An Overview of Analytical Methods for Quantitative Determination of Coenzyme Q10 in Foods
Abstract
:1. Introduction
2. Biological Role and Health Benefits of CoQ10
3. Analytical Methods for CoQ10 Determination in Foods and Contents Found
3.1. Advantages and Disadvantages of Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siemieniuk, E.; Skrzydlewska, E. Coenzyme Q10: Its biosynthesis and biological significance in animal organisms and in humans. Postepy Hig. Med. Dosw. 2005, 59, 150–159. [Google Scholar]
- Bhagavan, H.N.; Chopra, R.K.; Craft, N.E.; Chitchumroonchokchai, C.; Failla, M.L. Assessment of coenzyme Q10 absorption using an in vitro digestion-Caco-2 cell model. Int. J. Pharm. 2007, 333, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Niklowitz, P.; Döring, F.; Paulussen, M.; Menke, T. Determination of coenzyme Q10 tissue status via high-performance liquid chromatography with electrochemical detection in swine tissues (Sus scrofa domestica). Anal. Biochem. 2013, 437, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef]
- Ercan, P.; El, S.N. Changes in content of coenzyme Q10 in beef muscle, beef liver and beef heart with cooking and in vitro digestion. J. Food Compos. Anal. 2011, 24, 1136–1140. [Google Scholar] [CrossRef]
- Bae, G.-S.; Choi, A.; Yeo, J.M.; Kim, J.N.; Song, J.; Kim, E.J.; Chang, M.B. Supplementing Rhodobacter sphaeroides in the diet of lactating Holstein cows may naturally produce coenzyme Q10-enriched milk. Asian-Australas. J. Anim. Sci. 2018, 31, 40–46. [Google Scholar] [CrossRef]
- Pyo, Y.H. Coenzyme Q10 and Q9 contents in 6 commercial vegetable oils and their average daily intakes in Korea. Food Sci. Biotechnol. 2010, 19, 837–841. [Google Scholar] [CrossRef]
- Turkowicz, M.J.; Karpińska, J. Analytical problems with the determination of coenzyme Q10 in biological samples. BioFactors 2013, 39, 176–185. [Google Scholar] [CrossRef]
- Mandrioli, M.; Semeniuc, C.A.; Boselli, E.; Rodriguez-Estrada, M.T. Ubiquinone in Italian high-quality raw cow milk. Ital. J. Food Sci. 2018, 30, 144–155. [Google Scholar] [CrossRef]
- Bao, K.; Zhang, C.; Xie, S.; Feng, G.; Liao, S.; Cai, L.; He, J.; Guo, Y.; Jiang, C. A simple and accurate method for the determination of related substances in coenzyme Q10 soft capsules. Molecules 2019, 24, 1767. [Google Scholar] [CrossRef]
- Cao, X.L.; Xu, Y.T.; Zhang, G.M.; Xie, S.M.; Dong, Y.M.; Ito, Y. Purification of coenzyme Q10 from fermentation extract: High-speed counter-current chromatography versus silica gel column chromatography. J. Chromatogr. A 2006, 1127, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Rodick, T.C.; Seibels, D.R.; Babu, J.R.; Huggins, K.W.; Ren, G.; Mathews, S.T. Potential role of coenzyme Q10 in health and disease conditions. Nutr. Diet. Suppl. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Kommuru, T.R.; Gurley, B.; Khan, M.A.; Reddy, I.K. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: Formulation development and bioavailability assessment. Int. J. Pharm. 2001, 212, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Thanatuksorn, P.; Kawai, K.; Hayakawa, M.; Hayashi, M.; Kajiwara, K. Improvement of the oral bioavailability of coenzyme Q10 by emulsification with fats and emulsifiers used in the food industry. LWT-Food Sci. Technol. 2009, 42, 385–390. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, G.; Zhang, J.; Sun, N.; Duan, M.; Yan, Z.; Xia, Q. Novel lipid-free nanoformulation for improving oral bioavailability of coenzyme Q10. Biomed Res. Int. 2014, 2014, 793879. [Google Scholar] [CrossRef]
- Weber, C.; Bysted, A.; Hølmer, G. Coenzyme Q10 in the diet-daily intake and relative bioavailability. Mol. Aspects Med. 1997, 18, 251–254. [Google Scholar] [CrossRef]
- Souchet, N.; Laplante, S. Seasonal variation of Co-enzyme Q10 content in pelagic fish tissues from Eastern Quebec. J. Food Compos. Anal. 2007, 20, 403–410. [Google Scholar] [CrossRef]
- Stiff, M.R.; Weissinger, A.K.; Danehower, D.A. Analysis of CoQ10 in cultivated tobacco by a high-performance liquid chromatography–ultraviolet method. J. Agric. Food Chem. 2011, 59, 9054–9058. [Google Scholar] [CrossRef]
- Nierobisz, L.S.; Hentz, N.G.; Felts, J.V.; Mozdziak, P.E. Fiber phenotype and coenzyme Q10 content in Turkey skeletal muscles. Cells Tissues Organs 2010, 192, 382–394. [Google Scholar] [CrossRef]
- Rao, G.; Shen, G.; Xu, G. Ultrasonic assisted extraction of coenzyme Q10 from litchi (Litchi chinensis Sonn.) pericarp using response surface methodology. J. Food Process Eng. 2011, 34, 671–681. [Google Scholar] [CrossRef]
- Román-Pizarro, V.; Fernández-Romero, J.M.; Gómez-Hens, A. Automatic determination of coenzyme Q10 in food using cresyl violet encapsulated into magnetoliposomes. Food Chem. 2017, 221, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Purchas, R.W.; Rutherfurd, S.M.; Pearce, P.D.; Vather, R.; Wilkinson, B.H.P. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 2004, 66, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Sunitha, J.; Hans, M. Role of coenzyme Q(10) as an antioxidant and bioenergizer in periodontal diseases. Indian J. Pharmacol. 2010, 42, 334–337. [Google Scholar] [CrossRef]
- Mattila, P.; Kumpulainen, J. Coenzymes Q9 and Q10: Contents in foods and dietary intake. J. Food Compos. Anal. 2001, 14, 409–417. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Chen, X.-Q.; Chen, C.-Y.O. Ubiquinol is superior to ubiquinone to enhance Coenzyme Q10 status in older men. Food Funct. 2018, 9, 5653–5659. [Google Scholar] [CrossRef]
- Hargreaves, I.; Heaton, R.A.; Mantle, D. Disorders of human coenzyme Q10 metabolism: An overview. Int. J. Mol. Sci. 2020, 21, 6695. [Google Scholar] [CrossRef]
- Rodríguez-Acuña, R.; Brenne, E.; Lacoste, F. Determination of coenzyme Q10 and Q9 in vegetable oils. J. Agric. Food Chem. 2008, 56, 6241–6245. [Google Scholar] [CrossRef]
- Li, D.; Deng, W.; Xu, H.; Sun, Y.; Wang, Y.; Chen, S.; Ding, X. Electrochemical investigation of coenzyme Q10 on silver electrode in ethanol aqueous solution and its determination using differential pulse voltammetry. J. Lab. Autom. 2016, 21, 579–589. [Google Scholar] [CrossRef]
- Lambelet, P.; Löliger, J.; Saucy, F.; Bracco, U. Antioxidant properties of coenzyme Q10 in food systems. J. Agric. Food Chem. 1992, 40, 581–584. [Google Scholar] [CrossRef]
- Kubo, H.; Fujii, K.; Kawabe, T.; Matsumoto, S.; Kishida, H.; Hosoe, K. Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet. J. Food Compos. Anal. 2008, 21, 199–210. [Google Scholar] [CrossRef]
- Mattila, P.; Lehtonen, M.; Kumpulainen, J. Comparison of in-line connected diode array and electrochemical detectors in the high-performance liquid chromatographic analysis of coenzymes Q(9) and Q(10) in food materials. JAFC 2000, 48, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- Purnama, M.T.E.; Prayoga, S.F.; Triana, N.M.; Dewi, W.K.; Purnomoaji, B.S.; Wardhana, D.K.; Fikri, F. Oxidative stress parameters in landrace pigs slaughtered by the stunning method. IOP Conf. Ser. Earth Environ. Sci. 2020, 441, 012140. [Google Scholar] [CrossRef]
- Hosseinian, S.A.; Ansari, S. Prophylactic effects of dietary ascorbic acid on oxidative stress indices, physiological and behavioural responses of domestic pigeons exposed to road transport stress. Vet. Med. Sci. 2021, 7, 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Overvad, K.; Diamant, B.; Holm, L.; Hølmer, G.; Mortensen, S.A.; Stender, S. Coenzyme Q10 in health and disease. Eur. J. Clin. Nutr. 1999, 53, 764–770. [Google Scholar] [CrossRef]
- Tobin, B.D.; O’Sullivan, M.G.; Hamill, R.; Kerry, J.P. Effect of cooking and in vitro digestion on the stability of co-enzyme Q10 in processed meat products. Food Chem. 2014, 150, 187–192. [Google Scholar] [CrossRef]
- James, A.M.; Smith, R.A.J.; Murphy, M.P. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch. Biochem. Biophys. 2004, 423, 47–56. [Google Scholar] [CrossRef]
- Vaghari, H.; Vaghari, R.; Jafarizadeh-Malmiri, H.; Berenjian, A. Coenzyme Q10 and its effective sources. Am. J. Biochem. Biotechnol. 2016, 12, 214–219. [Google Scholar] [CrossRef]
- Xue, X.; Zhao, J.; Chen, L.; Zhou, J.; Yue, B.; Li, Y.; Wu, L.; Liu, F. Analysis of coenzyme Q10 in bee pollen using online cleanup by accelerated solvent extraction and high performance liquid chromatography. Food Chem. 2012, 133, 573–578. [Google Scholar] [CrossRef]
- Manzi, P.; Durazzo, A. Rapid determination of coenzyme Q10 in cheese using high-performance liquid chromatography. Dairy Sci. Technol. 2015, 95, 533–539. [Google Scholar] [CrossRef]
- European Commission. Available online: https://food.ec.europa.eu/safety/food-waste_en (accessed on 1 February 2023).
- Grand View Research. Available online: https://www.grandviewresearch.com/industry-analysis/brain-health-supplements-market (accessed on 3 February 2023).
- Precedence Research. Available online: https://www.precedenceresearch.com/natural-extracts-market (accessed on 3 February 2023).
- Lunetta, S.; Roman, M. Determination of coenzyme Q10 content in raw materials and dietary supplements by high-performance liquid chromatography-UV: Collaborative study. J. AOAC Int. 2008, 91, 702–708. [Google Scholar] [CrossRef]
- Rujiralai, T.; Raekasin, N.; Cheewasedtham, V.; Cheewasedtham, C. Development of an effective extraction process for coenzyme Q10 from Artemia. Chem. Pap. 2014, 68, 1041–1048. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Temelli, F. Extraction of oil rich in coenzyme Q10 from chicken by-products using supercritical CO2. J. Supercrit. Fluids 2021, 174, 105242. [Google Scholar] [CrossRef]
- Zu, Y.; Zhao, C.; Li, C.; Zhang, L. A rapid and sensitive LC-MS/MS method for determination of coenzyme Q10 in tobacco (Nicotiana tabacum L.) leaves. J. Sep. Sci. 2006, 29, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Al-Faraji, G.; Shanshal, M. Determination of Ubiquinone,10 in ten different sorts of Iraqi dates “Phoenix dactylifera” at different stages of fruit maturation. JJC 2010, 5, 389–400. [Google Scholar]
- Laplante, S.; Souchet, N.; Bryl, P. Comparison of low-temperature processes for oil and coenzyme Q10 extraction from mackerel and herring. Eur. J. Lipid Sci. Technol. 2009, 111, 135–141. [Google Scholar] [CrossRef]
- Borekova, M.; Hojerova, J.; Koprda, V.; Bauerova, K. Nourishing and health benefits of coenzyme Q10—A review. Czech J. Food Sci. 2008, 26, 229–241. [Google Scholar] [CrossRef]
- Rodriguez-Estrada, M.T.; Poerio, A.; Mandrioli, M.; Lercker, G.; Trinchero, A.; Tosi, M.R.; Tugnoli, V. Determination of coenzyme Q10 in functional and neoplastic human renal tissues. Anal. Biochem. 2006, 357, 150–152. [Google Scholar] [CrossRef]
- Atla, S.R.; Raja, B.; Dontamsetti, B.R. A new method of synthesis of coenzyme Q10 from isolated solanesol from tobacco waste. Int. J. Pharm. Pharm. Sci. 2014, 6, 499–502. [Google Scholar]
- Nakamura, K.; Koyama, M.; Ishida, R.; Kitahara, T.; Nakajima, T.; Aoyama, T. Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. J. Food Sci. Technol. 2016, 53, 581–590. [Google Scholar] [CrossRef]
- López-Lluch, G.; del Pozo-Cruz, J.; Sánchez-Cuesta, A.; Cortés-Rodríguez, A.B.; Navas, P. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition 2019, 57, 133–140. [Google Scholar] [CrossRef]
- Saini, R. Coenzyme Q10: The essential nutrient. J. Pharm. Bioallied Sci. 2011, 3, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Banožić, M.; Babić, J.; Jokić, S. Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Ind. Crops Prod. 2020, 144, 112009. [Google Scholar] [CrossRef]
- Wheeler, D.E.; Rodriguez, J.H.; McCusker, J.K. Density functional theory analysis of electronic structure variations across the orthoquinone/semiquinone/catechol redox series. J. Phys. Chem. 1999, 103, 4101–4112. [Google Scholar] [CrossRef] [Green Version]
- Mosca, F.; Fattorini, D.; Bompadre, S.; Littarru, G.P. Assay of coenzyme Q10 in plasma by a single dilution step. Anal. Biochem. 2002, 305, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Michalkiewicz, S. Anodic oxidation of oxidized forms of coenzymes Q10 and Q0 on carbon electrodes in acetic acid solutions. Bioelectrochemistry 2011, 82, 103–111. [Google Scholar] [CrossRef]
- Nageswara Rao, R.; Kumar Talluri, M.V.; Shinde, D.D. Simultaneous separation and determination of coenzyme Q10 and its process related impurities by NARP-HPLC and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). J. Pharm. Biomed. Anal. 2008, 47, 230–237. [Google Scholar] [CrossRef]
- Teshima, K.; Kondo, T. Analytical method for ubiquinone-9 and ubiquinone-10 in rat tissues by liquid chromatography/turbo ion spray tandem mass spectrometry with 1-alkylamine as an additive to the mobile phase. Anal. Biochem. 2005, 338, 12–19. [Google Scholar] [CrossRef]
- Tang, P.H.; Miles, M.V.; Miles, L.; Quinlan, J.; Wong, B.; Wenisch, A.; Bove, K. Measurement of reduced and oxidized coenzyme Q9 and coenzyme Q10 levels in mouse tissues by HPLC with coulometric detection. Clin. Chim. Acta 2004, 341, 173–184. [Google Scholar] [CrossRef]
- Lang, J.K.; Gohil, K.; Packer, L. Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. Anal. Biochem. 1986, 157, 106–116. [Google Scholar] [CrossRef]
Food Source | Extraction Method | Detection Method and Quantification Method | CoQ10 Content | Limit of Quantification (LOQ) | Limit of Detection (LOD) | Linear Range | Spike Concentration | Recovery Rate | Ref. |
---|---|---|---|---|---|---|---|---|---|
Herbs | |||||||||
Tobacco-green leaf | Ultrasonic extraction method with anhydrous ethanol and hexane | HPLC/ESI-MS/MS detectionSA quantification WSR: 8.4–540 ng/mL | 11.5 µg/g | 4.0 ng/mL | 1.2 ng/mL | 8.4–540.0 ng/mL | 50 ng | 98.2% | [46] |
175 ng | 99.3% | ||||||||
300 ng | 98.6% | ||||||||
Direct extraction method with 2-propanol | HPLC with UV detection (275 nm) ES quantification WSR: unspecified | 27.6 µg/g | - | 0.063 µg/mL | 0.158–10.14 µg/mL | - | - | [18] | |
Parsley | Direct extraction method with 2-propanol | HPLC with AEC detection (600 mV) ES quantification WSR: unspecified | 7.5 µg/g | - | 38 pg/injection corresponding to 0.07 µg/g for ubiquinol-10 | 0.040–50 ng/injection corresponding to 0.08–100 µg/g for ubiquinol-10 | - | - | [30] |
38 pg/injection corresponding to 0.15 µg/g for ubiquinone-10 | 0.040–50 ng/injection corresponding to 0.16–200 µg/g for ubiquinone-10 | ||||||||
Direct extraction method with 0.15 M sodium chloride solution, ethanol, n-hexane, and acetone | A. CEFS detection (585 and 627 nm) ES quantification WSR: 35.0–500 nmol/L | 11.4 µg/g | - | 0.008 µmol/L | 0.03–0.50 µmol/L | 4.3 µg/g | 88.9% | [21] | |
8.6 µg/g | 88.0% | ||||||||
B. HPLC with DA detection (275 nm) ES quantification WSR: 2.0–200 µmol/L | 11.1 µg/g | - | 0.58 µmol/L | - | - | - | |||
Perilla | Direct extraction method See parsley | See parsley | 2.1 µg/g | - | See parsley | See parsley | - | - | [30] |
Rape-leaf | Direct extraction method See parsley | See parsley | 6.7 µg/g | - | See parsley | See parsley | - | - | [30] |
Vegetables | |||||||||
Broccoli | Direct extraction method See parsley | See parsley | 7.0 µg/g | - | See parsley | See parsley | - | - | [30] |
Direct extraction method with nitrogen-saturated ethanol/water (95:5, v/v) PBS solution (pH 6.5) | A. DPV using an electrochemical workstation CV scanning range: −0.10 V to −0.80 V DPV initial potential: −0.01 V DPV final potential: −0.80 V DPV amplitude: 0.05 V | 11.3 µg/g | - | 0.0288 mg/kg (3.3 × 10−8 mol/L) | 0.0863–863 mg/kg (1.00 × 10−7–1.00 × 10−3 mol/L) | 5.0 mg/kg | 91.0–108.0% | [28] | |
B. HPLC with UV detection (274 nm) Quantification method: unspecified | 10.5 µg/g | - | - | - | - | - | |||
Cauliflower | Direct extraction method with 0.15 M sodium chloride solution, ethanol, n-hexane, 2-propanol | HPLC with DA detection (275 nm) ES quantification WSR: 2.5–55 µg/mL | 2.7 µg/g | - | 5 ng/injection | 12–500 ng/injection | Unspecified | 93.0% | [24] |
Direct extraction method See parsley | See parsley | 6.6 µg/g | - | See parsley | See parsley | - | - | [30] | |
Cabbage | Direct extraction method See parsley | See parsley | 3.8 µg/g | - | See parsley | See parsley | - | - | [30] |
Potato | Direct extraction method See cauliflower | See cauliflower | 0.50 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Direct extraction method See parsley | See parsley | 1.6 µg/g | - | See parsley | See parsley | 0.44 µg/g ubiquinol-10 | 112.0% | [30] | |
4.00 µg/g ubiquinol-10 | 104.0% | ||||||||
0.22 µg/g ubiquinone-10 | 101.0% | ||||||||
1.96 µg/g ubiquinone-10 | 98.2% | ||||||||
Tomato | Direct extraction method with 0.9% sodium chloride solution, ethanol/hexane (1:5, v/v), sodium sulfate anhydrous, hexane | HPLC with UV detection (275 nm) ES quantification WSR: unspecified | 0.19 µg/g | - | - | - | - | - | [16] |
Direct extraction method See cauliflower | See cauliflower | 0.90 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] | |
Direct extraction method See broccoli | See broccoli A | 2.6 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 2.2 µg/g | - | - | - | - | - | |||
Carrot | Direct extraction method See tomato | See tomato | <0.24 µg/g | - | - | - | - | - | [16] |
Direct extraction method See cauliflower | See cauliflower | 1.7 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] | |
Direct extraction method See broccoli | See broccoli A | 4.8 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 3.6 µg/g | - | - | - | - | - | |||
Cucumber | Direct extraction method See tomato | See tomato | <0.08 µg/g | - | - | - | - | - | [16] |
Direct extraction method See parsley | See parsley | 0.08 µg/g | - | See parsley | See parsley | - | - | [30] | |
Corn | Direct extraction method See broccoli | See broccoli A | 5.1 µg/g | - | See broccoli | See broccoli | 5.0 mg/kg | 105.4% | [28] |
See broccoli B | 4.4 µg/g | - | - | - | - | - | |||
Spinach | Direct extraction method See parsley | See parsley | 0.44 µg/g | - | See parsley | See parsley | - | - | [30] |
Direct extraction method See parsley | See parsley A | 13.5 µg/g | - | See parsley A | See parsley A | 4.3 µg/g | 93.6% | [21] | |
8.6 µg/g | 95.9% | ||||||||
See parsley B | 12.5 µg/g | - | See parsley B | - | - | - | |||
Direct extraction method See broccoli | See broccoli A | 7.2 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 6.7 µg/g | - | - | - | - | - | |||
Mustard spinach | Direct extraction method See parsley | See parsley | 2.0 µg/g | - | See parsley | See parsley | - | - | [30] |
Eggplant | Direct extraction method See parsley | See parsley | 1.0 µg/g | - | See parsley | See parsley | - | - | [30] |
Radish | Direct extraction method See parsley | See parsley | 0.70 µg/g | - | See parsley | See parsley | - | - | [30] |
Onion | Direct extraction method See parsley | See parsley | 0.90 µg/g | - | See parsley | See parsley | - | - | [30] |
Garlic | Direct extraction method See parsley | See parsley | 3.5 µg/g | - | See parsley | See parsley | - | - | [30] |
Lotus root | Direct extraction method See parsley | See parsley | 0.96 µg/g | - | See parsley | See parsley | - | - | [30] |
Pea | Direct extraction method See cauliflower | See cauliflower | 2.7 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Direct extraction method See parsley | See parsley | 2.3 µg/g | - | See parsley | See parsley | - | - | [30] | |
Direct extraction method See broccoli | See broccoli A | 3.3 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 2.5 µg/g | - | - | - | - | - | |||
Bean | Direct extraction method See cauliflower | See cauliflower | 1.8 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Direct extraction method See parsley | See parsley | 2.3 µg/g | - | See parsley | See parsley | - | - | [30] | |
Soybean | Direct extraction method See parsley | See parsley | 6.8 µg/g | - | See parsley | See parsley | - | - | [30] |
Asparagus | Direct extraction method See parsley | See parsley | 2.2 µg/g | - | See parsley | See parsley | - | - | [30] |
Avocado | Direct extraction method See parsley | See parsley | 9.5 µg/g | - | See parsley | See parsley | - | - | [30] |
Direct extraction method See parsley | See parsley A | 24.3 µg/g | - | See parsley A | See parsley A | 4.3 µg/g | 88.2% | [21] | |
8.6 µg/g | 90.3% | ||||||||
See parsley B | 13.2 µg/g | - | See parsley B | - | - | - | |||
Fruits | |||||||||
Orange | Direct extraction method See tomato | See tomato | 2.2 µg/g | - | - | - | - | - | [16] |
Direct extraction method See cauliflower | See cauliflower | 1.4 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] | |
Direct extraction method See parsley | See parsley | 1.0 µg/g | - | See parsley | See parsley | - | - | [30] | |
Direct extraction method See broccoli | See broccoli A | 3.9 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 3.3 µg/g | - | - | - | - | - | |||
Clementine | Direct extraction method See cauliflower | See cauliflower | 0.90 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Apple | Direct extraction method See tomato | See tomato | 1.1 µg/g | - | - | - | - | - | [16] |
Direct extraction method See cauliflower | See cauliflower | 1.3 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] | |
Direct extraction method See parsley | See parsley | 1.2 µg/g | - | See parsley | See parsley | - | - | [30] | |
Blackcurrant | Direct extraction method See cauliflower | See cauliflower | 3.4 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Lingonberry | Direct extraction method See cauliflower | See cauliflower | 0.90 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Strawberry | Direct extraction method See cauliflower | See cauliflower | 1.4 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Direct extraction method See parsley | See parsley | 0.50 µg/g | - | See parsley | See parsley | - | - | [30] | |
Grapefruit | Direct extraction method See parsley | See parsley | 1.3 µg/g | - | See parsley | See parsley | - | - | [30] |
Banana | Direct extraction method See parsley | See parsley | 0.80 µg/g | - | See parsley | See parsley | - | - | [30] |
Kiwi | Direct extraction method See tomato | See tomato | 0.49 µg/g | - | - | - | - | - | [16] |
Direct extraction method See broccoli | See broccoli A | 2.1 µg/g | - | See broccoli | See broccoli | 1.0 mg/kg | 91.4% | [28] | |
See broccoli B | 2.6 µg/g | - | - | - | - | - | |||
Persimmon | Direct extraction method See parsley | See parsley | 0.80 µg/g | - | See parsley | See parsley | - | - | [30] |
Apricot | Direct extraction method See broccoli | See broccoli A | 4.1 µg/g | - | See broccoli | See broccoli | - | - | [28] |
See broccoli B | 4.6 µg/g | - | - | - | - | - | |||
Cherry | Direct extraction method See broccoli | See broccoli A | 12.2 µg/g | - | See broccoli | See broccoli | - | - | [28] |
See broccoli B | 14.5 µg/g | - | - | - | - | - | |||
Dry date | Saponification extraction method Saponification with water, pyrogallol, methanol, 25% aqueous potassium hydroxide solution, petroleum ether 40–60 °C, sodium sulfate anhydrous, ethanol Purification of the saponified extract over alumina column Separation of CoQ10 from the purified extract on silica gel F254 glass plate | HPLC with UV detection (275 nm) Quantification method: unspecified | 21.1 µg/g | - | - | - | - | - | [47] |
Grains & seeds | |||||||||
Almond | Direct extraction method See parsley | See parsley | 5.0 µg/g | - | See parsley | See parsley | - | - | [30] |
Peanut | Direct extraction method See parsley | See parsley A | 20.9 µg/g | - | See parsley A | See parsley A | 4.3 µg/g | 89.3% | [21] |
8.6 µg/g | 101.3% | ||||||||
See parsley B | 25.5 µg/g | - | See parsley B | - | - | - | |||
Direct extraction method See broccoli | See broccoli A | 11.5 µg/g | - | See broccoli | See broccoli | 10.0 mg/kg | 91.8% | [28] | |
See broccoli B | 12.6 µg/g | - | - | - | - | - | |||
Pistachio | Direct extraction method See parsley | See parsley A | 18.5 µg/g | - | See parsley A | See parsley A | 4.3 µg/g | 91.3% | [21] |
8.6 µg/g | 84.5% | ||||||||
See parsley B | 22.2 µg/g | - | See parsley B | - | - | - | |||
Rapeseed | Direct extraction method See broccoli | See broccoli A | 3.2 µg/g | - | See broccoli | See broccoli | - | - | [28] |
See broccoli B | 3.0 µg/g | - | - | - | - | - | |||
Barley | Direct extraction method See broccoli | See broccoli A | 9.7 µg/g | - | See broccoli | See broccoli | - | - | [28] |
See broccoli B | 8.2 µg/g | - | - | - | - | - | |||
Vegetable oils | |||||||||
Olive oil | Saponification extraction method with 5% aqueous pyrogallol solution, 10% sodium hydroxide solution, methanol, 10% sodium chloride solution, n-hexane, 5% sodium chloride solution, ethanol, 2-propanol | HPLC/ESI-MS detection Quantification method: unspecified | 1.3 µg/g | - | - | - | - | - | [7] |
Sesame oil | Saponification extraction method See olive oil | See olive oil | 31.5 µg/g | - | - | - | - | - | [7] |
Direct extraction method See parsley | See parsley | 17.6 µg/g | - | See parsley | See parsley | - | - | [30] | |
Maize germ oil | Saponification extraction method See olive oil | See olive oil | 17.7 µg/g | - | - | - | - | - | [7] |
Perilla oil | Saponification extraction method See olive oil | See olive oil | 84.9 µg/g | - | - | - | - | - | [7] |
Grape seed oil | Saponification extraction method See olive oil | See olive oil | 20.2 µg/g | - | - | - | - | - | [7] |
Soybean oil | Saponification extraction method See olive oil | See olive oil | 54.2 µg/g | - | - | - | - | - | [7] |
Direct extraction method See parsley | See parsley | 53.8 µg/g | - | See parsley | See parsley | - | - | [30] | |
Solid-phase extraction (SPE) with heptane, heptane/ethyl ether (80:20, v/v), acetonitrile/tetrahydrofuran (90:10, v/v) 5 g of solid-phase extraction (SPE) cartridge with amino-propyl (NH2) adsorbents, Varian | HPLC/APCI-MS detection SA quantification Working standards: 51.1 mg/kg CoQ10 and 105.4 mg/kg CoQ10 | 97.6 µg/g | 60 pg/injection corresponding to 0.025 mg/kg oil | 18 pg/injection | - | - | - | [27] | |
Rapeseed oil | Saponification extraction method with 2% ascorbic acid solution, methanol, aqueous potassium hydroxide solution (50 g KOH + 50 mL H2O), 10% sodium chloride solution, n-hexane, 5% sodium chloride solution, ethanol, n-hexane/2-propanol (1:1, v/v) | See cauliflower | 63.5 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Solid-phase extraction (SPE) See soybean oil | See soybean oil Working standards: 26.2 mg/kg CoQ10 and 51.5 mg/kg CoQ10 | 46.4 µg/g | See soybean oil | See soybean oil | - | - | - | [27] | |
Sunflower oil | Solid-phase extraction (SPE) See soybean oil | See soybean oil Working standards: 10.5 mg/kg CoQ10 and 15.9 mg/kg CoQ10 | 8.7 µg/g | See soybean oil | See soybean oil | - | - | - | [27] |
Food Source | Extraction Method | Detection Method and Quantification Method | CoQ10 Content | Limit of Quantification (LOQ) | Limit of Detection (LOD) | Linear Range | Spike Concentration | Recovery Rate | Ref. |
---|---|---|---|---|---|---|---|---|---|
Meat and Poultry | |||||||||
Reindeer meat | Direct extraction method See cauliflower | See cauliflower | 157.9 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Pork meat | Direct extraction method with Hanks′ balanced salt solution, ethanol, n-hexane, 2-propanol | HPLC with UV detection (275 nm) ES quantification Working standards range: 2.0–200 µg/mL | 41.6 µg/g | - | - | - | 1 mg/g | Unspecified | [35] |
Direct extraction method See broccoli | See broccoli A | 45.1 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 13.6 µg/g | - | - | - | - | - | |||
Direct extraction method See parsley | See parsley | 29.4 µg/g | - | See parsley | See parsley | - | - | [30] | |
Direct extraction method with 2-propanol, saline solution, hexane, methanol/ethanol/propanol (100:95:5, v/v/v) | HPLC with EC detection IS quantification Working standards: 310 pmol ubihydroquinone-9 and 400 pmol ubiquinone-9 in 50 µL ethanol | 23.1 µg/g | - | - | 12–60 mg fresh muscle tissue/sample | 192.4 pm/sample ubiquinone-10 | 86.3% | [3] | |
105.3 pm/sample ubiquinone-10 | 96.8% | ||||||||
51.4 pm/sample ubiquinone-10 | 88.2% | ||||||||
136.6 pm/sample ubihydroquinone-10 | 98.6% | ||||||||
75.9 pm/sample ubihydroquinone-10 | 101.4% | ||||||||
33.3 pm/sample ubihydroquinone-10 | 110.5% | ||||||||
328.9 pm/sample total CoQ10 | 90.0% | ||||||||
181.2 pm/sample total CoQ10 | 98.1% | ||||||||
84.7 pm/sample total CoQ10 | 93.9% | ||||||||
Pork heart | Direct extraction method with 0.15 M sodium chloride solution, ethanol, n-hexane, sodium sulfate anhydrous, 2-propanol | A. HPLC with DA detection (275 nm) ES quantification Working standards range: unspecified | 63.4 µg/g | - | 6 ng/injection | 10–200 ng/injection | 18–60 µg | 73.0–105.0% | [31] |
B. HPLC with CMEA | 63.5 µg/g | - | 0.3 ng/injection | 10–200 ng/injection | 18–60 µg | 74.0–103.0% | |||
Direct extraction method See cauliflower | See cauliflower | 126.8 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] | |
Direct extraction method See broccoli | See broccoli A | 19.2 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 20.5 µg/g | - | - | - | - | - | |||
Direct extraction method See pork meat | See pork meat | 128.7 µg/g | - | - | See pork meat | See pork meat | See pork meat | [3] | |
Pork liver | Saponification extraction method with 2% ascorbic acid solution, methanol, potassium hydroxide solution (50 g KOH + 50 mL H2O), 10% sodium chloride solution, n-hexane, 5% sodium chloride solution, ethanol, n-hexane/2-propanol (3:7, v/v) | See cauliflower | 22.7 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Direct extraction method See parsley | See parsley A | 45.1 µg/g | - | See parsley A | See parsley A | 4.3 µg/g | 97.0% | [21] | |
8.6 µg/g | 87.9% | ||||||||
See parsley B | 45.7 µg/g | - | See parsley B | - | - | - | |||
Direct extraction method See broccoli | See broccoli A | 21.1 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 22.2 µg/g | - | - | - | - | - | |||
Direct extraction method See pork meat | See pork meat | 53.6 µg/g | - | - | See pork meat | See pork meat | See pork meat | [3] | |
Pork kidney | Direct extraction method See broccoli | See broccoli A | 18.3 µg/g | - | See broccoli | See broccoli | - | - | [28] |
See broccoli B | 23.2 µg/g | - | - | - | - | - | |||
Direct extraction method See pork meat | See pork meat | 96.4 µg/g | - | - | See pork meat | See pork meat | See pork meat | [3] | |
Pork brain | Direct extraction method See pork meat | See pork meat | 35.1 µg/g | - | - | See pork meat | See pork meat | See pork meat | [3] |
Beef meat | Direct extraction method See pork meat | See pork meat | 48.8 µg/g | - | - | - | See pork meat | See pork meat | [35] |
Direct extraction method See broccoli | See broccoli A | 16.3 µg/g | - | See broccoli | See broccoli | 10.0 mg/kg | 108.3% | [28] | |
See broccoli B | 19.3 µg/g | - | - | - | - | - | |||
Direct extraction method with 0.15 M sodium chloride solution, ethanol, n-hexane, 2-propanol Lyophilized sample | HPLC with UV detection (275 nm) Quantification method: unspecified | 44.9 µg/g | - | - | - | - | - | [22] | |
Direct extraction method See cauliflower | See cauliflower | 36.5 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] | |
Direct extraction method with 0.15 M sodium chloride solution, ethanol, n-hexane, 2-propanol | HPLC with UV detection (275 nm) ES quantification WSR: 2.5–55 µg/mL | 23.5 µg/g | - | - | - | - | - | [5] | |
Direct extraction method See parsley | See parsley | 35.2 µg/g | - | See parsley | See parsley | 2.0 µg/g ubiquinol-10 | 94.7% | [30] | |
18.0 µg/g ubiquinol-10 | 87.8% | ||||||||
8.8 µg/g ubiquinone-10 | 97.4% | ||||||||
80.0 µg/g ubiquinone-10 | 101.0% | ||||||||
Direct extraction method See pork heart | See pork heart A | 17.3 µg/g | - | See pork heart | See pork heart | See pork heart | See pork heart | [31] | |
See pork heart B | 16.1 µg/g | - | See pork heart | See pork heart | See pork heart | See pork heart | |||
Beef heart | Direct extraction method See cauliflower | See cauliflower | 113.3 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Direct extraction method See beef meat Lyophilized sample | See beef meat | 60.5 µg/g | - | - | - | - | - | [22] | |
Direct extraction method See beef meat | See beef meat | 110.0 µg/g | - | - | - | - | - | [5] | |
Beef liver | Saponification extraction method See pork liver | See cauliflower | 39.2 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Direct extraction method See beef meat Lyophilized sample | See beef meat | 46.0 µg/g | - | - | - | - | - | [22] | |
Direct extraction method See parsley | See parsley | 50.5 µg/g | - | See parsley | See parsley | - | - | [30] | |
Saponification extraction method with 2% ascorbic acid solution, methanol, potassium hydroxide solution (50 g KOH + 50 mL H2O), 10% sodium chlorine solution, n-hexane, 5% sodium chloride solution, ethanol, n-hexane/2-propanol (30:70, v/v) | See beef meat | 33.3 µg/g | - | - | - | - | - | [5] | |
Direct extraction method See parsley | See parsley A | 47.2 µg/g | - | See parsley A | See parsley A | 4.3 µg/g | 90.2% | [21] | |
8.6 µg/g | 83.5% | ||||||||
See parsley B | 44.1 µg/g | - | See parsley B | - | - | - | |||
Lamb meat | Direct extraction method See beef meat Lyophilized sample | See beef meat | 14.7 µg/g | - | - | - | - | - | [22] |
Chicken meat | Direct extraction method See cauliflower | See cauliflower | 14.0 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Direct extraction method See broccoli | See broccoli A | 10.6 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 12.3 µg/g | - | - | - | - | - | |||
Direct extraction method See parsley | See parsley | 21.1 µg/g | - | See parsley | See parsley | - | - | [30] | |
Chicken heart | Direct extraction method See parsley | See parsley | 192.0 µg/g | - | See parsley | See parsley | - | - | [30] |
Fish & Seafood | |||||||||
Mackerel flesh | Direct extraction method with 0.15 M sodium chloride solution, 0.1 M sodium dodecyl sulfate, anhydrous ethanol, hexane, 2-propanol | HPLC with DA detection (275 nm) ES quantification WSR: 2.5–55 µg/mL | 25.8 µg/g | - | 2.5 ng/injection | 1–20 µg/mL corresponding to 10–200 µg/g fresh tissue | 1–15 µg | 105.1% | [17] |
Direct extraction method See parsley | See parsley | 10.6 µg/g | - | See parsley | See parsley | - | - | [30] | |
Horse mackerel flesh | Direct extraction method See parsley | See parsley | 13.0 µg/g | - | See parsley | See parsley | - | - | [30] |
Herring flesh | Direct extraction method See mackerel flesh | See mackerel flesh | 19.4 µg/g | - | See mackerel flesh | See mackerel flesh | - | - | [17] |
Baltic herring flesh | Direct extraction method See pork heart | See pork heart A | 11.2 µg/g | - | See pork heart | See pork heart | See pork heart | See pork heart | [31] |
See pork heart B | 13.9 µg/g | - | See pork heart | See pork heart | See pork heart | See pork heart | |||
Sardine flesh | Direct extraction method See parsley | See parsley | 11.9 µg/g | - | See parsley | See parsley | - | - | [30] |
Direct extraction method See broccoli | See broccoli A | 30.5 µg/g | - | See broccoli | See broccoli | - | - | [28] | |
See broccoli B | 29.8 µg/g | - | - | - | - | - | |||
Saury flesh | Direct extraction method See broccoli | See broccoli A | 25.4 µg/g | - | See broccoli | See broccoli | - | - | [28] |
See broccoli B | 27.5 µg/g | - | - | - | - | - | |||
Five-ray yellowtail flesh | Direct extraction method See parsley | See parsley | 12.8 µg/g | - | See parsley | See parsley | 2.0 µg/g ubiquinol-10 | 105.0% | [30] |
18.0 µg/g ubiquinol-10 | 98.8% | ||||||||
3.0 µg/g ubiquinone-10 | 106.0% | ||||||||
26.8 µg/g uniquinonă-10 | 97.5% | ||||||||
Young yellowtail flesh | Direct extraction method See parsley | See parsley | 33.4 µg/g | - | See parsley | See parsley | - | - | [30] |
Cod flesh | Direct extraction method See parsley | See parsley | 3.7 µg/g | - | See parsley | See parsley | - | - | [30] |
Salmon flesh | Direct extraction method See parsley | See parsley | 5.7 µg/g | - | See parsley | See parsley | - | - | [30] |
Tuna flesh | Direct extraction method See parsley | See parsley | 4.9 µg/g | - | See parsley | See parsley | - | - | [30] |
Flatfish flesh | Direct extraction method See parsley | See parsley | 1.8 µg/g | - | See parsley | See parsley | - | - | [30] |
Pollack flesh | Direct extraction method See cauliflower | See cauliflower | 14.4 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Whole mackerel | Direct extraction method See Souchet and Laplante [17] | See Souchet and Laplante [17] | 18.6 µg/g | - | - | - | - | - | [48] |
Direct extraction method See Souchet and Laplante [17] Lyophilized sample | 88.4 µg/g dw | - | - | - | - | - | |||
Whole herring | Direct extraction method See Souchet and Laplante [17] | See Souchet and Laplante [17] | 9.9 µg/g | - | - | - | - | - | [48] |
Direct extraction method See Souchet and Laplante [17] Lyophilized sample | 50.9 µg/g dw | - | - | - | - | - | |||
Mackerel heart | Direct extraction method See mackerel flesh | See mackerel flesh | 107.7 µg/g | - | See mackerel flesh | See mackerel flesh | - | - | [17] |
Herring heart | Direct extraction method See mackerel flesh | See mackerel flesh | 134.2 µg/g | - | See mackerel flesh | See mackerel flesh | 1–15 µg | 100.3% | [17] |
Scallop flesh | Direct extraction method See parsley | See parsley | 5.0 µg/g | - | See parsley | See parsley | - | - | [30] |
Oyster flesh | Direct extraction method See parsley | See parsley | 3.4 µg/g | - | See parsley | See parsley | - | - | [30] |
Cuttlefish flesh | Direct extraction method See parsley | See parsley | 4.7 µg/g | - | See parsley | See parsley | - | - | [30] |
Octopus flesh | Direct extraction method See parsley | See parsley | 3.4 µg/g | - | See parsley | See parsley | - | - | [30] |
Shrimp flesh | Direct extraction method See parsley | See parsley | 1.7 µg/g | - | See parsley | See parsley | - | - | [30] |
Fish oils | |||||||||
Mackerel oil | A. Oil extracted by enzymatic hydrolysis Direct extraction method with 2-propanol | See Souchet and Laplante [17] | 133.3 µg/g | - | - | - | - | 82.0% | [48] |
B. Oil extracted using SCO2 600 g CO2/h + 5% EtOH Direct extraction method with 2-propanol | 70.9 µg/g | - | - | - | - | 33.0% | |||
Herring oil | A. Oil extracted by enzymatic hydrolysis Direct extraction method with 2-propanol | See Souchet and Laplante [17] | 150.9 µg/g | - | - | - | - | 84.0% | [48] |
B. Oil extracted using SCO2 600 g CO2/h + 5% EtOH Direct extraction method with 2-propanol | 286.1 µg/g | - | - | - | - | 104.0% | |||
Eggs | |||||||||
Hen’s egg | Direct extraction method See parsley | See parsley | 0.73 µg/g | - | See parsley | See parsley | - | - | [30] |
Direct extraction method See tomato | See tomato | 1.5 µg/g | - | - | - | - | - | [16] | |
Direct extraction method See cauliflower | See cauliflower | 1.2 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] | |
Milk & Dairy | |||||||||
Skimmed milk (1.5% fat) | Direct extraction method with ethanol, n-hexane, 2-propanol | See cauliflower | 0.10 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Whole milk | Direct extraction method See parsley | See parsley | 0.31 µg/g | - | See parsley | See parsley | - | - | [30] |
Saponification extraction method with 2 N ethanolic potassium hydroxide solution, 1% ethanolic pyrogallol solution, bidistilled water, ethanol, petroleum ether/diethyl ether (9:1, v/v), sodium sulfate anhydrous, 2-propanol | HPLC with DA detection (275 nm) IS quantification Working standard: 15 µg ubiquinone-9 | 0.30 µg/g | 1.18 µg/mL | 0.35 µg/mL | - | - | - | [9] | |
Yoghurt | Direct extraction method See tomato | See tomato | 1.2 µg/g | - | - | - | - | - | [16] |
Direct extraction method with ethanol, n-hexane, 2-propanol | See cauliflower | 2.4 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] | |
Direct extraction method See parsley | See parsley | 0.26 µg/g | - | See parsley | See parsley | - | - | [30] | |
Cheese | Direct extraction method See parsley | See parsley | 1.4 µg/g | - | See parsley | See parsley | - | - | [30] |
Emmental cheese | Saponification extraction method See pork liver | See cauliflower | 1.3 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Edam cheese | Saponification extraction method See pork liver | See cauliflower | 1.2 µg/g | - | See cauliflower | See cauliflower | See cauliflower | See cauliflower | [24] |
Hard cheese | Direct extraction method See tomato | See tomato | <0.16 µg/g | - | - | - | - | - | [16] |
Cream cheese | Direct extraction method See tomato | See tomato | <0.29 µg/g | - | - | - | - | - | [16] |
Provola cheese | Saponification extraction method with 60% potassium hydroxide solution, 6% ethanolic pyrogallol solution, 96% ethanol, 1% sodium chloride solution, hexane/ethyl acetate (9:1, v/v), 1% 2-propanol in n-hexane | HPLC with UV detection (275 nm) ES quantification WSR: 0.810–2.025 μg/mL | 1.6 µg/g | 0.069 µg/mL | 0.024 µg/mL | 0.810–2.025 μg/mL | 2.025–0.810 µg/mL | 98.6% | [39] |
Pecorino cheese | Saponification extraction method See Provola cheese | See Provola cheese | 1.4 µg/g | See Provola cheese | See Provola cheese | See Provola cheese | See Provola cheese | See Provola cheese | [39] |
Bagoss cheese | Saponification extraction method See Provola cheese | See Provola cheese | 1.3 µg/g | See Provola cheese | See Provola cheese | See Provola cheese | See Provola cheese | See Provola cheese | [39] |
Bee products | |||||||||
Rape bee pollen | Accelerated solvent extraction (ASE) with Cleanert Alumina-N, absolute ethanol Temperature: 80 °C Heat-up time: 5 min Static time: 5 min Flush volume: 60% Purge time: 1 min Number of cycles: 1 Cell volume: 10 mL Total extraction time: 16–17 min/sample | HPLC with DA detection (275 nm) ES quantification WSR: 0.25–200 mg/L | 21.9 µg/g | 0.35 mg/kg | 0.16 mgk/g | 0.25–200 mg/L | 5 mg/L corresponding to 5 mg/kg sample | 90.6% | [38] |
10 mg/L corresponding to 10 mg/kg sample | 92.3% | ||||||||
50 mg/L corresponding to 50 mg/kg sample | 95.1% | ||||||||
Apricot bee pollen | Accelerated solvent extraction (ASE) See rape bee pollen | See rape bee pollen | 87.2 µg/g | See rape bee pollen | See rape bee pollen | See rape bee pollen | See rape bee pollen | See rape bee pollen | [38] |
Tea bee pollen | Accelerated solvent extraction (ASE) See rape bee pollen | See rape bee pollen | 3.7 µg/g | See rape bee pollen | See rape bee pollen | See rape bee pollen | See rape bee pollen | See rape bee pollen | [38] |
Mixed bee pollen | Accelerated solvent extraction (ASE) See rape bee pollen | See rape bee pollen | 9.4 µg/g | See rape bee pollen | See rape bee pollen | See rape bee pollen | See rape bee pollen | See rape bee pollen | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podar, A.S.; Semeniuc, C.A.; Ionescu, S.R.; Socaciu, M.-I.; Fogarasi, M.; Fărcaș, A.C.; Vodnar, D.C.; Socaci, S.A. An Overview of Analytical Methods for Quantitative Determination of Coenzyme Q10 in Foods. Metabolites 2023, 13, 272. https://doi.org/10.3390/metabo13020272
Podar AS, Semeniuc CA, Ionescu SR, Socaciu M-I, Fogarasi M, Fărcaș AC, Vodnar DC, Socaci SA. An Overview of Analytical Methods for Quantitative Determination of Coenzyme Q10 in Foods. Metabolites. 2023; 13(2):272. https://doi.org/10.3390/metabo13020272
Chicago/Turabian StylePodar, Andersina Simina, Cristina Anamaria Semeniuc, Simona Raluca Ionescu, Maria-Ioana Socaciu, Melinda Fogarasi, Anca Corina Fărcaș, Dan Cristian Vodnar, and Sonia Ancuța Socaci. 2023. "An Overview of Analytical Methods for Quantitative Determination of Coenzyme Q10 in Foods" Metabolites 13, no. 2: 272. https://doi.org/10.3390/metabo13020272
APA StylePodar, A. S., Semeniuc, C. A., Ionescu, S. R., Socaciu, M. -I., Fogarasi, M., Fărcaș, A. C., Vodnar, D. C., & Socaci, S. A. (2023). An Overview of Analytical Methods for Quantitative Determination of Coenzyme Q10 in Foods. Metabolites, 13(2), 272. https://doi.org/10.3390/metabo13020272