Analysis of the Differences in Muscle Nutrition among Individuals of Different Sexes in Redclaw Crayfish, Cherax quadricarinatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Animal
2.2. Determination of Meat Yield
2.3. Routine Nutrient Content Determination
2.4. Amino Acid Composition Determination and Analysis
2.5. Fatty Acid Composition Analysis
2.6. Data Processing and Analysis
3. Results
3.1. Analysis of Abdominal Muscle Meat Yield and Conventional Nutritional Components of C. quadricarinatus with Different Sexes
3.2. Composition and Content of Amino Acids in Abdominal Muscles of C. quadricarinatus with Different Sexes
3.3. Composition and Content of Fatty Acids in Abdominal Muscles of C. quadricarinatus with Different Sexes
4. Discussion
4.1. Analysis of Meat Yield and Conventional Nutrition Difference
4.2. Differential Analysis of Amino Acid Composition
4.3. Differential Analysis of Fatty Acid Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saoud, I.P.; Ghanawi, J.; Thompson, K.R.; Webster, C.D. A review of the culture and diseases of redclaw crayfish Cherax quadricarinatus (von Martens 1868). J. World Aquac. Soc. 2013, 44, 1–29. [Google Scholar]
- Hsieh, C.Y.; Huang, C.W.; Pan, Y.C. Crayfish plague Aphanomyces astaci detected in redclaw crayfish, Cherax quadricarinatus in Taiwan. J. Invertebr. Pathol. 2016, 136, 117–123. [Google Scholar] [PubMed]
- Ahyong, S.T.; Yeo, D.C.J. Feral populations of the Australian Red-Claw crayfish (Cherax quadricarinatus von Martens) in water supply catchments of Singapore. Biol. Invasions 2007, 9, 943–946. [Google Scholar]
- Karplus, I.; Zoran, M.; Milstein, A.; Harpaz, S.; Eran, Y.; Joseph, D.; Sagi, A. Culture of the Australian red-claw crayfish (Cherax quadricarinatus) in Israel: III. Survival in earthen ponds under ambient winter temperatures. Aquaculture 1998, 166, 259–267. [Google Scholar] [CrossRef]
- Ghanawi, J.; Saoud, I.P. Molting, reproductive biology, and hatchery management of redclaw crayfish Cherax quadricarinatus (von Martens 1868). Aquaculture 2012, 358–359, 183–195. [Google Scholar]
- García-Guerrero, M.; Hernández-Sandoval, P.; Orduña-Rojas, J.; Cortes-Jacinto, E. Effect of temperature on weight increase, survival, and thermal preference of juvenile redclaw crayfish Cherax quadricarinatus. Hidrobiológica 2013, 23, 73–81. [Google Scholar]
- Wu, D.L.; Chen, M.H.; Lv, W.W.; Li, Y.M.; Huang, Y.H.; Zhao, Y.L.; Liu, Z.X. Effects of cold acclimation on the survival, feeding rate, and non-specific immune responses of the freshwater red claw crayfish (Cherax quadricarinatus). Aquacult. Int. J. Eur. Aquac. Soc. 2018, 26, 557–567. [Google Scholar]
- Veselý, L.; Buřič, M.; Kouba, A. Hardy exotics species in temperate zone: Can “warm water” crayfish invaders establish regardless of low temperatures? Sci. Rep. 2015, 5, 16340. [Google Scholar]
- Curtis, M.C.; Jones, C.M. Observations on monosex culture of redclaw crayfish Cherax quadricarinatus von Martens (Decapoda: Parastacidae) in earthen ponds. J. World Aquacult. Soc. 1995, 26, 154–159. [Google Scholar] [CrossRef]
- Rodgers, L.J.; Saoud, P.I.; Rouse, D.B. The effects of monosex culture and stocking density on survival, growth and yield of redclaw crayfish (Cherax quadricarinatus) in earthen ponds. Aquaculture 2006, 259, 164–168. [Google Scholar] [CrossRef]
- Vázquez, F.J.; Greco, L.L. Sexual differentiation in the freshwater crayfish Cherax quadricarinatus (Decapoda: Parastacidae). Rev. Biol. Trop. 2007, 55, 33–37. [Google Scholar]
- Greco, L.L.; Vázquez, F.J. Differentiation of the sexual characters and onset of maturity in the males of the “red claw” crayfish, Cherax quadricarinatus (von Martens, 1898) (Astacidea, Astacida, Parastacidae). Anim. Biol. 2010, 60, 195–208. [Google Scholar] [CrossRef]
- Sagi, A.; Khalaila, I.; Barki, A.; Hulata, G.; Karplus, I. Intersex red claw crayfish, Cherax quadricarinatus (von Martens): Functional males with pre-vitellogenic ovaries. Biol. Bull. 1996, 190, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Sagi, A.; Manor, R.; Segall, C.; Davis, C.; Khalaila, I. On intersexuality in the crayfish Cherax quadricarinatus: An inducible sexual plasticity model. Invertebr. Reprod. Dev. 2002, 41, 27–33. [Google Scholar] [CrossRef]
- Bugnot, A.B.; López Greco, L.S. Sperm production in the red claw crayfish Cherax quadricarinatus (Decapoda, Parastacidae). Aquaculture 2009, 295, 292–299. [Google Scholar] [CrossRef]
- Levy, T.; Ventura, T.; De Leo, G.; Grinshpan, N.; Abu Abayed, F.A.; Manor, R.; Savaya, A.; Sklarz, M.Y.; Chalifa-Caspi, V.; Mishmar, D.; et al. Two homogametic genotypes—One crayfish: On the consequences of intersexuality. iScience 2020, 23, 101652. [Google Scholar] [CrossRef]
- Rodríguez-González, H.; García-Ulloa, M.; Hernández-Llamas, A.; Villarreal, H. Effect of dietary protein level on spawning and egg quality of redclaw crayfish Cherax quadricarinatus. Aquaculture 2006, 257, 412–419. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, H.; Villarreal, H.; García-Ulloa, M.; Hernández-Llamas, A. Dietary lipid requirements for optimal egg quality of redclaw crayfish, Cherax quadricarinatus. J. World Aquacult. Soc. 2009, 40, 531–539. [Google Scholar] [CrossRef]
- Thompson, K.R.; Muzinic, L.A.; Christian, T.D.; Webster, C.D.; Rouse, D.B.; Manomaitis, L. Effect on growth, survival, and fatty acid composition of Australian red claw crayfish Cherax quadricarinatus fed practical diets with and without supplemental lecithin and/or cholesterol. J. World Aquacult. Soc. 2003, 34, 1–10. [Google Scholar] [CrossRef]
- Thompson, K.R.; Bailey, T.J.; Metts, L.S.; Brady, Y.J.; Webster, C.D. Growth response and fatty acid composition of juvenile red claw crayfish (Cherax quadricarinatus) fed different sources of dietary lipid. Aquacult. Nutr. 2010, 16, 604–615. [Google Scholar] [CrossRef]
- Wang, L.M.; Zuo, D.; Lv, W.W.; Li, J.Y.; Wang, Q.; Zhao, Y.L. Effects of dietary soybean lecithin on gonadal development and vitellogenin mRNA expression in the female redclaw crayfish Cherax quadricarinatus (von Martens) at first maturation. Aquacult. Res. 2013, 44, 1167–1176. [Google Scholar] [CrossRef]
- Shehata, A.I.; Alhoshy, M.; Wang, T.; Mohsin, M.; Wang, J.; Wang, X.; Han, T.; Wang, Y.; Zhang, Z. Dietary supplementations modulate the physiological parameters, fatty acids profile and the growth of red claw crayfish (Cherax quadricarinatus). J. Anim. Physiol. Anim. Nutr. 2022, 107, 308–328. Available online: https://onlinelibrary.wiley.com/doi/10.1111/jpn.13704 (accessed on 21 April 2022). [CrossRef]
- Li, X.; Han, T.; Zheng, S.; Wu, G. Nutrition and functions of amino acids in aquatic crustaceans. Adv. Exp. Med. Biol. 2021, 1285, 169–198. [Google Scholar] [PubMed]
- Bernard, E.; Bolatito, A.Y. Comparative study on the nutritional composition of the pink shrimp (Penaeus notialis) and tiger shrimp (Penaeus monodon) from Lagos lagoon, Southwest Nigeria. Cogent Food Agric. 2016, 2, 1201891. [Google Scholar] [CrossRef]
- Li, G.; Sinclair, A.J.; Li, D. Comparison of lipid content and fatty acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from china. J. Agric. Food Chem. 2011, 59, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.N.; Han, G.M.; Wang, A.M.; Fu, L.; Yin, Y.G. Analysis and evaluation of nutrition components in the muscle of four kinds of shrimp. Hubei Agric. Sci. 2011, 50, 1004–1007. (In Chinese) [Google Scholar]
- Fleming, I.A. Reproductive strategies of Atlantic salmon: Ecology and evolution. Rev. Fish Biol. Fish. 1996, 6, 379–416. [Google Scholar] [CrossRef]
- Jonsson, N.; Jonsson, B.; Hansen, L.P. Energetic cost of spawning in male and female Atlantic salmon (Salmo salar L.). J. Fish Biol. 1991, 39, 739–744. [Google Scholar] [CrossRef]
- GB 5009.3-2016; Determination of Moisture in Food-Direct Drying Method. China Standards Press: Beijing, China, 2016. (In Chinese)
- GB 5009.4-2016; Determination of Ash in Food. China Standards Press: Beijing, China, 2016. (In Chinese)
- GB/T5009. 124-2016; Determination of Amino Acids in Food. China Standards Press: Beijing, China, 2016. (In Chinese)
- Zhang, F.P.; Luo, B.Y.; Du, X.L.; Cao, J.; Liu, Y.M. Determination of fatty acids in aquatic feed with gas chromatography by using internal standard method. J. Chin. Cereal. Oil. Assoc. 2015, 30, 136–139, 146. (In Chinese) [Google Scholar]
- Wu, Z.X.; Chen, X.X.; Xiong, C.X.; Tu, Y.Q.; Zhao, G.Z. Analysis of nutrient compositions for Cherax quadricarinatus. Hubei Agric. Sci. 1995, 4, 59–62. (In Chinese) [Google Scholar]
- Hu, Y.; Zhou, C.S.; Hu, L.H.; Pan, Q.C.; Jiang, Q.Q.; Wu, Y.; Wang, Y.H.; Zheng, Y.N.; Dai, Y. Comparative analysis of the nutritional composition in the muscles and skins of anguilla japonica cultured in the seawater and freshwater. J. Hydrobiol. 2015, 39, 730–739. (In Chinese) [Google Scholar]
- Wang, L.; Feng, X.M.; Lv, Q.; Chen, M.H.; Qiao, Q.H.; Han, Y.Q. Nutrition analysis and evaluation of the muscle of Euphausia. J. Ocean. Univ. China 2013, 43, 51–55. (In Chinese) [Google Scholar]
- Waymouth, C. The Nutrition of animal cells. Int. Rev. Cytol. 1954, 3, 1–68. [Google Scholar]
- Lifshitz, F. Nutrition and growth. J. Clin. Res. Ped. Endo. 2009, 1, 157–163. [Google Scholar]
- Schulte-Hostedde, A.I.; Millar, J.S.; Hickling, G.J. Sexual dimorphism in body composition of small mammals. Can. J. Zool. 2001, 79, 1016–1020. [Google Scholar] [CrossRef]
- Mohanty, B.; Mahanty, A.; Ganguly, S.; Sankar, T.V.; Chakraborty, K.; Rangasamy, A.; Paul, B.; Sarma, D.; Mathew, S.; Asha, K.K.; et al. Amino acid compositions of 27 food fishes and their importance in clinical nutrition. J. Amino Acids 2014, 2014, 269797. [Google Scholar] [CrossRef] [Green Version]
- Joint FAO/WHO. Protein quality evaluation. FAO Food Nutr. Pap. 1991, 51, 1–66. [Google Scholar]
- Fauconneau, B.; Alami-Durante, H.; Laroche, M.; Marcel, J.; Vallot, D. Growth and meat quality relations in carp. Aquaculture 1995, 129, 265–297. [Google Scholar] [CrossRef]
- Joint WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. In WHO Technical Report Series; WHO: Geneva, Switzerland, 2007; Volume 935, pp. 1–265. [Google Scholar]
- Dang, Y.L.; Gao, X.C.; Xie, A.Y.; Wu, X.Q.; Ma, F. Interaction between umami peptide and taste receptor T1R1/T1R3. Cell Biochem. Biophys. 2014, 70, 1841–1848. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Sennewald, K.; Gagnon, J. Comparison of taste qualities and thresholds of D- and L-amino acids. Physiol. Behav. 1981, 27, 51–59. [Google Scholar] [CrossRef]
- Kurihara, K. Umami the fifth basic taste: History of studies on receptor mechanisms and role as a food flavor. Biomed Res. Int. 2015, 2015, 189402. [Google Scholar] [CrossRef] [Green Version]
- Bessman, S.P.; Shear, S.; Fitzgerald, J. Effect of arginine and glutamate on the removal of ammonia from the blood in normal and cirrhotic patients. N. Engl. J. Med. 1957, 256, 941–943. [Google Scholar] [CrossRef] [PubMed]
- Goimier, Y.; Pascual, C.; Sánchez, A.; Gaxiola, G.; Sánchez, A.; Rosas, C. Relation between reproductive, physiological, and immunological condition of Litopenaeus setiferus pre-adult males fed different dietary protein levels (Crustacea; Penaeidae). Anim. Reprod. Sci. 2006, 92, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Abdullah, N.; Aminudin, N. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) persoon (lion’s mane mushroom). BioMed Res. Int. 2014, 2014, 828149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grande, F.; Anderson, J.T.; Keys, A. The influence of chain length of the saturated fatty acids on their effect on serum cholesterol concentration in man. J. Nutr. 1961, 74, 420–428. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Curr. Atheroscler. Rep. 2010, 12, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Wise, J. High intake of saturated fats is linked to increased risk of heart disease. BMJ 2016, 355, i6347. [Google Scholar] [CrossRef]
- Hamułka, J.; Głąbska, D.; Guzek, D.; Białkowska, A.; Sulich, A. Intake of saturated fatty acids affects atherogenic blood properties in young, Caucasian, overweight women even without influencing blood cholesterol. Int. J. Environ. Res. Public Health 2018, 15, 2530. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Xu, Y.; Wu, L.H.; Wu, X.G.; Wang, X.F.; Sun, S.K.; Gao, Q.; Han, Z.; Xv, J.H.; Cheng, H.L. Comparative analysis of nutrients in muscles of Penaeus Monodon and Fenneropenaeus chinensis. Aquat. Sci. Technol. Inf. 2019, 46, 283–286. (In Chinese) [Google Scholar]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szlinder-Richert, J.; Usydus, Z.; Wyszyński, M.; Adamczyk, M. Variation in fat content and fatty-acid composition of the Baltic herring Clupea harengus membras. J. Fish Biol. 2010, 77, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Şahin, Ş.A.; Başçınar, N.; Kocabas, M.; Tufan, B.; Köse, S.; Okumus, I. Evaluation of meat yield, proximate composition and fatty acid profile of cultured brook trout (Salvelinus fontinalis Mitchill, 1841) and Black Sea trout (Salmo trutta labrax Pallas, 1811) in comparison with their hybrid. Turk. J. Fish. Aquat. Sci. 2011, 11, 161–271. [Google Scholar] [CrossRef]
- Abelti, A.L. Minerals content and fatty acids profile of Nile tilapia (Oreochromis niloticus) fillet from Lake Zeway: Effect of endogenous factors. J. Nutr. Food Sci. 2017, 7, 1000574. [Google Scholar]
- Happel, A.; Rinchard, J.; Czesny, S. Variability in sea lamprey fatty acid profiles indicates a range of host species utilization in Lake Michigan. J. Great Lakes Res. 2017, 43, 182–188. [Google Scholar] [CrossRef]
- Brenes-Soto, A.; Dierenfeld, E.S.; Bosch, G.; Hendriks, W.H.; Janssens, G.P.J. Gaining insights in the nutritional metabolism of amphibians: Analyzing body nutrient profiles of the African clawed frog, Xenopus laevis. PeerJ 2019, 7, e7365. [Google Scholar] [CrossRef] [PubMed]
Items | Males | Females |
---|---|---|
Meat rate (%) | 19.12 ± 0.61a | 15.81 ± 0.36b |
Moisture (%) | 78.15 ± 0.26b | 79.37 ± 0.30a |
Ash (%) | 6.34 ± 0.06a | 5.59 ± 0.05b |
Crude fat (%) | 1.73 ± 0.05a | 1.57 ± 0.04b |
Crude protein (%) | 84.16 ± 0.84 | 81.56 ± 2.18 |
Amino Acid | Males (%) | Females (%) |
---|---|---|
Thr * | 0.62 ± 0.06 | 0.48 ± 0.03 |
Val * | 0.63 ± 0.04a | 0.47 ± 0.03b |
Met * | 0.42 ± 0.02 | 0.35 ± 0.06 |
Ile * | 0.71 ± 0.05 | 0.74 ± 0.07 |
Leu * | 1.79 ± 0.17 | 1.73 ± 0.30 |
Lys * | 1.71 ± 0.38a | 1.32 ± 0.13b |
Phe *& | 0.57 ± 0.05 | 0.61 ± 0.03 |
His △ | 0.4 ± 0.03 | 0.34 ± 0.05 |
Arg △ | 1.24 ± 0.21 | 1.2 ± 0.05 |
Asp #& | 1.64 ± 0.23a | 1.35 ± 0.13b |
Ser # | 0.64 ± 0.04 | 0.60 ± 0.03 |
Glu #& | 4.03 ± 0.57a | 2.60 ± 0.27b |
Gly #& | 0.52 ± 0.05 | 0.51 ± 0.08 |
Ala #& | 0.77 ± 0.05 | 0.86 ± 0.07 |
Cys # | 0.37 ± 0.02 | 0.32 ± 0.01 |
Tyr #& | 0.53 ± 0.04b | 0.73 ± 0.05a |
Pro # | 0.33 ± 0.02 | 0.19 ± 0.07 |
ΣEAA | 6.46 ± 0.46 | 5.71 ± 0.13 |
ΣNEAA | 8.87 ± 0.70 | 7.18 ± 0.33 |
ΣTAA | 16.91 ± 1.02 | 14.42 ± 0.50 |
ΣDAA | 8.06 ± 0.72 | 6.67 ± 0.40 |
ΣEAA/ΣNEAA | 75.66 ± 6.59 | 79.69 ± 2.71 |
ΣEAA/ΣTAA | 38.49 ± 2.08 | 39.61 ± 0.84 |
ΣDAA/ΣTAA | 47.33 ± 2.44 | 46.15 ± 1.20 |
Fatty Acid | Males (%) | Females (%) |
---|---|---|
C12:0 | 0.4 ± 0.05b | 0.73 ± 0.21a |
C14:0 | 1.24 ± 0.1b | 1.43 ± 0.21a |
C15:0 | 0.74 ± 0.06 | 0.79 ± 0.02 |
C16:0 | 34.82 ± 0.09 | 33.64 ± 0.42 |
C17:0 | 1.44 ± 0.01b | 1.58 ± 0.05a |
C18:0 | 18.06 ± 0.12b | 18.55 ± 0.12a |
ΣSFAs | 56.69 ± 0.28 | 56.72 ± 0.17 |
C16:1 | 0.75 ± 0.01b | 0.91 ± 0.06a |
C18:1n-9t | 1.46 ± 0.05b | 1.71 ± 0.09a |
C18:1n-9c | 13.89 ± 0.24b | 14.52 ± 0.16a |
ΣMUFAs | 16.11 ± 0.28b | 17.14 ± 0.3a |
C18:2n-6t | 14.12 ± 0.2 | 13.43 ± 0.17 |
EPA C20:5n-3 | 9.8 ± 0.45a | 9.15 ± 0.32b |
DHA C22:6n-3 | 3.27 ± 0.6 | 3.56 ± 0.19 |
ΣPUFAs | 27.2 ± 0.24a | 26.13 ± 0.39b |
ΣMUFAs + ΣPUFAs | 43.31 ± 0.28 | 43.28 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Shan, X.; Li, D.; Liu, X.; Han, Z.; Qin, J.; Guan, B.; Tan, L.; Zheng, J.; Wei, M.; et al. Analysis of the Differences in Muscle Nutrition among Individuals of Different Sexes in Redclaw Crayfish, Cherax quadricarinatus. Metabolites 2023, 13, 190. https://doi.org/10.3390/metabo13020190
Sun Y, Shan X, Li D, Liu X, Han Z, Qin J, Guan B, Tan L, Zheng J, Wei M, et al. Analysis of the Differences in Muscle Nutrition among Individuals of Different Sexes in Redclaw Crayfish, Cherax quadricarinatus. Metabolites. 2023; 13(2):190. https://doi.org/10.3390/metabo13020190
Chicago/Turabian StyleSun, Yuyan, Xin Shan, Desheng Li, Xuxiao Liu, Zongao Han, Junjie Qin, Bin Guan, Leilei Tan, Jianbo Zheng, Min Wei, and et al. 2023. "Analysis of the Differences in Muscle Nutrition among Individuals of Different Sexes in Redclaw Crayfish, Cherax quadricarinatus" Metabolites 13, no. 2: 190. https://doi.org/10.3390/metabo13020190
APA StyleSun, Y., Shan, X., Li, D., Liu, X., Han, Z., Qin, J., Guan, B., Tan, L., Zheng, J., Wei, M., & Jia, Y. (2023). Analysis of the Differences in Muscle Nutrition among Individuals of Different Sexes in Redclaw Crayfish, Cherax quadricarinatus. Metabolites, 13(2), 190. https://doi.org/10.3390/metabo13020190