Could Lowering Phytosterol Absorption as Part of Lipid-Lowering Therapy Have a Beneficial Effect on Residual Risk?
Abstract
:1. The Role of Phytosterols in Cholesterol Metabolism
2. Phytosterols and Cardiovascular Risk
3. The Effect of Hypolipidemic Treatment on Phytosterol Concentrations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- van der Wulp, M.Y.; Verkade, H.J.; Groen, A.K. Regulation of cholesterol homeostasis. Mol. Cell Endocrinol. 2013, 368, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Calpe-Berdiel, L.; Escola-Gil, J.C.; Blanco-Vaca, F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis 2009, 203, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Yamanashi, Y.; Takada, T.; Tanaka, Y.; Ogata, Y.; Toyoda, Y.; Ito, S.M.; Kitani, M.; Oshida, N.; Okada, K.; Shoda, J.; et al. Hepatic Niemann-Pick C1-Like 1 exacerbates non-alcoholic fatty liver disease by re-absorbing specific biliary oxysterols. Biomed. Pharmacother. 2022, 156, 113877. [Google Scholar] [CrossRef] [PubMed]
- Dayspring, T.D.; Varvel, S.A.; Ghaedi, L.; Thiselton, D.L.; Bruton, J.; McConnell, J.P. Biomarkers of cholesterol homeostasis in a clinical laboratory database sample comprising 667,718 patients. J. Clin. Lipidol. 2015, 9, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, H.; Tada, H.; Ito, K.; Kishimoto, Y.; Yanai, H.; Okamura, T.; Ikewaki, K.; Inagaki, K.; Shoji, T.; Bujo, H.; et al. Reference Intervals of Serum Non-Cholesterol Sterols by Gender in Healthy Japanese Individuals. J. Atheroscler. Thromb. 2020, 27, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; et al. The Role of Nutraceuticals in Statin Intolerant Patients. J. Am. Coll. Cardiol. 2018, 72, 96–118. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; et al. Lipid lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Arch. Med. Sci. 2017, 13, 965–1005. [Google Scholar] [CrossRef]
- Ruscica, M.; Penson, P.E.; Ferri, N.; Sirtori, C.R.; Pirro, M.; Mancini, G.B.J.; Sattar, N.; Toth, P.P.; Sahebkar, A.; Lavie, C.J.; et al. Impact of nutraceuticals on markers of systemic inflammation: Potential relevance to cardiovascular diseases—A position paper from the International Lipid Expert Panel (ILEP). Prog. Cardiovasc. Dis. 2021, 67, 40–52. [Google Scholar] [CrossRef]
- Weingartner, O.; Patel, S.B.; Lutjohann, D. It’s time to personalize and optimize lipid-lowering therapy. Eur. Heart J. 2020, 41, 2629–2631. [Google Scholar] [CrossRef]
- Turini, E.; Sarsale, M.; Petri, D.; Totaro, M.; Lucenteforte, E.; Tavoschi, L.; Baggiani, A. Efficacy of Plant Sterol-Enriched Food for Primary Prevention and Treatment of Hypercholesterolemia: A Systematic Literature Review. Foods 2022, 11, 839. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Jiao, J.; Xu, J.; Zimmermann, D.; Actis-Goretta, L.; Guan, L.; Zhao, Y.; Qin, L. Effects of plant stanol or sterol-enriched diets on lipid profiles in patients treated with statins: Systematic review and meta-analysis. Sci. Rep. 2016, 6, 31337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, V.; Patel, S.B. Recent advances in ABCG5 and ABCG8 variants. Curr. Opin. Lipidol. 2021, 32, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Nomura, A.; Ogura, M.; Ikewaki, K.; Ishigaki, Y.; Inagaki, K.; Tsukamoto, K.; Dobashi, K.; Nakamura, K.; Hori, M.; et al. Diagnosis and Management of Sitosterolemia 2021. J. Atheroscler. Thromb. 2021, 28, 791–801. [Google Scholar] [CrossRef]
- Tada, H.; Okada, H.; Nomura, A.; Yashiro, S.; Nohara, A.; Ishigaki, Y.; Takamura, M.; Kawashiri, M.A. Rare and Deleterious Mutations in ABCG5/ABCG8 Genes Contribute to Mimicking and Worsening of Familial Hypercholesterolemia Phenotype. Circ. J. 2019, 83, 1917–1924. [Google Scholar] [CrossRef] [Green Version]
- Hansel, B.; Carrie, A.; Brun-Druc, N.; Leclert, G.; Chantepie, S.; Coiffard, A.S.; Kahn, J.F.; Chapman, M.J.; Bruckert, E. Premature atherosclerosis is not systematic in phytosterolemic patients: Severe hypercholesterolemia as a confounding factor in five subjects. Atherosclerosis 2014, 234, 162–168. [Google Scholar] [CrossRef]
- Neff, A.T. Sitosterolemia’s stomatocytosis and macrothrombocytopenia. Blood 2012, 120, 4283. [Google Scholar] [CrossRef] [Green Version]
- Assmann, G.; Cullen, P.; Erbey, J.; Ramey, D.R.; Kannenberg, F.; Schulte, H. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: Results of a nested case-control analysis of the Prospective Cardiovascular Munster (PROCAM) study. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 13–21. [Google Scholar] [CrossRef]
- Weingartner, O.; Lutjohann, D.; Vanmierlo, T.; Muller, S.; Gunther, L.; Herrmann, W.; Bohm, M.; Laufs, U.; Herrmann, M. Markers of enhanced cholesterol absorption are a strong predictor for cardiovascular diseases in patients without diabetes mellitus. Chem. Phys. Lipids 2011, 164, 451–456. [Google Scholar] [CrossRef]
- Rysz, J.; Franczyk, B.; Olszewski, R.; Banach, M.; Gluba-Brzozka, A. The Use of Plant Sterols and Stanols as Lipid-Lowering Agents in Cardiovascular Disease. Curr. Pharm. Des. 2017, 23, 2488–2495. [Google Scholar] [CrossRef]
- Matthan, N.R.; Resteghini, N.; Robertson, M.; Ford, I.; Shepherd, J.; Packard, C.; Buckley, B.M.; Jukema, J.W.; Lichtenstein, A.H.; Schaefer, E.J.; et al. Cholesterol absorption and synthesis markers in individuals with and without a CHD event during pravastatin therapy: Insights from the PROSPER trial. J. Lipid Res. 2010, 51, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genser, B.; Silbernagel, G.; De Backer, G.; Bruckert, E.; Carmena, R.; Chapman, M.J.; Deanfield, J.; Descamps, O.S.; Rietzschel, E.R.; Dias, K.C.; et al. Plant sterols and cardiovascular disease: A systematic review and meta-analysis. Eur. Heart J. 2012, 33, 444–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, S.; Lutjohann, D.; Kerksiek, A.; Friedrichs, S.; Christian Schulze, P.; Mobius-Winkler, S.; Porner, T.C.; Weingartner, O. Increased cholesterol absorption is associated with In-stent-restenosis after stent implantation for stable coronary artery disease. Steroids 2022, 187, 109079. [Google Scholar] [CrossRef]
- Nunes, V.S.; de Campos, E.V.S.; Baracat, J.; Franca, V.; Gomes, E.I.L.; Coelho, R.P.; Nakandakare, E.R.; Zago, V.H.S.; de Faria, E.C.; Quintao, E.C.R. Plasma Campesterol Is Positively Associated with Carotid Plaques in Asymptomatic Subjects. Int. J. Mol. Sci. 2022, 23, 11997. [Google Scholar] [CrossRef]
- Helgadottir, A.; Thorleifsson, G.; Alexandersson, K.F.; Tragante, V.; Thorsteinsdottir, M.; Eiriksson, F.F.; Gretarsdottir, S.; Bjornsson, E.; Magnusson, O.; Sveinbjornsson, G.; et al. Genetic variability in the absorption of dietary sterols affects the risk of coronary artery disease. Eur. Heart J. 2020, 41, 2618–2628. [Google Scholar] [CrossRef] [PubMed]
- Weingartner, O.; Teupser, D.; Patel, S.B. The Atherogenicity of Plant Sterols: The Evidence from Genetics to Clinical Trials. J. AOAC Int. 2015, 98, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Gazi, I.F.; Mikhailidis, D.P. Non-low-density lipoprotein cholesterol-associated actions of ezetimibe: An overview. Expert Opin. Ther. Targets 2006, 10, 851–866. [Google Scholar] [CrossRef]
- Kalogirou, M.; Tsimihodimos, V.; Gazi, I.; Filippatos, T.; Saougos, V.; Tselepis, A.D.; Mikhailidis, D.P.; Elisaf, M. Effect of ezetimibe monotherapy on the concentration of lipoprotein subfractions in patients with primary dyslipidaemia. Curr. Med. Res. Opin. 2007, 23, 1169–1176. [Google Scholar] [CrossRef]
- Othman, R.A.; Myrie, S.B.; Mymin, D.; Merkens, L.S.; Roullet, J.B.; Steiner, R.D.; Jones, P.J. Ezetimibe reduces plant sterol accumulation and favorably increases platelet count in sitosterolemia. J. Pediatr. 2015, 166, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Osowska, S.; Kunecki, M.; Sobocki, J.; Tokarczyk, J.; Majewska, K.; Burkacka, M.; Radkowski, M.; Makarewicz-Wujec, M.; Fisk, H.L.; Mashnafi, S.; et al. Potential for Omega-3 Fatty Acids to Protect against the Adverse Effect of Phytosterols: Comparing Laboratory Outcomes in Adult Patients on Home Parenteral Nutrition Including Different Lipid Emulsions. Biology 2022, 11, 1699. [Google Scholar] [CrossRef]
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef] [PubMed]
- van Himbergen, T.M.; Matthan, N.R.; Resteghini, N.A.; Otokozawa, S.; Ai, M.; Stein, E.A.; Jones, P.H.; Schaefer, E.J. Comparison of the effects of maximal dose atorvastatin and rosuvastatin therapy on cholesterol synthesis and absorption markers. J. Lipid Res. 2009, 50, 730–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miettinen, T.A.; Gylling, H. Subgroup analysis of Scandinavian Simvastatin Survival, S. Blood glucose and the metabolism of cholesterol in coronary patients with and without simvastatin treatment. Clin. Chim. Acta 2007, 379, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Yagyu, H.; Kotani, K.; Miyamoto, M.; Osuga, J.; Nagasaka, S.; Ishibashi, S. Lipid-lowering effects of ezetimibe for hypercholesterolemic patients with and without type 2 diabetes mellitus. Endocr. J. 2010, 57, 903–908. [Google Scholar] [CrossRef] [Green Version]
- Jakulj, L.; Trip, M.D.; Sudhop, T.; von Bergmann, K.; Kastelein, J.J.; Vissers, M.N. Inhibition of cholesterol absorption by the combination of dietary plant sterols and ezetimibe: Effects on plasma lipid levels. J. Lipid Res. 2005, 46, 2692–2698. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.S.; Hong, S.J.; Cho, J.M.; Han, K.H.; Cha, D.H.; Jo, S.H.; Kang, H.J.; Choi, S.Y.; Choi, C.U.; Cho, E.J.; et al. A Multicenter, Randomized, Double-Blind, Active-Controlled, Factorial Design, Phase III Clinical Trial to Evaluate the Efficacy and Safety of Combination Therapy of Pitavastatin and Ezetimibe Versus Monotherapy of Pitavastatin in Patients With Primary Hypercholesterolemia. Clin. Ther. 2022, 44, 1310–1325. [Google Scholar]
- Le, N.A.; Tomassini, J.E.; Tershakovec, A.M.; Neff, D.R.; Wilson, P.W. Effect of Switching From Statin Monotherapy to Ezetimibe/Simvastatin Combination Therapy Compared With Other Intensified Lipid-Lowering Strategies on Lipoprotein Subclasses in Diabetic Patients With Symptomatic Cardiovascular Disease. J. Am. Heart Assoc. 2015, 4, e001675. [Google Scholar] [CrossRef] [Green Version]
- Assmann, G.; Kannenberg, F.; Ramey, D.R.; Musliner, T.A.; Gutkin, S.W.; Veltri, E.P. Effects of ezetimibe, simvastatin, atorvastatin, and ezetimibe-statin therapies on non-cholesterol sterols in patients with primary hypercholesterolemia. Curr. Med. Res. Opin. 2008, 24, 249–259. [Google Scholar] [CrossRef]
- Barbosa, S.P.; Lins, L.C.; Fonseca, F.A.; Matos, L.N.; Aguirre, A.C.; Bianco, H.T.; Amaral, J.B.; Franca, C.N.; Santana, J.M.; Izar, M.C. Effects of ezetimibe on markers of synthesis and absorption of cholesterol in high-risk patients with elevated C-reactive protein. Life Sci. 2013, 92, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Thongtang, N.; Lin, J.; Schaefer, E.J.; Lowe, R.S.; Tomassini, J.E.; Shah, A.K.; Tershakovec, A.M. Effects of ezetimibe added to statin therapy on markers of cholesterol absorption and synthesis and LDL-C lowering in hyperlipidemic patients. Atherosclerosis 2012, 225, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef]
- Nakano, Y.; Yamamoto, M.; Matoba, T.; Katsuki, S.; Nakashiro, S.; Takase, S.; Akiyama, Y.; Nagata, T.; Mukai, Y.; Inoue, S.; et al. Association between Serum Oxysterols and Coronary Plaque Regression during Lipid-Lowering Therapy with Statin and Ezetimibe: Insights from the CuVIC Trial. J. Atheroscler. Thromb. 2022, 63507. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, J.; Kawada-Watanabe, E.; Koyanagi, R.; Arashi, H.; Sekiguchi, H.; Nakao, K.; Tobaru, T.; Tanaka, H.; Oka, T.; Endo, Y.; et al. Baseline serum sitosterol level as predictor of adverse clinical events in acute coronary syndrome patients with dyslipidaemia: A sub-analysis of HIJ-PROPER. Atherosclerosis 2018, 274, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, T.A.; Gylling, H.; Strandberg, T.; Sarna, S. Baseline serum cholestanol as predictor of recurrent coronary events in subgroup of Scandinavian simvastatin survival study. Finnish 4S Investigators. BMJ 1998, 316, 1127–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.K.; Hong, S.J.; Lee, Y.J.; Hong, S.J.; Yun, K.H.; Hong, B.K.; Heo, J.H.; Rha, S.W.; Cho, Y.H.; Lee, S.J.; et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING): A randomised, open-label, non-inferiority trial. Lancet 2022, 400, 380–390. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, R.H.; Park, H.; Wang, H.J.; Lee, H.; Kang, E.S. Effect of Ezetimibe on Glucose Metabolism and Inflammatory Markers in Adipose Tissue. Biomedicines 2020, 8, 512. [Google Scholar] [CrossRef]
- Katsiki, N.; Mikhailidis, D.P. Statins and diabetes mellitus progression: A fly in the ointment? Nat. Rev. Endocrinol. 2022, 18, 137–138. [Google Scholar] [CrossRef]
- Popovic, D.S.; Papachristou, S.; Stokic, E.; Papanas, N. Ezetimibe and Insulin Resistance. Curr. Vasc. Pharmacol. 2022, 20, 315–317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnostis, P.; Kotsis, V.; Banach, M.; Mikhailidis, D.P. Could Lowering Phytosterol Absorption as Part of Lipid-Lowering Therapy Have a Beneficial Effect on Residual Risk? Metabolites 2023, 13, 145. https://doi.org/10.3390/metabo13020145
Anagnostis P, Kotsis V, Banach M, Mikhailidis DP. Could Lowering Phytosterol Absorption as Part of Lipid-Lowering Therapy Have a Beneficial Effect on Residual Risk? Metabolites. 2023; 13(2):145. https://doi.org/10.3390/metabo13020145
Chicago/Turabian StyleAnagnostis, Panagiotis, Vasileios Kotsis, Maciej Banach, and Dimitri P. Mikhailidis. 2023. "Could Lowering Phytosterol Absorption as Part of Lipid-Lowering Therapy Have a Beneficial Effect on Residual Risk?" Metabolites 13, no. 2: 145. https://doi.org/10.3390/metabo13020145
APA StyleAnagnostis, P., Kotsis, V., Banach, M., & Mikhailidis, D. P. (2023). Could Lowering Phytosterol Absorption as Part of Lipid-Lowering Therapy Have a Beneficial Effect on Residual Risk? Metabolites, 13(2), 145. https://doi.org/10.3390/metabo13020145