chang, M.W.; Hunt, J.A.; Mather, M.L.; et al. Preliminary demonstration of benchtop NMR metabolic profiling of feline urine: Chronic kidney disease as a case study. BMC Res. Notes 2021, 14, 469. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, A.; Risi, E.; McCartney, A.; Migliaccio, I.; Moretti, E.; Malorni, L.; Luchinat, C.; Biganzoli, L.; Tenori, L. Precision oncology via NMR-based metabolomics: A review on breast cancer. Int. J. Mol. Sci. 2021, 22, 4687. [Google Scholar] [CrossRef] [PubMed]
- Carrola, J.; Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; et al. Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Urine. J. Proteome Res. 2011, 10, 221–230. [Google Scholar] [CrossRef]
- Brezmes, J.; Llambrich, M.; Cumeras, R.; Gumà, J. Urine NMR Metabolomics for Precision Oncology in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 11171. [Google Scholar] [CrossRef]
- Reddy, R.R.; Jagannathan, N.R. Potential of nuclear magnetic resonance metabolomics in the study of prostate cancer. Indian J. Urol. 2022, 38, 99–109. [Google Scholar] [CrossRef]
- Michalkova, L.; Hornik, S.; Sykora, J.; Habartova, L.; Setnicka, V. Diagnosis of pancreatic cancer via(1)H NMR metabolomics of human plasma. Analyst 2018, 143, 5974–5978. [Google Scholar] [CrossRef]
- Hunter, E.; Percival, B.; Ahmad, Z.; Chang, M.-W.; Hunt, J.A.; Tasker, S.; De Risio, L.; Wilson, P.B. NMR-based metabolomics associated with chronic kidney disease in humans and animals: A one health perspective. Mol. Cell. Biochem. 2021, 476, 4133–4137. [Google Scholar] [CrossRef]
- Hocher, B.; Adamski, J. Metabolomics for clinical use and research in chronic kidney disease. Nat. Rev. Nephrol. 2017, 13, 269–284. [Google Scholar] [CrossRef]
- Dasgupta, S.; Ghosh, N.; Bhattacharyya, P.; Roy Chowdhury, S.; Chaudhury, K. Metabolomics of asthma, COPD, and asthma-COPD overlap: An overview. Crit. Rev. Clin. Lab. Sci. 2022, 60, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Godbole, S.; Bowler, R.P. Metabolome Features of COPD: A Scoping Review. Metabolites 2022, 12, 621. [Google Scholar] [CrossRef] [PubMed]
- Bervoets, L.; Massa, G.; Guedens, W.; Reekmans, G.; Noben, J.P.; Adriaensens, P. Identification of metabolic phenotypes in childhood obesity by (1)H NMR metabolomics of blood plasma. Future Sci. OA 2018, 4, FSO310. [Google Scholar] [CrossRef] [PubMed]
- Htun, K.T.; Pan, J.; Pasanta, D.; Tungjai, M.; Udomtanakunchai, C.; Chancharunee, S.; Kaewjaeng, S.; Kim, H.J.; Kaewkhao, J.; Kothan, S. Identification of Metabolic Phenotypes in Young Adults with Obesity by (1)H NMR Metabolomics of Blood Serum. Life 2021, 11, 574. [Google Scholar] [CrossRef] [PubMed]
- Dalla Via, A.; Gargari, G.; Taverniti, V.; Rondini, G.; Velardi, I.; Gambaro, V.; Visconti, G.L.; De Vitis, V.; Gardana, C.; Ragg, E.; et al. Urinary TMAO Levels Are Associated with the Taxonomic Composition of the Gut Microbiota and with the Choline TMA-Lyase Gene (cutC) Harbored by Enterobacteriaceae. Nutrients 2019, 12, 62. [Google Scholar] [CrossRef]
- Carlos Cobas, J.; Bernstein, M.A.; Martín-Pastor, M.; Tahoces, P.G. A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data. J. Magn. Reson. 2006, 183, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zorin, V.; Bernstein, M.A.; Cobas, C. A robust, general automatic phase correction algorithm for high-resolution NMR data. Magn. Reson. Chem. 2017, 55, 738–746. [Google Scholar] [CrossRef]
- Vu, T.N.; Laukens, K. Getting Your Peaks in Line: A Review of Alignment Methods for NMR Spectral Data. Metabolites 2013, 3, 259–276. [Google Scholar] [CrossRef]
- Wu, W.; Daszykowski, M.; Walczak, B.; Sweatman, B.C.; Connor, S.C.; Haselden, J.N.; Crowther, D.J.; Gill, R.W.; Lutz, M.W. Peak Alignment of Urine NMR Spectra Using Fuzzy Warping. J. Chem. Inf. Model. 2006, 46, 863–875. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, S.; Ragg, S.; Raftery, D.; Vitek, O. Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics 2011, 27, 1637–1644. [Google Scholar] [CrossRef]
- Röhnisch, H.E.; Eriksson, J.; Müllner, E.; Agback, P.; Sandström, C.; Moazzami, A.A. AQuA: An Automated Quantification Algorithm for High-Throughput NMR-Based Metabolomics and Its Application in Human Plasma. Anal. Chem. 2018, 90, 2095–2102. [Google Scholar] [CrossRef]
- Hao, J.; Astle, W.; De Iorio, M.; Ebbels, T.M.D. BATMAN—An R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics 2012, 28, 2088–2090. [Google Scholar] [CrossRef]
- Ravanbakhsh, S.; Liu, P.; Bjordahl, T.C.; Mandal, R.; Grant, J.R.; Wilson, M.; Eisner, R.; Sinelnikov, I.; Hu, X.; Luchinat, C.; et al. Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics. PLoS ONE 2015, 10, e0124219. [Google Scholar] [CrossRef] [PubMed]
- Lefort, G.; Liaubet, L.; Canlet, C.; Tardivel, P.; Père, M.-C.; Quesnel, H.; Paris, A.; Iannuccelli, N.; Vialaneix, N.; Servien, R. ASICS: An R package for a whole analysis workflow of 1D 1H NMR spectra. Bioinformatics 2019, 35, 4356–4363. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.; Brezmes, J.; Mallol, R.; Rodríguez, M.A.; Vinaixa, M.; Salek, R.M.; Correig, X.; Cañellas, N. Dolphin: A tool for automatic targeted metabolite profiling using 1D and 2D 1H-NMR data. Anal. Bioanal. Chem. 2014, 406, 7967–7976. [Google Scholar] [CrossRef] [PubMed]
- Cañueto, D.; Gómez, J.; Salek, R.M.; Correig, X.; Cañellas, N. rDolphin: A GUI R package for proficient automatic profiling of 1D 1H-NMR spectra of study datasets. Metabolomics 2018, 14, 24. [Google Scholar] [CrossRef]
- Pomyen, Y.; Wanichthanarak, K.; Poungsombat, P.; Fahrmann, J.; Grapov, D.; Khoomrung, S. Deep metabolome: Applications of deep learning in metabolomics. Comput. Struct. Biotechnol. J. 2020, 18, 2818–2825. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.F. Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra. J. Biomol. NMR 2019, 73, 577–585. [Google Scholar] [CrossRef]
- Qu, X.; Huang, Y.; Lu, H.; Qiu, T.; Guo, D.; Agback, T.; Orekhov, V.; Chen, Z. Accelerated Nuclear Magnetic Resonance Spectroscopy with Deep Learning. Angew. Chem. Int. Ed. 2020, 59, 10297–10300. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S. Applications of machine learning and artificial intelligence in NMR. Magn. Reson. Chem. 2022, 60, 1019–1020. [Google Scholar] [CrossRef] [PubMed]
- Grootveld, M.; Percival, B.; Gibson, M.; Osman, Y.; Edgar, M.; Molinari, M.; Mather, M.L.; Casanova, F.; Wilson, P.B. Progress in low-field benchtop NMR spectroscopy in chemical and biochemical analysis. Anal. Chim. Acta 2019, 1067, 11–30. [Google Scholar] [CrossRef] [PubMed]
Instrument | Nuclei | MHz (1H) | Line Width 50% (Hz) | Sensitivity | Weight (kg) | Lock | Dimensions (cm) | Autosampler | Solvent Suppression |
Bruker Fourier 80 [8] | 1H, 1H/13C, 1H/31P or 1H/129Xe 1H/13C|19F | 80 | Standard: 0.4 HD option: 0.3 | 1H-only systems: ≥240 or ≥220 when pulsed field gradient incl. 1H/X systems: ≥180 or ≥160 when pulsed field gradient incl. 1H/13C|19F: ≥120, optimized for X performance | 94 | External | 50 × 70 × 60 | Yes | Yes |
Magritek Spinsolve 60 [9] | 1H and 19F on all systems + X nuclei for dual channel systems | 60 | Spinsolve 60: <0.5 Spinsolve 60 Plus: <0.35 Spinsolve 60 Ultra: <0.2 | 200 (Single channel)/130 (Double channel) | 60 | External | 58 × 43 × 40 | Yes | Yes |
Magritek Spinsolve 80 [10] | 1H and 19F on all systems + X nuclei for dual channel systems | 80 | Spinsolve 80: <0.4 Spinsolve 80 Ultra: <0.25 | 280 (Single channel) 200 (Dual channel) | 72.5 | External | 58 × 43 × 40 | Yes | Yes |
Magritek Spinsolve 90 [11] | 1H and 19F on all systems + X nuclei for dual channel systems | 90 | <0.4 | >240 (Dual channel) | 115 | External | 66 × 45 × 43 | Yes | Yes |
Nanalysis 60 MHz [12] | 1H (60e) 1H/13C, 1H/31P, 1H/19F (60PRO) | 60 | <1 | 100 | 26.3 | Internal | 30 × 28 × 49 | No | Yes |
Nanalysis 100 MHz [13] | 1H (100e) 1H/13C, 1H/31P, 1H/19F (100PRO) | 100 | <1 | 220 | 97 | Internal | 37.1 × 41.4 × 65.4 | No | Yes |
Oxford Instruments X-Pulse [14] | 1H 19F 13C 31P 11B 7Li 23Na 29Si | 60 | <0.35 | 130 | 172 | Internal | 38.5 × 54 × 42.5 | Yes | Yes |
ThermoFisher picoSpin 80 [15] | 1H | 82 | <1.6 | >4000 | 19 | Internal | 43 × 36 × 25 | No | |
ThermoFisher picoSpin 45 [16] | 1H | 45 | <1.8 | >1000 | 5 | Internal | 18 × 15 × 29 | No | |
Q Magnetics QM-125 [17] | 1H | 125 | 0.55 | 16 | 28 | 37 × 34 × 30 | No | No |
Author/Year | Potential Metabolites (n) | Upregulated Metabolites | Downregulated Metabolites |
Percival et al., 2018 [21] | 15 | Acetate Alanine Citrate Cn/Creatine Glucose Methylsuccinate 3-D hydroxybutyrate | Aromatic compounds (indoxyl sulphate, hippurate) Formate |
Leenders et al., 2020 [82] | 5–6 | Glucose | Cn/creatine Citrate Hippurate Indoxyl sulfate |
Edgar et al., 2021 [79] | 15 | Citrate Cn/creatine N-acetylated metabolites | Hippurate Indoxyl sulphate 3-(3-hydroxyphenyl)-3-hydroxypropanoate Lactate |
Edgar et al., 2022 [83] | 19 | Acetate Formate Glycine Methanol Propionate | Cn/Creatine Dimethylamine Lysine Trimethylamine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Moreno, P.; Rodriguez, I.; Izquierdo-Garcia, J.L. Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application. Metabolites 2023, 13, 614. https://doi.org/10.3390/metabo13050614
Alonso-Moreno P, Rodriguez I, Izquierdo-Garcia JL. Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application. Metabolites. 2023; 13(5):614. https://doi.org/10.3390/metabo13050614
Chicago/Turabian StyleAlonso-Moreno, Pilar, Ignacio Rodriguez, and Jose Luis Izquierdo-Garcia. 2023. "Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application" Metabolites 13, no. 5: 614. https://doi.org/10.3390/metabo13050614
APA StyleAlonso-Moreno, P., Rodriguez, I., & Izquierdo-Garcia, J. L. (2023). Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application. Metabolites, 13(5), 614. https://doi.org/10.3390/metabo13050614