Metabolites Associated with the Main Nutrients in Two Varieties of Purple Rice Processed to Polished Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Collection
2.2. Determination of Crude Fat, Crude Protein, Total Sugar, and Mineral Element Levels
2.3. Determination of the ATP Content
2.4. Determination of the Soluble Dietary Fiber Content
2.5. Statistical Analysis
3. Results
3.1. Analysis of Amino Acid Content
3.2. Analysis of the Main Nutrients
3.3. Analysis of Seven Nutrient Elements
3.4. Correlation Analysis of the Amino Acids and Metabolites
3.5. Correlation Analysis of the Main Nutrients and Metabolites
3.6. Correlation Analysis of Seven Nutrients and Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q. Purple tomatoes, black rice and food security. Nat. Rev. Genet. 2021, 22, 414. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Q.; Wu, X.B.; Wang, H.F.; Feng, X.; Yan, S.J.; Wu, S.Y.; Liu, J.X.; Yao, X.F.; Bai, A.N.; Zhao, H.; et al. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Mol. Plant 2021, 14, 1343–1361. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, Y.; Yang, X.; Zhu, G.; Lu, X.; Jia, F.; Diao, B.; Yu, S.; Ali, A.; Zhang, H.; et al. Investigation of flavonoid components and their associated antioxidant capacity in different pigmented rice varieties. Food Res. Int. 2022, 161, 111726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cui, D.; Ma, X.; Han, B.; Han, L. Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics. Food Chem. 2022, 399, 133926. [Google Scholar] [CrossRef]
- Ito, V.C.; Lacerda, L.G. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food chem. 2019, 301, 125304. [Google Scholar] [CrossRef]
- Hu, S.; Hu, P. Research progress and prospect of functional rice. Chin. J. Rice Sci. 2021, 35, 311–325. [Google Scholar]
- Panda, D.K.; Jyotirmayee, B.; Mahalik, G. Black rice: A review from its history to chemical makeup to health advantages, nutritional properties and dietary uses. Plant Sci. Today 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Younas, N.; Fatima, I.; Ahmad, I.A.; Ayyaz, M.K. Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: A detailed review. Acta Ecol. Sin. 2022. [Google Scholar] [CrossRef]
- Zaman, Q.U.; Aslam, Z.; Yaseen, M.; Ihsan, M.Z.; Khaliq, A.; Fahad, S.; Bashir, S.; Ramzani, P.M.A.; Naeem, M. Zinc biofortification in rice: Leveraging agriculture to moderate hidden hunger in developing countries. Arch. Agron. Soil Sci. 2018, 64, 147–161. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, S.; Zeng, D.; Liu, H.; Wang, H.; Yang, Z.; Xie, X.; Shen, R.; Tan, J.; Li, H.; et al. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol. Plant 2017, 10, 918–929. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Q.; Sun, C.; Li, A.; Zhang, J.; Shi, Q.; Zhang, Y.; Hu, J.; Zhou, N.; Wei, H.; Liu, B.; et al. Metabolomics and biochemical analyses revealed metabolites important for the antioxidant properties of purple glutinous rice. Food Chem. 2022, 389, 133080. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Zhang, J.; Shi, Q.; Zhang, Y.; Sun, C.; Li, A.; Lu, W.; Hu, J.; Zhou, N.; Wei, H.; et al. The key metabolites associated with nutritional components in purple glutinous rice. Food Res. Int. 2022, 160, 111686. [Google Scholar] [CrossRef] [PubMed]
- Yamuangmorn, S.; Prom-u-Thai, C. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 2021, 10, 833. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Q.; Dong, L.; Jia, X.; Liu, L.; Huang, F.; Liu, G.; Sun, Z.; Chi, J.; Zhang, M.; et al. Phenolic profiles and bioactivities of different milling fractions of rice bran from black rice. Food Chem. 2022, 378, 132035. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Sun, C.; Shi, H.; Cai, S.; Xie, H.; Liu, F.; Zhu, J. Analysis of related metabolites affecting taste values in rice under different nitrogen fertilizer amounts and planting densities. Foods 2022, 11, 1508. [Google Scholar] [CrossRef]
- GB 5009.6-2016; Determination of Fat in Food Products of the National Standard for Food Safety. National Standard of the People’s Republic of China: Beijing, China, 2017.
- GB 5009.5-2016; Determination of Protein in Food of the National Standard for Food Safety. National Standard of the People’s Republic of China: Beijing, China, 2017.
- Sarker, U.; Oba, S. Color attributes, betacyanin, and carotenoid profiles, bioactive components, and radical quenching capacity in selected Amaranthus gangeticus leafy vegetables. Sci. Rep. 2021, 11, 11559. [Google Scholar] [CrossRef]
- GB/T 15672-2009; Determination of Total Saccharide in Edible Mushroom. National Standard of the People’s Republic of China: Beijing, China, 2009.
- Zhu, J.; Shi, Q.; Sun, C.; Hu, J.; Zhou, N.; Wei, H.; He, H.; Zhou, D.; Zhang, H.; Xiong, Q. Processing affects (decreases or increases) metabolites, flavonoids, black rice pigment, and total antioxidant capacity of purple glutinous rice grains. Food Chem. X 2022, 16, 100492. [Google Scholar] [CrossRef]
- Liyanaarachchi, G.V.V.; Mahanama, K.R.; Somasiri, H.S.; Punyasiri, P.N.; Ranatunga, M.A.B. Variation in amino acid composition of rice (Oryza sativa L.) as affected by the cooking technique. J. Food Process. Pres. 2022, 46, e16781. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, D.; Zhang, C.; Sreenivasulu, N.; Sun, S.S.M.; Liu, Q. Lysine biofortification of crops to promote sustained human health in the 21st century. J. Exp. Bot. 2022, 73, 1258–1267. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Yi, C.; Wu, N.N.; Tan, B. Steaming retains more phenolics, dietary fiber and antioxidant activities than cooking for rice with different milling processes. Cereal Chem. 2022, 99, 664–667. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Wang, Z.; Wang, C.; Li, H.; Huang, D.; Zhou, D.; Zhao, L.; Gong, R.; Pan, Y. Difference of metabolites of grain and milled rice between ‘Meixiangzhan2’ and ‘Qixinzhan’ with good eating quality. Mol. Plant Breed. 2021, 19, 8255–8264. [Google Scholar]
- Bohn, T.; Bonet, M.L.; Borel, P.; Keijer, J.; Landrier, J.F.; Milisav, I.; Ribot, J.; Riso, P.; Winklhofer-Roob, B.; Sharoni, Y.; et al. Mechanistic aspects of carotenoid health benefits–where are we now? Nutr. Res. Rev. 2021, 34, 276–302. [Google Scholar] [CrossRef] [PubMed]
- De’Nobili, M.D.; Soria, M.; Martinefski, M.R.; Tripodi, V.P.; Fissore, E.N.; Rojas, A.M. Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation. J. Food Eng. 2016, 175, 1–7. [Google Scholar] [CrossRef]
- Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric acid: Emerging applications of key biotechnology industrial product. Chem. Cent. J. 2017, 11, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of dietary fiber on human health. Food Sci. Hum. Well. 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Kesharwani, R.K.; Keservani, R.K. Protein, carbohydrates, and fats: Energy metabolism. In Sustained Energy for Enhanced Human Functions and Activity; Academic Press: Cambridge, MA, USA, 2017; pp. 103–115. [Google Scholar]
- Topal, F.; Nar, M.; Gocer, H.; Kalin, P.; Kocyigit, U.M.; Gülçin, İ.; Alwasel, S.H. Antioxidant activity of taxifolin: An activity–structure relationship. J. Enzym. Inhib. Med. Ch. 2016, 31, 674–683. [Google Scholar] [CrossRef]
- Heffernan, S.M.; Horner, K.; De Vito, G.; Conway, G.E. The role of mineral and trace element supplementation in exercise and athletic performance: A systematic review. Nutrients 2019, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wang, P.; Yamaji, N.; Ma, J.F. Plant nutrition for human nutrition: Hints from rice research and future perspectives. Mol. Plant 2020, 13, 825–835. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, Y.; Yang, X.; Lin, C.; Qiang, R.; Jia, F.; Zhang, H.; Xu, P.; Liao, Y.; Wang, J.; et al. Analysis of activity components involved in decreasing blood sugar, blood lipid and antioxidant capacity in rice varieties. J. Sichuan Agric. Univ. 2022, 40, 42–49. [Google Scholar]
- Sun, H.; Weaver, C.M. Decreased iron intake parallels rising iron deficiency anemia and related mortality rates in the US population. J. Nutr. 2021, 151, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Pereira, E.S.P.; Assumpção, E.C.; Dos Santos, F.B.C.; Ota, F.S.; de Oliveira Pereira, M.; Fidelis, M.C.; Fávaro, R.; Langen, S.S.B.; de Arruda, L.H.F.; et al. Assessment of clinical effects and safety of an oral supplement based on marine protein, vitamin C, grape seed extract, zinc, and tomato extract in the improvement of visible signs of skin aging in men. Clin. Cosmet. Inv. Derm. 2015, 8, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Huang, J.; Li, W.; Zheng, Y.; Jiang, J.; Ding, Z. Dietary supplementation of vitamin E and citric acid could significantly promote the relative expression of PPARα and aconitase genes, concentration of polyunsaturated fatty acids, antioxidant enzyme activities, and growth of juvenile cobia. Aquaculture 2020, 518, 734545. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, P.; Xia, C.; Cheng, Y.; Guo, X.; Li, Y. Effects of malic acid and citric acid on growth performance, antioxidant capacity, haematology and immune response of Carassius auratus gibelio. Aquac. Res. 2020, 51, 2766–2776. [Google Scholar] [CrossRef]
Amino Acid Name | YZN1_H | YZN1_B | YZN2_H | YZN2_B |
---|---|---|---|---|
L-alanine (Ala) (ng mg−1) | 1.21 c | 4.92 b | 3.49 bc | 9.51 a |
L-arginine (Arg) (ng mg−1) | 1.07 b | 4.39 a | 1.90 b | 5.30 a |
L-asparagine anhydrous (Asn) (ng mg−1) | 5.22 c | 10.48 b | 15.91 b | 28.24 a |
L-aspartic acid (Asp) (ng mg−1) | 5.26 c | 13.36 b | 12.22 b | 25.39 a |
L-cystine (Cys-Cys) (ng mg−1) | 0.00 | 0.00 | 0.00 | 0.00 |
L-glutamine (Gln) (ng mg−1) | 1.05 b | 2.37 ab | 0.94 b | 3.25 a |
L-glutamic acid (Glu) (ng mg−1) | 8.65 b | 22.35 a | 13.16 b | 21.96 a |
Glycine (Gly) (ng mg−1) | 0.49 c | 1.27 b | 1.16 b | 1.96 a |
L-histidine (His) (ng mg−1) | 0.27 b | 0.79 a | 0.34 b | 0.84 a |
L-isoleucine (Ile) (ng mg−1) | 0.12 b | 0.79 a | 0.30 b | 0.49 ab |
L-cysteine (Cys) (ng mg−1) | 0.0035 c | 0.0077 c | 0.0157 b | 0.035 a |
L-leucine (Leu) (ng mg−1) | 0.15 c | 0.93 a | 0.27 c | 0.61 b |
L-hydroxyproline (Hyp) (ng mg−1) | 0.0481 b | 0.1516 a | 0.0646 b | 0.1198 a |
L-tryptophan (Trp) (ng mg−1) | 0.68 b | 1.00 a | 0.90 b | 1.30 a |
L-lysine (Lys) (ng mg−1) | 0.17 b | 0.72 a | 0.38 b | 0.73 a |
L-methionine (Met) (ng mg−1) | 0.07 b | 0.25 a | 0.20 a | 0.26 a |
L-phenylalanine (Phe) (ng mg−1) | 0.20 c | 1.34 a | 0.29 c | 0.68 b |
L-proline (Pro) (ng mg−1) | 0.51 b | 1.48 a | 0.91 ab | 1.66 a |
L-serine (Ser) (ng mg−1) | 2.18 b | 4.77 a | 2.06 b | 5.34 a |
L-threonine (Thr) (ng mg−1) | 0.52 b | 1.84 a | 0.72 b | 1.69 a |
L-tyrosine (Tyr) (ng mg−1) | 0.38 b | 2.23 a | 0.53 b | 1.16 ab |
L-valine (Val) (ng mg−1) | 0.49 b | 2.42 a | 0.73 b | 3.99 a |
Name | YZN1_H | YZN1_B | YZN2_H | YZN2_B |
---|---|---|---|---|
CAROT (μg g−1 FW) | 4.77 c | 8.39 b | 4.32 c | 12.30 a |
TS (mg g−1 FW) | 82.03 ab | 74.34 c | 85.56 a | 79.64 b |
ATP (μg g−1 FW) | 40.15 a | 18.53 b | 8.37 c | 6.61 c |
SDF (g g−1) | 4.57% a | 1.11% c | 4.22% b | 0.98% c |
CF (g g−1) | 0.49% d | 2.19% a | 0.79% c | 2.06% b |
CP (g kg−1) | 93.00 c | 102.15 a | 88.79 d | 97.80 b |
Name | YZN1_H | YZN1_B | YZN2_H | YZN2_B | LOD (mg L−1) | LOQ (mg L−1) |
---|---|---|---|---|---|---|
Fe (mg kg−1) | 19.05 b | 31.47 a | 19.21 b | 28.92 a | 0.001 | 0.003 |
Mn (mg kg−1) | 8.36 b | 20.32 a | 8.02 b | 20.93 a | 0.002 | 0.007 |
Zn (mg kg−1) | 11.02 c | 14.57 a | 8.81 d | 11.59 b | 0.0001 | 0.0003 |
Cu (mg kg−1) | 3.42 a | 3.61 a | 2.28 b | 2.61 b | 0.0001 | 0.0003 |
Ca (mg kg−1) | 100.87 b | 158.69 a | 119.78 b | 172.25 a | 0.002 | 0.007 |
Mg (g kg−1) | 0.41 c | 1.16 a | 0.40 c | 1.06 b | 0.002 | 0.007 |
Se (mg kg−1) | 0.0533 b | 0.0285 c | 0.0836 a | 0.0486 b | 0.001 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Q.; Wang, R.; Sun, C.; Wang, R.; Wang, X.; Zhang, Y.; Zhang, H.; Zhu, J. Metabolites Associated with the Main Nutrients in Two Varieties of Purple Rice Processed to Polished Rice. Metabolites 2023, 13, 7. https://doi.org/10.3390/metabo13010007
Xiong Q, Wang R, Sun C, Wang R, Wang X, Zhang Y, Zhang H, Zhu J. Metabolites Associated with the Main Nutrients in Two Varieties of Purple Rice Processed to Polished Rice. Metabolites. 2023; 13(1):7. https://doi.org/10.3390/metabo13010007
Chicago/Turabian StyleXiong, Qiangqiang, Runnan Wang, Changhui Sun, Ruizhi Wang, Xiaoyu Wang, Yu Zhang, Hongcheng Zhang, and Jinyan Zhu. 2023. "Metabolites Associated with the Main Nutrients in Two Varieties of Purple Rice Processed to Polished Rice" Metabolites 13, no. 1: 7. https://doi.org/10.3390/metabo13010007
APA StyleXiong, Q., Wang, R., Sun, C., Wang, R., Wang, X., Zhang, Y., Zhang, H., & Zhu, J. (2023). Metabolites Associated with the Main Nutrients in Two Varieties of Purple Rice Processed to Polished Rice. Metabolites, 13(1), 7. https://doi.org/10.3390/metabo13010007