Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential
Abstract
:1. Introduction
2. Methodology
3. Secondary Metabolites from Lavandula Section Stoechas
3.1. Essential Oils
3.2. Non-Volatile Compounds
3.2.1. Phenolic Acids
3.2.2. Flavonoids
3.2.3. Other Non-Volatile Phytochemicals
4. Biological Activities
4.1. Antioxidant Activity
4.2. Antimicrobial Activity
4.3. Anti-Inflammatory and Analgesic Activities
4.4. Anti-BACE-1 and Anticholinesterases Activities
4.5. Cytotoxic Activity
4.6. Other Pharmaceutical Activities and Bioavailability
4.7. Insecticidal, Nematicidal, and Ixodicidal Activities
4.8. Phytotoxicity and Allelopathic Activity
4.9. Phytostabilisation of Soils
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Upson, T.M.; Andrews, S. The Genus Lavandula; The Royal Botanical Gardens: London, UK, 2004. [Google Scholar]
- Rivas-Martínez, S.; Díaz, T.E.; Fernández-González, F.; Izco, J.; Loidi, J.; Lousã, M.; Penas, A. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Itin. Geobot. 2002, 15, 5–432. [Google Scholar]
- González-Minero, F.J.; Bravo-Díaz, L.; Ayala-Gómez, A. Rosmarinus officinalis L. (Rosemary): An Ancient Plant with Uses in Personal Healthcare and Cosmetics. Cosmetics 2020, 7, 77. [Google Scholar] [CrossRef]
- Moja, S.; Guitton, Y.; Nicolè, F.; Legendre, L.; Pasquier, B.; Upson, T.; Jullien, F. Genome Size and Plastid TrnK-MatK Markers Give New Insights into the Evolutionary History of the Genus Lavandula L. Plant Biosyst. 2016, 150, 1216–1224. [Google Scholar] [CrossRef]
- Matos, F.; Miguel, M.G.; Duarte, J.; Venâncio, F.; Moiteiro, C.; Correia, A.I.D.; Figueiredo, A.C.; Barroso, J.; Pedro, L. Antioxidant Capacity of the Essential Oils from Lavandula luisieri, L. stoechas Subsp. lusitanica, L. stoechas Subsp. lusitanica x L. luisieri and L. viridis Grown in Algarve (Portugal). J. Essent. Oil Res. 2009, 21, 327–336. [Google Scholar] [CrossRef]
- Costa, P.; Gonçalves, S.; Valentão, P.; Andrade, P.B.; Almeida, C.; Nogueira, J.M.F.; Romano, A. Metabolic Profile and Biological Activities of Lavandula pedunculata Subsp. lusitanica (Chaytor) Franco: Studies on the Essential Oil and Polar Extracts. Food Chem. 2013, 141, 2501–2506. [Google Scholar] [CrossRef]
- Pereira, F.; Baptista, R.; Ladeiras, D.; Madureira, A.M.; Teixeira, G.; Rosado, C.; Fernandes, A.S.; Ascensão, L.; Silva, C.O.; Reis, C.P.; et al. Production and Characterization of Nanoparticles Containing Methanol Extracts of Portuguese Lavenders. Measurement 2015, 74, 170–177. [Google Scholar] [CrossRef]
- Lopes, C.L.; Pereira, E.; Soković, M.; Carvalho, A.M.; Barata, A.M.; Lopes, V.; Rocha, F.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Phenolic Composition and Bioactivity of Lavandula pedunculata (Mill.) Cav. Samples from Different Geographical Origin. Molecules 2018, 23, 1037. [Google Scholar] [CrossRef] [Green Version]
- Lesage-Meessen, L.; Bou, M.; Sigoillot, J.-C.; Faulds, C.B.; Lomascolo, A. Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 3375–3385. [Google Scholar] [CrossRef]
- Morales, R. Flora Iberica. In Lavandula; Real Jardín Botánico CSIC: Madrid, Spain, 2010. [Google Scholar]
- Lopes, V.R.; Rocha, F.; Gaspar, C.; Barata, A.M. Contribution to Ex Situ Conservation of Wild Lavandula Populations in Portugal. In Proceedings of the MESMAP-2, Antalya, Turkey, 22–25 April 2015. Abstract Book. [Google Scholar]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Guitton, Y.; Nicolè, F.; Jullien, F.; Caissard, J.C.; Saint-Marcoux, D.; Legendre, L.; Pasquier, B.; Moja, S. A Comparative Study of Terpene Composition in Different Clades of the Genus Lavandula. Bot. Lett. 2018, 165, 494–505. [Google Scholar] [CrossRef]
- Lavoine-Hanneguelle, S.; Casabianca, H. New Compounds from the Essential Oil and Absolute of Lavandula luisieri L. J. Essent. Oil Res. 2004, 16, 445–448. [Google Scholar] [CrossRef]
- Baldovini, N.; Lavoine-Hanneguelle, S.; Ferrando, G.; Dusart, G.; Lizzani-Cuvelier, L. Necrodane Monoterpenoids from Lavandula luisieri. Phytochemistry 2005, 66, 1651–1655. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential Oils of Lavandula Genus: A Systematic Review of Their Chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Novais, M.H.; Santos, I.; Mendes, S.; Pinto-Gomes, C. Studies on Pharmaceutical Ethnobotany in Arrabida Natural Park (Portugal). J. Ethnopharmacol. 2004, 93, 183–195. [Google Scholar] [CrossRef]
- Neves, J.M.; Matos, C.; Moutinho, C.; Queiroz, G.; Gomes, L.R. Ethnopharmacological Notes about Ancient Uses of Medicinal Plants in Trás-Os-Montes (Northern of Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar] [CrossRef]
- Domingues, J.; Delgado, F.; Gonçalves, J.C.; Santos Pintado, C. Essential Oils of Lavandula stoechas Subsp. luisieri as Antifungal Agent against Fungi from Strawberry Tree Fruit. J. Pharm. Pharmacol. 2021, 9, 98–106. [Google Scholar] [CrossRef]
- Arantes, S.; Candeias, F.; Lopes, O.; Lima, M.; Pereira, M.; Tinoco, T.; Cruz-Morais, J.; Martins, M.R. Pharmacological and Toxicological Studies of Essential Oil of Lavandula stoechas Subsp. luisieri. Planta Med. 2016, 82, 1266–1273. [Google Scholar] [CrossRef]
- Nunes, R.; Pasko, P.; Tyszka-Czochara, M.; Szewczyk, A.; Szlosarczyk, M.; Carvalho, I.S. Antibacterial, Antioxidant and Anti-Proliferative Properties and Zinc Content of Five South Portugal Herbs. Pharm. Biol. 2017, 55, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, S.B.; Akram, M.; Muhammad Asif, H.; Qayyum, I.; Hashmi, A.M.; Munir, N.; Khan, F.S.; Riaz, M.; Ahmad, S. Antihyperglycemic Activity of Hydroalcoholic Extracts of Selective Medicinal Plants Curcuma longa, Lavandula stoechas, Aegle marmelos, and Glycyrrhiza glabra and Their Polyherbal Preparation in Alloxan-Induced Diabetic Mice. Dose Response 2019, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Selmi, S.; Jallouli, M.; Gharbi, N.; Marzouki, L. Hepatoprotective and Renoprotective Effects of Lavender (Lavandula stoechas L.) Essential Oils Against Malathion-Induced Oxidative Stress in Young Male Mice. J. Med. Food 2015, 18, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Council of Europe. European Pharmacopoeia; Council of Europe: Strasbourg, France, 2007. [Google Scholar]
- Julio, L.F.; Martín, L.; Muñoz, R.; Mainar, A.M.; Urieta, J.S.; Sanz, J.; Burillo, J.; González-Coloma, A. Comparative Chemistry and Insect Antifeedant Effects of Conventional (Clevenger and Soxhlet) and Supercritical Extracts (CO2) of Two Lavandula luisieri Populations. Ind. Crops Prod. 2014, 58, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Masi, M.; Pannacci, E.; Santoro, E.; Zermane, N.; Superchi, S.; Evidente, A. Stoechanones A and B, Phytotoxic Copaane Sesquiterpenoids Isolated from Lavandula stoechas with Potential Herbicidal Activity against Amaranthus retroflexus. J. Nat. Prod. 2020, 83, 1658–1665. [Google Scholar] [CrossRef]
- Buckle, J. Basic Plant Taxonomy, Basic Essential Oil Chemistry, Extraction, Biosynthesis, and Analysis. In Clinical Aromatherapy; Barlow, J., Ed.; Churchill Livingstone: St. Louis, MI, USA, 2015; pp. 37–72. [Google Scholar]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Coelho, J.P.; Cristino, A.F.; Matos, P.G.; Rauter, A.P.; Nobre, B.P.; Mendes, R.L.; Barroso, J.G.; Mainar, A.; Urieta, J.S.; Fareleira, J.M.N.A.; et al. Extraction of Volatile Oil from Aromatic Plants with Supercritical Carbon Dioxide: Experiments and Modeling. Molecules 2012, 17, 10550–10573. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Grosso, C.; Gonçalves, S.; Andrade, P.B.; Valentão, P.; Gabriela Bernardo-Gil, M.; Romano, A. Supercritical Fluid Extraction and Hydrodistillation for the Recovery of Bioactive Compounds from Lavandula viridis L’Hér. Food Chem. 2012, 135, 112–121. [Google Scholar] [CrossRef]
- McGarvey, D.J.; Croteau, R. Terpenoid Metabolism. Plant Cell 1995, 7, 1015–1026. [Google Scholar]
- Muhlemann, J.K.; Klempien, A.; Dudareva, N. Floral Volatiles: From Biosynthesis to Function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef]
- Flügge, U.I.; Gao, W. Transport of Isoprenoid Intermediates across Chloroplast Envelope Membranes. Plant Biol. 2005, 7, 91–97. [Google Scholar] [CrossRef]
- Mahmoud, S.S.; Croteau, R.B. Strategies for Transgenic Manipulation of Monoterpene Biosynthesis in Plants. Trends Plant Sci. 2002, 7, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Herraiz-Peñalver, D.; Cases, M.Á.; Varela, F.; Navarrete, P.; Sánchez-Vioque, R.; Usano-Alemany, J. Chemical Characterization of Lavandula latifolia Medik. Essential Oil from Spanish Wild Populations. Biochem. Syst. Ecol. 2013, 46, 59–68. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula luisieri Essential Oil as a Source of Antifungal Drugs. Food Chem. 2012, 135, 1505–1510. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Trindade, H. Review on Essential Oil, Extracts Composition, Molecular and Phytochemical Properties of Thymus Species in Iran. Ind Crops Prod. 2019, 134, 89–99. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Dinis, A.M.; Canhoto, J.M.; Salgueiro, L.R. Chemical Composition and Antifungal Activity of the Essential Oils of Lavandula pedunculata (Miller) Cav. Chem. Biodivers. 2009, 6, 1283–1292. [Google Scholar] [CrossRef]
- Zuzarte, M.R.; Dinis, A.M.; Cavaleiro, C.; Salgueiro, L.R.; Canhoto, J.M. Trichomes, Essential Oils and In Vitro Propagation of Lavandula Pedunculata (Lamiaceae). Ind. Crops Prod. 2010, 32, 580–587. [Google Scholar] [CrossRef]
- Angioni, A.; Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical Composition, Seasonal Variability, and Antifungal Activity of Lavandula stoechas L. ssp. stoechas Essential Oils from Stem/Leaves and Flowers. J. Agric. Food Chem. 2006, 54, 4364–4370. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Potortí, A.G.; Fede, M.R.; Virga, G.; Leone, R.; D’Anna, E.; et al. Agronomical Evaluation of Sicilian Biotypes of Lavandula stoechas L. Spp. stoechas and Analysis of the Essential Oils. J. Essent. Oil Res. 2015, 27, 115–124. [Google Scholar] [CrossRef]
- Zuzarte, M.; Dinis, A.M.; Cavaleiro, C.; Canhoto, J.; Salgueiro, L. Trichomes Morphology and Essential Oils Characterization of Field-Growing and In Vitro Propagated Plants of Lavandula pedunculata. Microsc. Microanal. 2008, 14 (Suppl. 3), 148–149. [Google Scholar] [CrossRef] [Green Version]
- Soro, N.K.; Majdouli, K.; Khabbal, Y.; Zair, T. Chemical Composition and Antibacterial Activity of Lavandula Species L. dentata L., L. pedunculata Mill and Lavandula abrialis Essential Oils from Morocco against Food-Borne and Nosocomial Pathogens. Int. J. Innov. Appl. Stud. 2014, 7, 774–781. [Google Scholar]
- Bouazama, S.; Harhar, H.J.C.; Desjobert, J.M.; Talbaoui, A.; Tabyaoui, M. Chemical Composition and Antibacterial Activity of the Essential Oils of L. pedunculata and L. dentata. J. Mater. Environ. Sci. 2017, 8, 2154–2160. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Dadalioǧlu, I.; Evrendilek, G.A. Chemical Compositions and Antibacterial Effects of Essential Oils of Turkish Oregano (Origanum minutiflorum), Bay Laurel (Laurus nobilis), Spanish Lavender (Lavandula stoechas L.), and Fennel (Foeniculum vulgare) on Common Foodborne Pathogens. J. Agric. Food Chem. 2004, 52, 8255–8260. [Google Scholar] [CrossRef]
- Bouzouita, N.; Kachouri, F.; Hamdi, M.; Chaabouni, M.M.; Aissa, R.B.; Zgoulli, S.; Thonart, P.; Carlier, A.; Marlier, M.; Lognay, G.C. Volatile Constituents and Antimicrobial Activity of Lavandula stoechas L. Oil from Tunisia. J. Essent. Oil Res. 2005, 17, 584–586. [Google Scholar] [CrossRef]
- Giray, E.S.; Kırıcı, S.; Kaya, D.A.; Türk, M.; Sönmez, Ö.; Inan, M. Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavandula stoechas. Talanta 2008, 74, 930–935. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Safaralizadeh, M.; Pourmirza, A. Fumigant toxicity of Lavandula stoechas L. oil against three insect pests attacking stored products. J. Plant. Prot. Res. 2010, 50, 56–60. [Google Scholar] [CrossRef]
- Hassiotis, C.N. Chemical Compounds and Essential Oil Release through Decomposition Process from Lavandula stoechas in Mediterranean Region. Biochem. Syst. Ecol. 2010, 38, 493–501. [Google Scholar] [CrossRef]
- Benabdelkader, T.; Zitouni, A.; Guitton, Y.; Jullien, F.; Maitre, D.; Casabianca, H.; Legendre, L.; Kameli, A. Essential Oils from Wild Populations of Algerian Lavandula stoechas L.: Composition, Chemical Variability, and In Vitro Biological Properties. Chem. Biodivers. 2011, 8, 937–953. [Google Scholar] [CrossRef]
- Msaada, K.; Salem, N.; Tammar, S.; Hammami, M.; Saharkhiz, M.J.; Debiche, N.; Limam, F.; Marzouk, B. Essential Oil Composition of Lavandula dentata, L. stoechas and L. multifida Cultivated in Tunisia. J. Essent. Oil Bear. Plants 2012, 15, 1030–1039. [Google Scholar] [CrossRef]
- Sebai, H.; Selmi, S.; Rtibi, K.; Souli, A.; Gharbi, N.; Sakly, M. Lavender (Lavandula stoechas L.) Essential Oils Attenuate Hyperglycemia and Protect against Oxidative Stress in Alloxan-Induced Diabetic Rats. Lipids Health Dis. 2013, 12, 189. [Google Scholar] [CrossRef] [Green Version]
- Badreddine, B.S.; Olfa, E.; Samir, D.; Hnia, C.; Lahbib, B.J.M. Chemical Composition of Rosmarinus and Lavandula Essential Oils and Their Insecticidal Effects on Orgyia trigotephras (Lepidoptera, Lymantriidae). Asian Pac. J. Trop. Med. 2015, 8, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, A.; Ortiz-Ruiz, V.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula stoechas Essential Oil from Spain: Aromatic Profile Determined by Gas Chromatography-Mass Spectrometry, Antioxidant and Lipoxygenase Inhibitory Bioactivities. Ind. Crops Prod. 2015, 73, 16–27. [Google Scholar] [CrossRef]
- Asghari, J.; Sadani, S.; Ghaemi, E.; Mazaheri Tehrani, M. Investigation of Composition and Antimicrobial Properties of Lavandula stoechas Essential Oil Using Disk Diffusion and Broth Microdilution. Med. Lab. J. 2016, 10, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Bouyahya, A.; Et-Touys, A.; Abrini, J.; Talbaoui, A.; Fellah, H.; Bakri, Y.; Dakka, N. Lavandula stoechas Essential Oil from Morocco as Novel Source of Antileishmanial, Antibacterial and Antioxidant Activities. Biocatal. Agric. Biotechnol. 2017, 12, 179–184. [Google Scholar] [CrossRef]
- Özcan, M.M.; Starovic, M.; Aleksic, G.; Figueredo, G.; Juhaimi, F.A.; Chalchat, J.-C. Chemical Composition and Antifungal Activity of Lavender (Lavandula stoechas) Oil. Nat. Prod. Commun. 2018, 13, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Lavandula stoechas Essential Oils Protect against Malathion-Induces Reproductive Disruptions in Male Mice. Lipids Health Dis. 2018, 17, 253. [Google Scholar] [CrossRef] [Green Version]
- Karabagias, I.K.; Karabagias, V.K.; Riganakos, K.A. Physico-Chemical Parameters, Phenolic Profile, In Vitro Antioxidant Activity and Volatile Compounds of Ladastacho (Lavandula stoechas) from the Region of Saidona. Antioxidants 2019, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Boukhatem, M.N.; Sudha, T.; Darwish, N.H.E.; Chader, H.; Belkadi, A.; Rajabi, M.; Houche, A.; Benkebailli, F.; Oudjida, F.; Mousa, S.A. A New Eucalyptol-Rich Lavender (Lavandula stoechas L.) Essential Oil: Emerging Potential for Therapy against Inflammation and Cancer. Molecules 2020, 25, 3671. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Benzarti, A.; Marongiu, B.; Maxia, A.; Piras, A.; Salgueiro, L. Antifungal and Anti-Inflammatory Potential of Lavandula stoechas and Thymus Herba-Barona Essential Oils. Ind. Crops Prod. 2013, 44, 97–103. [Google Scholar] [CrossRef]
- Roller, S.; Ernest, N.; Buckle, J. The Antimicrobial Activity of High-Necrodane and Other Lavender Oils on Methicillin-Sensitive and -Resistant Staphylococcus aureus (MSSA and MRSA). J. Altern. Complement. Med. 2009, 15, 275–279. [Google Scholar] [CrossRef]
- Zrira, S.; Benjilali, B. The Constituents of the Oils of Lavandula stoechas L. ssp. atlantica Br.-Bl. and L. stoechas ssp. stoechas from Morocco. J. Essent. Oil Res. 2003, 15, 68–69. [Google Scholar] [CrossRef]
- Dob, T.; Dahmane, D.; Agli, M.; Chelghoum, C. Essential Oil Composition of Lavandula stoechas from Algeria. Pharm. Biol. 2006, 44, 60–64. [Google Scholar] [CrossRef]
- Mohammedi, Z.; Atik, F. Pouvoir Antifongique et Antioxydant de l’huile Essentielle de Lavandula stoechas L. Rev. Nat. Technol. 2012, 4, 34–39. [Google Scholar]
- Ouali Lalami, E.A.; Zoubi, E.Y. Chemical Constituents and Larvicidal Activity of Essential Oil of Lavandula stoechas (Lamiaceae) From Morocco Against the Malaria Vector Anopheles labranchiae (Diptera: Culicidae). Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 505–511. [Google Scholar]
- Hassiotis, C.N.; Orfanoudakis, M. The Impact of Lavandula stoechas L. Degradation on Arbuscular Mycorrhizal Fungi, in a Mediterranean Ecosystem. Appl. Soil Ecol. 2018, 126, 182–188. [Google Scholar] [CrossRef]
- Karan, T. Metabolic Profile and Biological Activities of Lavandula stoechas L. Cell. Mol. Biol. 2018, 64, 1–7. [Google Scholar] [CrossRef]
- Sanz, J.; Soria, A.C.; García-Vallejo, M.C. Analysis of Volatile Components of Lavandula luisieri L. by Direct Thermal Desorption-Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2004, 1024, 139–146. [Google Scholar] [CrossRef]
- González-Coloma, A.; Martín-Benito, D.; Mohamed, N.; García-Vallejo, M.C.; Soria, A.C. Antifeedant Effects and Chemical Composition of Essential Oils from Different Populations of Lavandula luisieri L. Biochem. Syst. Ecol. 2006, 34, 609–616. [Google Scholar] [CrossRef]
- González-Coloma, A.; Delgado, F.; Rodilla, J.M.; Silva, L.; Sanz, J.; Burillo, J. Chemical and Biological Profiles of Lavandula luisieri Essential Oils from Western Iberia Peninsula Populations. Biochem. Syst. Ecol. 2011, 39, 1–8. [Google Scholar] [CrossRef]
- Videira, R.; Castanheira, P.; Grãos, M.; Salgueiro, L.; Faro, C.; Cavaleiro, C. A Necrodane Monoterpenoid from Lavandula luisieri Essential Oil as a Cell-Permeable Inhibitor of BACE-1, the β-Secretase in Alzheimer’s Disease. Flavour Fragr. J. 2013, 28, 380–388. [Google Scholar] [CrossRef]
- Rufino, A.T.; Ferreira, I.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Differential Effects of the Essential Oils of Lavandula luisieri and Eryngium duriaei Subsp. juresianum in Cell Models of Two Chronic Inflammatory Diseases. Pharm. Biol. 2015, 53, 1220–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pombal, S.; Rodrigues, C.F.; Araújo, J.P.; Rocha, P.M.; Rodilla, J.M.; Diez, D.; Granja, Á.P.; Gomes, A.C.; Silva, L.A. Antibacterial and Antioxidant Activity of Portuguese Lavandula luisieri (Rozeira) Rivas-Martinez and Its Relation with Their Chemical Composition. SpringerPlus 2016, 5, 1711. [Google Scholar] [CrossRef] [Green Version]
- Dias, N.; Dias, M.C.; Cavaleiro, C.; Sousa, M.C.; Lima, N.; Machado, M. Oxygenated Monoterpenes-Rich Volatile Oils as Potential Antifungal Agents for Dermatophytes. Nat. Prod. Res. 2017, 31, 460–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirmizibekmez, H.; Demirci, B.; Yeşilada, E.; Başer, K.H.C.; Demirci, F. Chemical Composition and Antimicrobial Activity of the Essential Oils of Lavandula stoechas L. ssp. stoechas Growing Wild in Turkey. Nat. Prod. Commun. 2009, 4, 1001–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzakou, O.; Bazos, I.; Yannitsaros, A. Essential Oil Composition and Enantiomeric Distribution of Fenchone and Camphor of Lavandula cariensis and L. stoechas Subsp. stoechas Grown in Greece. Nat. Prod. Commun. 2009, 4, 1103–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Bella, S.; Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Potortì, A.G.; Fede, M.R.; Virga, G.; Leone, R.; et al. Composition and Variability of the Essential Oil of the Flowers of Lavandula stoechas from Various Geographical Sources. Nat. Prod. Commun. 2015, 10, 2001–2004. [Google Scholar] [CrossRef] [Green Version]
- Gören, A.C.; Topçu, G.; Bilsel, G.; Bilsel, M.; Aydoǧmuş, Z.; Pezzuto, J.M. The Chemical Constituents and Biological Activity of Essential Oil of Lavandula stoechas ssp. stoechas. Z. Naturforsch. Sect. C J. Biosci. 2002, 57, 797–800. [Google Scholar] [CrossRef]
- Messaoud, C.; Chograni, H.; Boussaid, M. Chemical Composition and Antioxidant Activities of Essential Oils and Methanol Extracts of Three Wild Lavandula L. Species. Nat. Prod. Res. 2012, 26, 1976–1984. [Google Scholar] [CrossRef]
- Karaca, N.; Demirci, B.; Demirci, F. Evaluation of Lavandula stoechas L. Subsp. stoechas L., Mentha spicata L. Subsp. spicata L. Essential Oils and Their Main Components against Sinusitis Pathogens. Z. Naturforsch. Sect. C J. Biosci. 2018, 73, 353–360. [Google Scholar] [CrossRef]
- Küçük, S.; Altıntaş, A.; Demirci, B.; Koca, F.; Başer, K.H.C. Morphological, Anatomical and Phytochemical Characterizations of Lavandula stoechas L. Subsp. stoechas Growing in Turkey. Nat. Volatiles Essent. Oils 2019, 6, 9–19. [Google Scholar]
- Gonçalves, S.; Serra, H.; Nogueira, J.M.F.; Almeida, R.; Custódio, L.; Romano, A. Headspace-SPME of In Vitro Shoot-Cultures and Micropropagated Plants of Lavandula viridis. Biol. Plant. 2008, 52, 133–136. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Canhoto, J.; Vale-Silva, L.; Silva, M.J.; Pinto, E.; Salgueiro, L. Chemical Composition and Antifungal Activity of the Essential Oils of Lavandula viridis L’Her. J. Med. Microbiol. 2011, 60, 612–618. [Google Scholar] [CrossRef] [Green Version]
- Cherrat, L.; Espina, L.; Bakkali, M.; Pagán, R.; Laglaoui, A. Chemical Composition, Antioxidant and Antimicrobial Properties of Mentha pulegium, Lavandula stoechas and Satureja calamintha Scheele Essential Oils and an Evaluation of Their Bactericidal Effect in Combined Processes. Innov. Food Sci. Emerg. Technol. 2014, 22, 221–229. [Google Scholar] [CrossRef]
- García Vallejo, M.I. Aceites Esenciales De Las Lavandulas Ibericas Ensayo Ide La Quimiotaxonomia. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 1992; p. 341. [Google Scholar]
- Eisner, T.; Meinwald, J. Defensive Spray Mechanism of A Silphid Beetle (Necrodes surinamensis). Psyche 1982, 89, 357–367. [Google Scholar] [CrossRef]
- Kashima, Y.; Miyazawa, M. Chemical Composition and Aroma Evaluation of Essential Oils from Evolvulus alsinoides L. Chem. Biodivers. 2014, 11, 396–407. [Google Scholar] [CrossRef]
- Figadère, B.A.; McElfresh, J.S.; Borchardt, D.; Daane, K.M.; Bentley, W.; Millar, J.G. Trans-α-Necrodyl Isobutyrate, the Sex Pheromone of the Grape Mealybug, Pseudococcus Maritimus. Tetrahedron Lett. 2007, 48, 8434–8437. [Google Scholar] [CrossRef]
- Vacas, S.; Navarro, I.; Marzo, J.; Navarro-Llopis, V.; Primo, J. Sex Pheromone of the Invasive Mealybug Citrus Pest, Delottococcus aberiae (Hemiptera: Pseudococcidae). A New Monoterpenoid with a Necrodane Skeleton. J. Agric. Food Chem. 2019, 67, 9441–9449. [Google Scholar] [CrossRef] [PubMed]
- Guitton, Y.; Nicolè, F.; Moja, S.; Benabdelkader, T.; Valot, N.; Legrand, S.; Jullien, F.; Legendre, L. Lavender Inflorescence: A Model to Study Regulation of Terpenes Synthesis. Plant Signal. Behav. 2010, 5, 749–751. [Google Scholar] [CrossRef]
- Chen, W.; Vermaak, I.; Viljoen, A. Camphor—A Fumigant during the Black Death and a Coveted Fragrant Wood in Ancient Egypt and Babylon—A Review. Molecules 2013, 18, 5434–5454. [Google Scholar] [CrossRef] [Green Version]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Camphor (Cinnamomum camphora), a Traditional Remedy with the History of Treating Several Diseases. Int. J. Case Rep. Images 2013, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Kaegi, E.; Schneider, M. Unconventional Therapies for Cancer: 6. 714-X. CMAJ 1998, 158, 1621–1624. [Google Scholar]
- Weiss, L.; Barak, V.; Raz, I.; Or, R.; Slavin, S.; Ginsburg, I. Herbal Flavonoids Inhibit the Development of Autoimmune Diabetes in NOD Mice: Proposed Mechanisms of Action in the Example of PADMA 28. Altern. Med. Stud. 2010, 1, e1. [Google Scholar] [CrossRef]
- Juergens, L.J.; Worth, H.; Juergens, U.R. New Perspectives for Mucolytic, Anti-Inflammatory and Adjunctive Therapy with 1,8-Cineole in COPD and Asthma: Review on the New Therapeutic Approach. Adv. Ther. 2020, 37, 1737–1753. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1,8-Cineole: A Review of Source, Biological Activities, and Application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.D.; Kaur, I. Eucalyptol (1,8 Cineole) from Eucalyptus Essential Oil a Potential Inhibitor of COVID 19 Corona Virus Infection by Molecular Docking Studies. Preprints 2020, 2020030455. [Google Scholar] [CrossRef] [Green Version]
- Loru, D.; Bermúdez, M.A.; Sanz, M.E. Structure of Fenchone by Broadband Rotational Spectroscopy. J. Chem. Phys. 2016, 145, 074311. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Kefeli, V.I.; Kalevitch, M.V.; Borsari, B. Phenolic Cycle in Plants and Environment. J. Cell Mol. Biol. 2003, 2, 13–18. [Google Scholar]
- Ansari, M.; Anurag, A.; Fatima, Z.; Hameed, S. Natural Phenolic Compounds: A Potential Antifungal Agent. Microb. Pathog. Strateg. Combat. Sci. Technol. Educ. 2013, 1, 1189–1195. [Google Scholar]
- Ceylan, Y.; Usta, K.; Usta, A.; Maltas, E.; Yildiz, S. Evaluation of Antioxidant Activity, Phytochemicals and ESR Analysis of Lavandula stoechas. Acta Phys. Pol. A 2015, 128, 483–487. [Google Scholar] [CrossRef]
- Algieri, F.; Rodriguez-Nogales, A.; Vezza, T.; Garrido-Mesa, J.; Garrido-Mesa, N.; Utrilla, M.P.; González-Tejero, M.R.; Casares-Porcel, M.; Molero-Mesa, J.; Del Mar Contreras, M.; et al. Anti-Inflammatory Activity of Hydroalcoholic Extracts of Lavandula dentata L. and Lavandula stoechas L. J. Ethnopharmacol. 2016, 190, 142–158. [Google Scholar] [CrossRef]
- Contreras, M.d.M.; Algieri, F.; Rodriguez-Nogales, A.; Gálvez, J.; Segura-Carretero, A. Phytochemical Profiling of Anti-Inflammatory Lavandula Extracts via RP-HPLC-DAD-QTOF-MS and -MS/MS: Assessment of Their Qualitative and Quantitative Differences. Electrophoresis 2018, 39, 1284–1293. [Google Scholar] [CrossRef]
- Celep, E.; Akyüz, S.; Yesilada, E. Assessment of Potential Bioavailability of Major Phenolic Compounds In Lavandula stoechas L. ssp. stoechas. Ind. Crops Prod. 2018, 118, 111–117. [Google Scholar] [CrossRef]
- Costa, P.; Gonçalves, S.; Andrade, P.B.; Valentão, P.; Romano, A. Inhibitory Effect of Lavandula viridis on Fe2+-Induced Lipid Peroxidation, Antioxidant and Anti-Cholinesterase Properties. Food Chem. 2011, 126, 1779–1786. [Google Scholar] [CrossRef]
- Costa, P.; Gonçalves, S.; Valentão, P.; Andrade, P.B.; Romano, A. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food Chem. Toxicol. 2013, 57, 69–74. [Google Scholar] [CrossRef]
- Croteau, R.; Kutchan, T.; Lewis, N. Natural Products (Secondary Metabolites). In Biochemistry and Molecular Biology of Plants; American Society of Plant Physiologists: Rock Ville, MD, USA, 2000; pp. 1311–1314. [Google Scholar]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.; Barros, L.; Ferreira, I.C. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds: Health Benefits and Potential Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 33–50. [Google Scholar]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and Phenolic Acids: Role and Biochemical Activity in Plants and Human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Shekarchi, M.; Hajimehdipoor, H.; Saeidnia, S.; Gohari, A.R.; Hamedani, M.P. Comparative Study of Rosmarinic Acid Content in Some Plants of Labiatae Family. Pharmacogn. Mag. 2012, 8, 37–41. [Google Scholar]
- Sik, B.; Kapcsándi, V.; Székelyhidi, R.; Hanczné, E.L.; Ajtony, Z. Recent Advances in the Analysis of Rosmarinic Acid From Herbs in the Lamiaceae Family. Nat. Prod. Commun. 2019, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Crozier, A.; Clifford, M.N.; Ashihara, H. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Rasul, A.; Millimouno, F.M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: A Novel Natural Compound with Versatile Pharmacological and Biological Activities. Biomed Res. Int. 2013, 2013, 379850. [Google Scholar] [CrossRef]
- Du, J.-R.; Long, F.-Y.; Chen, C. Research Progress on Natural Triterpenoid Saponins in the Chemoprevention and Chemotherapy of Cancer. Enzymes 2014, 36, 95–130. [Google Scholar]
- Zhang, X.; Zhang, S.; Yang, Y.; Wang, D.; Gao, H. Natural Barrigenol–like Triterpenoids: A Comprehensive Review of Their Contributions to Medicinal Chemistry. Phytochemistry 2019, 161, 41–74. [Google Scholar] [CrossRef]
- Csuk, R.; Siewert, B.; Dressel, C.; Schäfer, R. Tormentic Acid Derivatives: Synthesis and Apoptotic Activity. Eur. J. Med. Chem. 2012, 56, 237–245. [Google Scholar] [CrossRef]
- Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update. Evid. Based Complement. Altern. Med. 2015, 2015, 620472. [Google Scholar] [CrossRef] [Green Version]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review. Oxid. Med. Cell. Longev. 2016, 2016, 9130976. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Ferreira, I.C.F.R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef]
- Gülçin, Ì.; Şat, I.G.; Beydemir, Ş.; Elmastaş, M.; Küfrevioǧlu, Ö.I. Comparison of Antioxidant Activity of Clove (Eugenia caryophylata Thunb) Buds and Lavender (Lavandula stoechas L.). Food Chem. 2004, 87, 393–400. [Google Scholar] [CrossRef]
- Baptista, R.; Madureira, A.M.; Jorge, R.; Adão, R.; Duarte, A.; Duarte, N.; Lopes, M.M.; Teixeira, G. Antioxidant and Antimycotic Activities of Two Native Lavandula Species from Portugal. Evid. Based Complement. Altern. Med. 2015, 2015, 570521. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The In Vitro Screening for Acetylcholinesterase Inhibition and Antioxidant Activity of Medicinal Plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
- Barkat, M.; Laib, I. Antioxidant activity of the essential oil from the flowers of Lavandula stoechas. J. Pharmacogn. Phytother. 2012, 4, 96–101. [Google Scholar]
- Yassine, Y.E.; Bousta, D.; Lachkar, M.; Farah, A. Antioxidant and anti-inflammatory properties of ethanolic extract of Lavandula stoechas L. from Taounate region in Morocco. Int. J. Phytopharm. 2014, 5, 21–26. [Google Scholar]
- Mushtaq, A.; Anwar, R.; Ahmad, M. Lavandula stoechas (L) a Very Potent Antioxidant Attenuates Dementia in Scopolamine Induced Memory Deficit Mice. Front. Pharmacol. 2018, 9, 1375. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Balouri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Koroch, A.R.; Rodolfo Juliani, H.; Zygadlo, J.A. Bioactivity of Essential Oils and Their Components. In Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability; Springer: Berlin/Heidelberg, Germany, 2007; pp. 87–115. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, G.; Correia, A.I.; Vasconcelos, T.; Duarte, A.; Oliveira, N.; Madureira, A.M. Lavandula stoechas Subsp. luisieri and L. pedunculata: Comparative Antibacterial Activity. J. Phyther. Pharmacol. 2012, 1, 11–15. [Google Scholar]
- Behbahani, B.A.; Shahidi, F.; Mortazavi, A. Original Article Antimicrobial Effects of Lavandula stoechas L. and Rosmarinus officinalis L. Extracts on Escherichia coli and Staphylococcus aureus. Sci. J. Microbiol. 2013, 2, 15–22. [Google Scholar]
- Ökmen, G. The Biological Activities of Lavandula stoechas L. against Food Pathogens. Int. J. Second. Metab. 2017, 4, 270–279. [Google Scholar] [CrossRef]
- Canli, K.; Yetgin, A.; Benek, A.; Bozyel, M.E.; Altuner, E.M. In Vitro Antimicrobial Activity Screening of Ethanol Extract of Lavandula stoechas and Investigation of Its Biochemical Composition. Adv. Pharmacol. Sci. 2019, 2019, 3201458. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, R.; Aghaei, S.; Salehpour, Z.; Mousavizadeh, A.; Khoramrooz, S.S.; Taheripour Sisakht, M.; Christiansen, G.; Baneshi, M.; Karimi, B.; Bardania, H. Antibacterial and Antioxidant Properties of Phyto-Synthesized Silver Nanoparticles Using Lavandula stoechas Extract. Appl. Organomet. Chem. 2020, 34, e5394. [Google Scholar] [CrossRef]
- Essid, R.; Rahali, F.Z.; Msaada, K.; Sghair, I.; Hammami, M.; Bouratbine, A.; Aoun, K.; Limam, F. Antileishmanial and Cytotoxic Potential of Essential Oils from Medicinal Plants in Northern Tunisia. Ind. Crops Prod. 2015, 77, 795–802. [Google Scholar] [CrossRef]
- Baylac, S.; Racine, P. Inhibition of Human Leukocyte Elastase by Natural Fragrant Extracts of Aromatic Plants. Int. J. Aromather. 2004, 14, 179–182. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, J.S.; Kim, H.P.; Lee, J.H.; Kang, S.S. Phenolic Constituents from the Flower Buds of Lonicera japonica and Their 5-Lipoxygenase Inhibitory Activities. Food Chem. 2010, 120, 134–139. [Google Scholar] [CrossRef]
- Vicentini, F.T.M.C.; He, T.; Shao, Y.; Fonseca, M.J.V.; Verri, W.A.; Fisher, G.J.; Xu, Y. Quercetin Inhibits UV Irradiation-Induced Inflammatory Cytokine Production in Primary Human Keratinocytes by Suppressing NF-ΚB Pathway. J. Dermatol. Sci. 2011, 61, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.-C.; Deng, J.-S.; Chiu, C.-S.; Hou, W.-C.; Huang, S.-S.; Shie, P.-H.; Huang, G.-J. Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo. Evid. Based Complement. Alternat. Med. 2012, 2012, 429320. [Google Scholar] [CrossRef] [Green Version]
- Boonyarikpunchai, W.; Sukrong, S.; Towiwat, P. Antinociceptive and Anti-Inflammatory Effects of Rosmarinic Acid Isolated from Thunbergia laurifolia Lindl. Pharmacol. Biochem. Behav. 2014, 124, 67–73. [Google Scholar] [CrossRef]
- Amira, S.; Schinella, G.; Rios, J.-L. Anti-Inflammatory, Anti-Oxidant, and Apoptotic Activities of Four Plant Species Used in Folk Medicine in the Mediterranean Basin. Pak. J. Pharm. Sci. 2012, 25, 65–72. [Google Scholar]
- Yassine, E.Z.; Dalila, B.; Mansouri Latifa, E.; Smahan, B.; Lebtar, S.; Sanae, A.; Abdellah, F. Phytochemical Screening, Anti-Inflammatory Activity and Acute Toxicity of Hydro-Ethanolic, Flavonoid, Tannin and Mucilage Extracts of Lavandula stoechas L. from Morocco. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 31–37. [Google Scholar]
- Kulabas, S.S.; Ipek, H.; Tufekci, A.R.; Arslan, S.; Demirtas, I.; Ekren, R.; Sezerman, U.; Tumer, T.B. Ameliorative Potential of Lavandula stoechas in Metabolic Syndrome via Multitarget Interactions. J. Ethnopharmacol. 2018, 223, 88–98. [Google Scholar] [CrossRef]
- Szwajgier, D. Anticholinesterase Activity of Phenolic Acids and Their Derivatives. Z. Naturforsch. Sect. C J. Biosci. 2013, 68, 125–132. [Google Scholar] [CrossRef]
- Naushad, M.; Durairajan, S.S.K.; Bera, A.K.; Senapati, S.; Li, M. Natural Compounds with Anti-BACE1 Activity as Promising Therapeutic Drugs for Treating Alzheimer’s Disease. Planta Med. 2019, 85, 1316–1325. [Google Scholar] [PubMed]
- Costa, P.; Grevenstuk, T.; Rosa da Costa, A.M.; Gonçalves, S.; Romano, A. Antioxidant and Anti-Cholinesterase Activities of Lavandula viridis L’Hér Extracts after In Vitro Gastrointestinal Digestion. Ind. Crops Prod. 2014, 55, 83–89. [Google Scholar] [CrossRef]
- Fotakis, G.; Timbrell, J.A. In Vitro Cytotoxicity Assays: Comparison of LDH, Neutral Red, MTT and Protein Assay in Hepatoma Cell Lines Following Exposure to Cadmium Chloride. Toxicol. Lett. 2006, 160, 171–177. [Google Scholar] [CrossRef]
- Gilani, A.H.; Aziz, N.; Khan, M.A.; Shaheen, F.; Jabeen, Q.; Siddiqui, B.S.; Herzig, J.W. Ethnopharmacological Evaluation of the Anticonvulsant, Sedative and Antispasmodic Activities of Lavandula stoechas L. J. Ethnopharmacol. 2000, 71, 161–167. [Google Scholar] [CrossRef]
- Shaaya, E.; Rafaeli, A. Essential Oils as Biorational Insecticides–Potency and Mode of Action. In Insecticides Design Using Advanced Technologies; Springer: Berlin/Heidelberg, Germany, 2007; pp. 249–261. [Google Scholar]
- Boulogne, I.; Petit, P.; Ozier-Lafontaine, H.; Desfontaines, L.; Loranger-Merciris, G. Insecticidal and Antifungal Chemicals Produced by Plants: A Review. Environ. Chem. Lett. 2012, 10, 325–347. [Google Scholar] [CrossRef] [Green Version]
- Bachiri, L.; Bouchelta, Y.; Bouiamrine, E.H. Valorization as Bioinsecticide of the Essential Oils of Two Indigenous Lavender Species in Morocco: Lavandula stoechas and Lavandula pedunculata. Int. J. Herb. Med. 2018, 6, 86–90. [Google Scholar]
- Julio, L.F.; Barrero, A.F.; Herrador Del Pino, M.M.; Arteaga, J.F.; Burillo, J.; Andres, M.F.; Díaz, C.E.; González-Coloma, A. Phytotoxic and Nematicidal Components of Lavandula luisieri. J. Nat. Prod. 2016, 79, 261–266. [Google Scholar] [CrossRef]
- Julio, L.F.; Díaz, C.E.; Aissani, N.; Valcarcel, F.; Burillo, J.; Olmeda, S.; González-Coloma, A. Ixodicidal Compounds from Pre-Domesticated Lavandula luisieri. Ind. Crops Prod. 2017, 110, 83–87. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Saraiva, J.A. Mutielemental Concentration and Physiological Responses of Lavandula pedunculata Growing in Soils Developed on Different Mine Wastes. Environ. Pollut. 2016, 213, 43–52. [Google Scholar] [CrossRef]
- Sierra, M.J.; Millán, R.; Esteban, E. Mercury Uptake and Distribution in Lavandula stoechas Plants Grown in Soil from Almadén Mining District (Spain). Food Chem. Toxicol. 2009, 47, 2761–2767. [Google Scholar] [CrossRef] [PubMed]
RI Lit * | L. pedunculataLP | L. stoechas LS | L. stoechas subsp. luisieri LSL | L. stoechas subsp. stoechas LSS | L. viridis LV | |
---|---|---|---|---|---|---|
Monoterpene hydrocarbons | ||||||
Tricyclene | 923 | 0.3–0.7 | 0.1–0.7 | - | 0.1–0.2 | 0.1–0.7 |
α-Pinene | 936 | 0.1–10.7 | 0.06–23.2 | 0.2–4.3 | 0.2–6.1 | 0.3–9 |
α -Fenchene | 949 | - | - | - | 1.3–2.2 | - |
Camphene | 950 | 0.7–7.1 | 0.1–11.4 | 0.1–0.8 | 0.2–2.8 | 0.1–7.7 |
Sabinene | 973 | 0.1–0.6 | 0.02–0.1 | 0.1–0.2 | 0.1–0.3 | 0.2–0.3 |
β-Pinene | 978 | 0.1–9 | 0.03–13.8 | 0.1–4.5 | 0.1–3.2 | 0.1–1.2 |
Myrcene | 989 | 0.1–0.4 | 0.1–0.5 | 0.1–0.2 | 0.2–1.7 | 0.1 |
δ-3-Carene | 1003 | 4.1 | 0.1 | 0.1–1.8 | 0.3 | - |
p-Cymene | 1024 | 0.2–0.5 | 0.1–6.5 | 0.1–4.5 | 0.02–1.4 | 0.3–0.5 |
Limonene | 1030 | 0.8–1.5 | 0.03–2.7 | 0.1–0.8 | 0.04–1.3 | 0.1 |
cis-β-Ocimene/ trans- β-Ocimene | 1037/ 1048 | 0.1–0.8 | 0.1–2.6 | 0.1–1.0 | - | 0.2 |
Oxygenated monoterpenes | ||||||
cis-α-Necrodol | - | - | - | 1.3–3.3 | - | - |
1,8-Cineole | 1031 | 0.8–34.3 | 0.04–61.4 | 1.3–20.6 | 0.2–17.8 | 21.3–74 |
cis-Linalool oxide | 1075 | 0.3–0.8 | 0.1–1.1 | 0.3–1.6 | 0.03–0.05 | 0.4–1.3 |
Fenchone | 1088 | 0.6–48.7 | 0.03–68 | 0.1–22 | 21–71 | - |
Linalool | 1099 | 0.5–5.2 | 0.3–49.9 | 0.2–6.2 | 0.02–0.4 | 1.8–3.8 |
Thujone | 1114 | - | 8.9–32.1 | - | - | - |
α -Fenchol | 1115 | - | 2.8 | - | - | - |
α-Campholenal | 1124 | 0.1–0.4 | 0.4 | 0.1–0.2 | 0.02–0.1 | 0.4–0.8 |
trans-α-Necrodol | 1130 | - | - | 1.3–13 | - | - |
trans-Pinocarveol | 1140 | - | 1.6–2.1 | 0.2–1.02 | 0.01–0.2 | 0.6 |
Camphor | 1143 | 3.6–53.1 | 0.04–71.9 | 1.1–74.4 | 7–46.7 | 2.9–31.6 |
Menthone | 1150 | - | 9.0 | - | 12.6 | - |
Borneol | 1166 | 0.3–3.4 | 0.4–4.9 | - | 0.2–1.7 | 4.6 |
p-Mentha-1,5-dien-8-ol | 1167 | - | 0.3–5.0 | 0.2–2.3 | 1.2 | - |
Lavandulol | 1168 | - | 0.2–3.7 | 0.3–11.7 | - | - |
trans-linalool oxide | 1171 | 0.2–0.6 | 0.01–0.9 | 0.1–3.2 | 0.1–0.4 | 0.4–1.8 |
Menthol | 1177 | - | - | - | 18.1 | - |
Terpinene-4-ol | 1177 | 0.5–1.7 | 5.1 | 0.5 | 0.5 | - |
α-Terpineol | 1189 | 0.1–0.9 | 0.4–13.1 | 0.1–0.4 | 0.1–0.5 | 0.5 |
Myrtenal | 1192 | 0.2–2.4 | 0.02–2.4 | 0.2–0.4 | 0.02–1.4 | 0.3–1.2 |
Myrtenol | 1194 | - | 0.02–2.1 | - | 0.3–2.8 | - |
Verbenone | 1206 | 0.2–1.5 | 0.1–2.7 | 0.1–2 | 0.2–0.5 | 0.3–3.5 |
Fenchyl acetate | 1219 | 0.1–0.5 | 3.9 | - | 0.5–1.1 | - |
Eucarvone | 1222 | - | - | 1.9 | - | - |
Pulegone | 1234 | - | - | - | 40.4 | - |
Linalyl acetate | 1253 | - | 64.3 | - | - | - |
trans-α-Necrodyl acetate | 1265 | - | - | 1.8–48.2 | - | - |
cis-α-Necrodyl acetate | 1281 | - | - | 1.2–5.9 | - | - |
Bornyl acetate | 1283 | 0.1–3.5 | 0.08–6.2 | 0.5–1.6 | 0.1–6.2 | 0.2 |
Lavandulyl acetate | 1289 | 0.1–3.2 | 0.02–5.7 | 0.8–7.6 | 0.2–5.6 | - |
Thymol | 1290 | - | 0.1–3.1 | - | - | - |
Carvacrol | 1300 | 1.2 | 0.02–3.4 | - | 0.1–0.6 | 0.2 |
Myrtenyl acetate | 1328 | - | 1.2–11.7 | 0.6–2.7 | 0.6–9.5 | 0.2 |
Neryl acetate | 1362 | - | 0.1–1.1 | 0.6–1.1 | - | 0.02 |
Lyratyl acetate | 1387 | - | - | 2.4–3.5 | - | - |
Sesquiterpene hydrocarbons | ||||||
α -Gurjunene | 1408 | - | - | 1.4 | - | - |
Caryophyllene | 1420 | 0.2 | 0.1–5 | 0.6 | 0.04–0.1 | - |
γ-Selinene | 1470 | - | 2.5 | - | - | - |
β-Selinene | 1486 | 0.5 | 0.2–1.4 | 0.3–12.8 | 0.1–0.7 | 0.3 |
α-Selinene | 1493 | - | - | 1 | 0.1–0.4 | - |
γ-Cadinene | 1513 | 0.1–0.9 | 0.1–5.3 | 0.7–0.8 | - | - |
δ-Cadinene | 1523 | - | 0.6–0.7 | 0.5–1.5 | 0.8–2.2 | - |
Selina-3,7(11)-diene | 1540 | - | - | 1.4 | - | - |
Ledol | 1566 | - | 1.96 | 0.9–2.9 | 0.02–0.7 | - |
Viridiflorol | 1590 | 0.2 | 0.1–7.4 | 0.2–12.1 | 0.9–4.3 | 0.2 |
Oxygenated sesquiterpenes | ||||||
epi-Cubebol | 1488 | 0.1 | - | 0.2–0.6 | 0.2–1.1 | - |
Caryophyllene oxide | 1580 | 0.1–0.6 | 0.2–2.8 | 0.5–1.3 | 0.1–1.1 | 1.2 |
1,10-di-epi-cubenol | 1612 | 1.2–7.7 | - | - | - | - |
T-Muurolol | 1642 | - | - | 0.1–2 | 1.1 | - |
β-Eudesmol | 1650 | 0.9 | 0.4–1.2 | - | 0.05–0.08 | - |
α-Cadinol | 1651 | 0.2–4.1 | 4.2 | 0.5–5.4 | 3.5 | 1.7 |
Others | ||||||
3,5-Dimethylene-1,4,4-trimethylcyclopentene | 924 a | - | - | 2.5–5.8 | - | - |
1-octen-3-ol | 980 | 0.2 | 0.02–0.5 | 0.2 | 0.06–0.3 | - |
2,3,4,5-Tetramethyl-2-cyclopenten-1-one | 1054 b | - | - | 0.2–5.1 | - | - |
3,4,4-Trimethyl-2-cyclohexanone | 1055 c | - | - | 0.4–3.1 | - | - |
2,3,5,5-Tetramethyl-4-methylene-2-cyclopentenone | 1152 | - | - | 0.4–11.4 | - | - |
1,1,2,3-Tetramethyl-4-hidroxymethyl- 2-ciclopentene | 1155 b | - | - | 0.1–0.6 | - | - |
2,3,4,4-Tetramethyl-5-methylcyclopenten-2-enone | 1160 c | - | - | 2–38.3 | - | - |
1,1,2,3-Tetramethyl-4-hydroxymethyl-2-cyclopentene | - | - | - | 2–3.1 | - | - |
2-Methoxy-4-vinylphenol | 1315 | - | - | 3 | - | - |
Monoterpene hydrocarbons | 0.1–17 | 0.7–18.9 | 2.6–6.4 | 5.2 | 2.7–19.1 | |
Oxygenated monoterpenes | 67–87 | 62–85.4 | 33–73 | 75.5 | 70.8–71 | |
Sesquiterpene hydrocarbons | 0.5–10 | 0.6–2.7 | 1.4–9.3 | 4.9 | 0.1–0.3 | |
Oxygenated sesquiterpenes | 0.3–4.5 | 0.5–19.8 | 2.3–12.4 | 7.4 | 1.9 | |
Others | 0.1–0.2 | - | 2.4–5.1 | - | 1.0 | |
Yield (%, v/w) | 0.5–2 | 0.8–1 | 0.7–2.8 | 0.9–1.3 | 0.5–1.2 |
L. pedunculataLP | L. stoechasLS | L. stoechas subsp. luisieri LSL | L. stoechas subsp. stoechas LSS | L. viridis LV | |
---|---|---|---|---|---|
Hydroxybenzoic acids | |||||
Gentisic acid | 0.001 (M; AP) | ||||
Hydroxybenzoic acid | 0.07 (HM;M; AP) | 0.02 (W;E; AP) | |||
4-Hydroxybenzoic acid 4-(6-O-sulfo)glucoside | + (HM; AP) | ||||
Methyl dihydroxybenzoic | + (HM; AP) | ||||
Protocatechuic acid | + (HM;M; AP) | 0.01 (W;E; AP) | |||
Vanillic acid | + (HM;M; AP) | 0.01 (W;E; AP) | |||
Hydroxycinnamic acids | |||||
Caffeic acid | 0.6–4.4 (W;HE; AP) | 0.03–0.9 (M; AP; L; HM;W; AP) | 0.04 (W;E; AP) | 2.6 (HE; AP) | |
Caffeic acid hexoside | 0.03–5 (W;HE; AP) | ||||
Caffeoyl hexoside | + (HM; AP) | ||||
Caffeoyl feruloyl tartaric acid | + (HM; AP) | ||||
6-Caffeoylsucrose | + (HM; AP) | ||||
3-O-Caffeoylquinic acid | 0.01 (W; F) | 0.1–2.5 (HE; AP) | |||
4-O-Caffeoylquinic acid | 0.1–0.7 (W; HE; F) | 1.3–1.8 (HE; AP) | |||
Caftaric acid | + (HM; AP) | ||||
Chicoric acid | + (HM; AP) | ||||
Chlorogenic acid | 0.01–1.2 (W;HE; F) | + (HM;M; AP) | 0.1 (W;E; AP) | 18.5 (HM; AP) | 0.6–2.3 (HE; AP) |
p-Coumaric acid | 0.003–0.02 (M; AP; L; HM) | ||||
Coumaric acid hexoside | + (HM; AP) | ||||
p-Coumaroyl hexoside | 0.5–4.2 (W;HE; AP) | ||||
Dihydrocaffeic acid | + (HM; AP) | ||||
3,4-Dihydroxyphenyllactic acid hexoside | + (HM; AP) | ||||
3,4-Dihydroxyphenyllactic acid | + (HM; AP) | ||||
3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid | + (HM; AP) | ||||
Ferulic acid | 0.03 (M;HM; AP) | 0.2 (W;E; AP) | |||
Fertaric acid | + (HM; AP) | ||||
Hydroxyhydrocinnamic acid glucoside | + (HM; AP) | ||||
Isosalvianolic acid A | + (HM; AP) | ||||
Lithospermic acid A | 2.9–26.2 (W;HE; AP) | ||||
Methyl caffeate | + (HM; AP) | ||||
Methyl melitrate | + (HM; AP) | ||||
Methyl rosmarinate | + (HM; AP) | ||||
Rosmarinic acid | 0.01–550 (W;HE; AP;F) | 0.08–8.4 (W;M; L; AP;HM; F; AP) | 3–73.2 (W;E; AP) | 74 (HM;AP) | 1.3–38.8 (HE; AP) |
Rosmarinic acid hexoside | 0.9–3.3 (W;HE; AP) | + (HM; F; AP) | |||
Sagerinic acid | 1.1–6.6 (W;HE; AP) | + (HM; AP) | |||
Salicylic acid | 0.001 (M; AP) | ||||
Salvianolic acid A | + (W;M;HM; F;AP) | ||||
Salvianolic acid B | 8.7–582 (W;HE; AP) | + (W;M; AP;HM; F; AP) | |||
Salvianolic acid C | + (HM; AP) | ||||
Yunnaneic acid F | + (HM; AP) | ||||
Flavonoids | |||||
6″-O-Acetylgenistin | + (W;M; F) | ||||
Apigenin | 0.8–2.7 (HE; F) | + (HM; AP) | |||
Apigenin di-C-hexoside | + (HM; AP) | ||||
Apigenin C-hexoside | + (HM; AP) | ||||
Apigenin O-glucuronide | + (W;M; F) | ||||
Apigenin 7-O-glucoside | + (M; HM; AP) | 4.1 (HM; AP) | |||
Apigenin 7-O-glucuronide | + (HM; AP) | ||||
Eriodictyol | 0.1 (M; L) | ||||
Eriodictyol-O-glucuronide | 0.1–16.7 (W;HE; AP) | ||||
Genkwanin | + (M;HM; AP) | ||||
Luteolin | 0.01–4.9(W;HE; AP;F) | + (HM; AP) | 0.2–7.1 (HE; AP) | ||
Luteolin 7,4′-di-glucuronide | + (HM; AP) | ||||
Luteolin 7-O-glucuronide | 12.2–101.5 (W;HE; AP) | + (W;HM; F; AP) | |||
Luteolin 7-O-glucoside | + (W;HM; F;AP) | 14.9 (HM; AP) | 13.4 (HE; AP) | ||
Luteolin-O-hexosyl-O-glucuronide | 1.4–8.7 (W;HE; AP) | ||||
Methylluteolin-O-glucuronide | 1.8–19.8 (W;HE; AP) | ||||
Pinocembrin | 2.7–12.7 (HE; AP) | ||||
Quercetin | 1 (M; L) | ||||
Quercetin 3-O-glucoside | + (W;M; F) | ||||
Rutin | 0.5 (M; L) | ||||
Sesquiterpenoids/Triterpenes | |||||
3-oxo-Cadinol | 100.3 (E; AP) | ||||
Oleanolic acid | 29.5–34.7 (E; AP) | ||||
Stoechanones A e B | + (HM; AP) | ||||
Tormentic acid | 138.5 (E; AP) | ||||
Ursolic acid | 124 (E; AP) | ||||
Others | |||||
5-Hydroxymethyl-2,3,4,4-tetramethylcyclopent-2-en-1-one | 43.3–79.3 (E; AP) | ||||
Esculetin | + (HM; AP) | ||||
5-Nonadecylresorcinol | + (W;M; F) |
L. pedunculataLP | L. stoechasLS | L. stoechas subsp. luisieri LSL | L. stoechas subsp. stoechas LSS | L. viridisLV | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EO | NPE | PE | EO | NPE | PE | EO | NPE | PE | EO | PE | EO | NPE | PE | |
Phenolics content (mg GAE/g); A(mg GAE/mL) | 50 | ≈450 to 474 | 631–1040 | 227 | 154 4286 A | ≈200 to 1612 | 67–1778 | 277–1689 | 25–82 | |||||
Flavonoids content (mg RE/g); B(mg QE/g) | 3 to <50 | 311–314 | 242–371 | 40 | 134 | 8 to <50 33 B | 196–392 7.2–28 B | 451–459 13 B | 10 35 B | |||||
DPPH scavenging activity IC50 (µg/mL) | 137 | 68 | 221–5100 | 1.2 | 1780 | 8830 | 123–1323 | 26–1070 | 22–23 | 34–453 | ||||
% DPPH inhibition (50 µg/mL); C(60 µg/mL); D(100 µg/mL); E(500 µg/mL); F(1200 µg/mL) | 59–60 10 D | 67–710 70 D | ≈70 to 71 93 D | 45 C | 50 C 69 E | 67–69 | 57–64 | 69–72 | 56 F | |||||
Lipid peroxidation inhibition IC50 (µg/mL) | 190 | 253 | 1530 | |||||||||||
% Lipid peroxidation inhibition 0.06 g/mL); G(0.1 mg/mL); H(0.2 mg/mL); I(0.3 mg/mL) | 33 G 17 H ≈ 18 I | ≈28 H ≈29 I | 20 G ≈40 H ≈35 I | 97 | 95 | 15 H ≈17 I | ≈25 H ≈25 I | ≈49 H ≈40 I | ||||||
TEAC (µmol TE/g) | - | 224 | 866 | 117 | 332 | 671 | ||||||||
ORAC (µmol TE/g); J(µmol TE/µL) | 157 | 861 | 3018 | 1.7 J | 468 | 1184 | 1502 | |||||||
TBARS IC50 (µg/mL) | 17 | 14 | ||||||||||||
FRAP (mg TE/g); K(µmol/g); L(mM FeSO4E/g) | 52 | 80 | 21 K | 224 K 2.6 L | ||||||||||
CUPRAC (mg AAE/g) | 370 | |||||||||||||
Reducing power IC50 (µg/mL); M(mg TE/g); N(mg AAE/mL) | 67 | 51 | 108 5.7 N | 52 M | 36 M | |||||||||
Chelating ability IC50 (mg/mL); O(mg EDA/mL) | 1.8 O | 18 | 3.5 | |||||||||||
% Ferrozine complex inhibition (60 µg/mL) | 92 | 84 | ||||||||||||
% Superoxide generation inhibition (60 µg/mL) | 77 | 78 |
L. pedunculataLP | L. stoechasLS | L. stoechas subsp. luisieri LSL | L. stoechas subsp. stoechas LSS | L. viridisLV | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EO | NPE | PE | EO | NPE | PE | EO | NPE | NPE | EO | EO | |
Gram-negative | |||||||||||
Acinetobacter baumannii | 0.2 | 35.9 | |||||||||
Enterobacter cloacae | 40/75 | 150/300 | + | + | |||||||
Escherichia coli | 5 | 75/150; 14/14 * | 40/150 | 0.2 | + | 1000 | + | 250 | |||
5 * | 22/22 | ||||||||||
Haemophilus influenzae | 1250 | ||||||||||
Klebsiella pneumoniae | + | 250 | 125 | 0.2 | + | 125 | 250 | + | |||
Moraxella catarrhalis | 1250 | ||||||||||
Morganella morganii | 500 | ||||||||||
Proteus mirabilis | 10 * | 250 | + | ||||||||
Proteus vulgaris | 35.9 | ||||||||||
Pseudomonas aeruginosa | 20 | 100/150 | 150/300 | 0.2 | 35.9 | 250 | 500 | + | 250–1250 | ||
Salmonella enterica | 0.2 | ||||||||||
Salmonella enterica serovar Enteritidis | + | 17.9 | 750 | ||||||||
Salmonella kentucky | 35.9 | ||||||||||
Salmonella spp. | 22/22 | ||||||||||
Salmonella typhimurium | 100/150 | 150/300 | + | 35.9 | 750 | + | 250 | ||||
Serratia marcescens | + | + | |||||||||
Yersinia enterocolitica | 14/>56 * | 6500 | 3250 | ||||||||
Gram-positive | |||||||||||
Bacillus cereus | 50/75 | 75/150 | + | + | 7670 | 9830 | |||||
Bacillus subtilis | 4/8 * | 0.2 | 35.9 | 6500 | + | + | |||||
20 * | 6500 | ||||||||||
Enterococcus durans | 35.9 | ||||||||||
Enterococcus faecalis | 35.9 | 125 | 62 | 62 | |||||||
Enterococcus faecium | 2/14 * | 17.9 | |||||||||
Listeria innocua | 35.9 | ||||||||||
Listeria monocytogenes | 100/150 0.5/8 * | 150/300 | 2.5 * | 35.9 | |||||||
Micrococcus flavus | 75/150 | 150/300 | |||||||||
Mycobacterium smegmatis | 125 | 250 | |||||||||
Staphylococcus aureus | 5 | 125 20/40 2/14 * | 250 40/100 | 5 * | 17.9 3250 | 125 3250 | 250 11/11 | 62 | 62 9830 | 31.3 310 | |
Staphylococcus epidermidis | 8.9 | 125 | 125 | 62 | 250 | ||||||
Streptococcus fasciens | 5 | ||||||||||
Streptococcus hirae | + | + | |||||||||
Streptococcus pneumoniae | 35.9 | 620 | |||||||||
Streptococcus pyogenes | + | + | 620 | ||||||||
Yeasts | |||||||||||
Aureobasidium pullulans | 0.3/2.3 * | ||||||||||
Candida albicans | 2.5/2.5 * | 0.5 2.5/ 2.5 * | 35.9 | 250 | 62.5 | 125 | 1.3/1.3 * | ||||
1.3/2.5* | |||||||||||
Candida glabrata | 500 | ||||||||||
Candida guillermondii | 62.5 | 62,5 | 1.3/1.3 * | 62.5 | 0.6/0.6 * | ||||||
1.3/1.3 * | 1.3/1.3 * | ||||||||||
Candida krusei | 1.3/2.5 * | 2.5/2.5 * | 125 | 500 | 1.3/1.3 * | ||||||
2.5/2.5 * | |||||||||||
Candida parapsilopsis | 2.5/2.5 * | 2.5/2.5 * | 125 | 500 | 1.3/1.3 * | ||||||
2.5/2.5 * | |||||||||||
Candida tropicalis | 1.3/2.5 * | 2.5/2.5 * | 2.5/2.5 * | 250 | 1.3/1.3 * | ||||||
Candida utilis | 500 | ||||||||||
Candida zeylanoides | 500 | ||||||||||
Cryptococcus neoformans | 15.5 0.3/ 0.6 * | 31 | 62.5 | 0.6/0.6* | 15.5 0.6/0.6 * | 31 | 62.5 | 250 | 0.6/0.6 * | ||
Rhodotorula rubra | 62.5 | 62.5 | 31 | ||||||||
Saccharomyces cerevisiae | 31 | 62.5 | 31 | 31 | |||||||
Saccothecium rubi | 0.3/1.2 * | ||||||||||
Trichosporon cutaneum | 62.5 | 31 | 31 | 62.5 | |||||||
Fungi | |||||||||||
Alternaria alternaria | + | ||||||||||
Alternaria spp. | 4 | ||||||||||
Aspergillus carbonarius | 0.3/9.3 * | ||||||||||
Aspergillus flavus | 5/5 * | 0.5 5 * | 1.3 * | + | 5/10 * | ||||||
Aspergillus fumigatus | 2.5/5 * | 40/75 | 150/200 | 1.25 * | 0.6/10 * | 2.5/5 * | |||||
Aspergillus niger | 5/5 * | 40/75 | 150/200 | 0.5 2.5 * | 15.5 | 7.5 | 62.5 | 2.5/20 * | |||
0.3/20 * | |||||||||||
Aspergillus ochraceus | 20/75 | 150/200 | |||||||||
Aspergillus versicolor | 30/75 | 100/200 | |||||||||
Botryris cinerea | + | ||||||||||
Epidermophyton floccosum | 0.3/ 0.3 * | 0.3/ 0.6 * | 0.2/0.2 * | 0.3/0.3 * | |||||||
Fusarium oxysporum | + | + | |||||||||
Fusarium oxysporum f. sp. lini | 0.2 | ||||||||||
Fusarium spp. | 1.6 | ||||||||||
Geotrichum klebahnii | 125 | ||||||||||
Microsporum canis | 0.3/0.3 * | 0.6/0.6 * | 0.2/0.2 * | 0.3/0.3 * | |||||||
Microsporum gypseum | 0.6/0.6 * | 0.6/0.6 * | 0.3/0.3 * | 0.6/0.6 * | |||||||
Mucor ramannianus | 0.2 | ||||||||||
Mucor spp. | 4 | ||||||||||
Penicillium brevicompactum | 0.3/2.3 * | ||||||||||
Penicillium funiculosum | 40/15 | 200/250 | |||||||||
Penicillium ochrochloron | 30/40 | 200/250 | |||||||||
Penicillium roqueforti | 0.1/0.6 * | ||||||||||
Penicillium spp. | 4.5 | ||||||||||
Penicillium verrucosum var. cyclopium | 50/75 | 100/200 | |||||||||
Rhizopus stolonifer | 1.6 | 0.1/4.7 * | |||||||||
Trichoderma spp. | 4 | ||||||||||
Trichoderma viride | 20/20 | 100/200 | |||||||||
Trichophyton mentagrophytes | 0.6/0.6 * | 0.6/0.6 * | 200 | 0.3/0.6 * | |||||||
0.3/0.3 * | |||||||||||
Trichophyton mentagrophytes var. interdigitale | 0.6/1.3 * | 0.2/0.3 * | 0.3/0.6 * | ||||||||
Trichophyton rubrum | 0.3/0.3 * | 0.6/1.3 * | 200 | 0.3/0.3 * | |||||||
0.2/0.3 * | |||||||||||
Trichophyton verrucosum | 0.6/0.6 * | 0.3/0.3 * | 0.3/0.3 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingues, J.; Delgado, F.; Gonçalves, J.C.; Zuzarte, M.; Duarte, A.P. Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential. Metabolites 2023, 13, 337. https://doi.org/10.3390/metabo13030337
Domingues J, Delgado F, Gonçalves JC, Zuzarte M, Duarte AP. Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential. Metabolites. 2023; 13(3):337. https://doi.org/10.3390/metabo13030337
Chicago/Turabian StyleDomingues, Joana, Fernanda Delgado, José Carlos Gonçalves, Mónica Zuzarte, and Ana Paula Duarte. 2023. "Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential" Metabolites 13, no. 3: 337. https://doi.org/10.3390/metabo13030337
APA StyleDomingues, J., Delgado, F., Gonçalves, J. C., Zuzarte, M., & Duarte, A. P. (2023). Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential. Metabolites, 13(3), 337. https://doi.org/10.3390/metabo13030337