Hemorheological and Microcirculatory Relations of Acute Pancreatitis
Abstract
:1. Introduction
2. A Brief Overview of the Pathophysiology of Acute Pancreatitis
3. Relation of Hemorheology and Microcirculation
4. Concerning Animal Models of Acute Pancreatitis
5. Altered Hemorheological Factors Influencing Microcirculation in Acute Pancreatitis
6. Therapeutic Approaches Related to Hemorheology and Microcirculation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bollen, T.L. Acute pancreatitis: International classification and nomenclature. Clin. Radiol. 2016, 71, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.J.; Papachristou, G.I. New insights into acute pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Boxhoorn, L.; Voermans, R.P.; Bouwense, S.A.; Bruno, M.J.; Verdonk, R.C.; Boermeester, M.A.; van Santvoort, H.C.; Besselink, M.G. Acute pancreatitis. Lancet 2020, 396, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.E.; Morrison-Rees, S.; John, A.; Williams, J.G.; Brown, T.H.; Samuel, D.G. The incidence and aetiology of acute pancreatitis across Europe. Pancreatology 2017, 17, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Garg, P.K.; Singh, V.P. Organ failure due to systemic injury in acute pancreatitis. Gastroenterology 2019, 156, 2008–2023. [Google Scholar] [CrossRef]
- Heckler, M.; Hackert, T.; Hu, K.; Halloran, C.M.; Büchler, M.W.; Neoptolemos, J.P. Severe acute pancreatitis: Surgical indications and treatment. Langenbecks Arch. Surg. 2020, 406, 521–535. [Google Scholar] [CrossRef]
- Han, C.; Yang, H.Y.; Lv, Y.W.; Dong, Z.Q.; Liu, Y.; Li, Z.S.; Wang, D.; Hu, L.H. Global status of acute pancreatitis research in the last 20 years: A bibliometric study. Medicine 2022, 101, e31051. [Google Scholar] [CrossRef]
- Ke, L.; Tong, Z.H.; Li, W.Q.; Wu, C.; Li, N.; Windsor, J.A.; Li, J.S.; Petrov, M.S. Predictors of critical acute pancreatitis: A prospective cohort study. Medicine 2014, 93, e108. [Google Scholar] [CrossRef]
- Lankisch, P.G.; Apte, M.; Banks, P.A. Acute pancreatitis. Lancet 2015, 386, 85–96. [Google Scholar] [CrossRef]
- James, T.W.; Crockett, S.D. Management of acute pancreatitis in the first 72 hours. Curr. Opin. Gastroenterol. 2018, 34, 330–335. [Google Scholar] [CrossRef]
- Leppäniemi, A.; Tolonen, M.; Tarasconi, A.; Segovia-Lohse, H.; Gamberini, E.; Kirkpatrick, A.W.; Ball, C.G.; Parry, N.; Sartelli, M.; Wolbrink, D.; et al. 2019 WSES guidelines for the management of severe acute pancreatitis. World J. Emerg. Surg. 2019, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.; Perelman, A.; Birk, J.W. Acute management of pancreatitis: The key to best outcomes. Postgrad. Med. J. 2019, 95, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zeng, Y.B.; Chen, J.Y.; Luo, Q.; Wang, R.; Zhang, R.; Zheng, D.; Dong, Y.H.; Zou, W.B.; Xie, X.; et al. A simple new scoring system for predicting the mortality of severe acute pancreatitis: A retrospective clinical study. Medicine 2020, 99, e20646. [Google Scholar] [CrossRef] [PubMed]
- Szatmary, P.; Grammatikopoulos, T.; Cai, W.; Huang, W.; Mukherjee, R.; Halloran, C.; Beyer, G.; Sutton, R. Acute pancreatitis: Diagnosis and treatment. Drugs 2022, 82, 1251–1276. [Google Scholar] [CrossRef]
- Yu, Z.; Ni, Q.; Zhang, P.; Jia, H.; Yang, F.; Gao, H.; Zhu, H.; Liu, F.; Zhou, X.; Chang, H.; et al. Clinical utility of the pancreatitis activity scoring system in severe acute pancreatitis. Front. Physiol. 2022, 13, 935329. [Google Scholar] [CrossRef]
- Waldthaler, A.; Schütte, K.; Malfertheiner, P. Causes and mechanisms in acute pancreatitis. Dig. Dis. 2010, 28, 364–372. [Google Scholar] [CrossRef]
- Walkowska, J.; Zielinska, N.; Karauda, P.; Tubbs, R.S.; Kurtys, K.; Olewnik, Ł. The pancreas and known factors of acute pancreatitis. J. Clin. Med. 2022, 11, 5565. [Google Scholar] [CrossRef]
- Liu, X.M.; Liu, Q.G.; Xu, J.; Pan, C.E. Microcirculation disturbance affects rats with acute severe pancreatitis following lung injury. World J. Gastroenterol. 2005, 11, 6208–6211. [Google Scholar] [CrossRef]
- Saluja, A.; Dudeja, V.; Dawra, R.; Sah, R.P. Early intra-acinar events in pathogenesis of pancreatitis. Gastroenterology 2019, 156, 1979–1993. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Zhou, X.; Jin, T.; Wang, Z.; Sun, Y.; Wang, H.; Jiang, D.; Yin, C.; Shen, B.; et al. DIA-vased proteomic analysis of plasma protein profiles in patients with severe acute pancreatitis. Molecules 2022, 27, 3880. [Google Scholar] [CrossRef]
- Liu, D.; Wen, L.; Wang, Z.; Hai, Y.; Yang, D.; Zhang, Y.; Bai, M.; Song, B.; Wang, Y. The mechanism of lung and intestinal injury in acute pancreatitis: A review. Front. Med. 2022, 9, 904078. [Google Scholar] [CrossRef] [PubMed]
- Biczo, G.; Vegh, E.T.; Shalbueva, N.; Mareninova, O.A.; Elperin, J.; Lotshaw, E.; Gretler, S.; Lugea, A.; Malla, S.R.; Dawson, D.; et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology 2018, 154, 689–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulla, A.; Awla, D.; Hartman, H.; Rahman, M.; Jeppsson, B.; Regnér, S.; Thorlacius, H. Role of platelets in experimental acute pancreatitis. Br. J. Surg. 2011, 98, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Wetterholm, E.; Linders, J.; Merza, M.; Regner, S.; Thorlacius, H. Platelet-derived CXCL4 regulates neutrophil infiltration and tissue damage in severe acute pancreatitis. Transl. Res. 2016, 176, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Yan, C.; Zhang, G. Changes of serum procalcitonin (PCT), C-reactive protein (CRP), interleukin-17 (IL-17), interleukin-6 (IL-6), high mobility group protein-B1 (HMGB1) and D-dimer in patients with severe acute pancreatitis treated with continuous renal replacement therapy (CRRT) and its clinical significance. Med. Sci. Monit. 2018, 24, 5881–5886. [Google Scholar] [CrossRef]
- Linders, J.; Madhi, R.; Rahman, M.; Mörgelin, M.; Regner, S.; Brenner, M.; Wang, P.; Thorlacius, H. Extracellular cold-inducible RNA-binding protein regulates neutrophil extracellular trap formation and tissue damage in acute pancreatitis. Lab. Investig. 2020, 100, 1618–1630. [Google Scholar] [CrossRef]
- Liu, T.; Huang, W.; Szatmary, P.; Abrams, S.T.; Alhamdi, Y.; Lin, Z.; Greenhalf, W.; Wang, G.; Sutton, R.; Toh, C.H. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br. J. Surg. 2017, 104, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Berezina, T.L.; Zaets, S.B.; Mole, D.J.; Spolarics, Z.; Deitch, E.A.; Machiedo, G.W. Mesenteric lymph duct ligation decreases red blood cell alterations caused by acute pancreatitis. Am. J. Surg. 2005, 190, 800–804. [Google Scholar] [CrossRef]
- Patel, B.K.; Patel, K.H.; Bhatia, M.; Iyer, S.G.; Madhavan, K.; Moochhala, S.M. Gut microbiome in acute pancreatitis: A review based on current literature. World J. Gastroenterol. 2021, 27, 5019–5036. [Google Scholar] [CrossRef]
- Schiller, W.R.; Anderson, M.C. Microcirculation of the normal and inflamed canine pancreas. Ann. Surg. 1975, 181, 466–470. [Google Scholar] [CrossRef]
- Lewis, M.P.; Reber, H.A.; Ashley, S.W. Pancreatic blood flow and its role in the pathophysiology of pancreatitis. J. Surg. Res. 1998, 75, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.G.; Chen, Y.D. Influencing factors of pancreatic microcirculatory impairment in acute pancreatitis. World J. Gastroenterol. 2002, 8, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, C.M.; Christophi, C. Disturbances of the microcirculation in acute pancreatitis. Br. J. Surg. 2006, 93, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Toyama, M.T.; Lewis, M.P.; Kusske, A.M.; Reber, P.U.; Ashley, S.W.; Reber, H.A. Ischaemia-reperfusion mechanisms in acute pancreatitis. Scand. J. Gastroenterol. Suppl. 1996, 219, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, B.; Grabowska-Bochenek, R.; Piskorska, D.; Skorupa, A.; Cierpka, L.; Kuśmierski, S. Red blood cells deformability and oxidative stress in acute pancreatitis. Clin. Hemorheol. Microcirc. 2002, 27, 155–162. [Google Scholar] [PubMed]
- Escobar, J.; Pereda, J.; Arduini, A.; Sandoval, J.; Moreno, M.L.; Pérez, S.; Sabater, L.; Aparisi, L.; Cassinello, N.; Hidalgo, J.; et al. Oxidative and nitrosative stress in acute pancreatitis. Modulation by pentoxifylline and oxypurinol. Biochem. Pharmacol. 2012, 83, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Pădureanu, V.; Florescu, D.N.; Pădureanu, R.; Ghenea, A.E.; Gheonea, D.I.; Oancea, C.N. Role of antioxidants and oxidative stress in the evolution of acute pancreatitis (Review). Exp. Ther. Med. 2022, 23, 197. [Google Scholar] [CrossRef] [PubMed]
- Lipowsky, H.H. Microvascular rheology and hemodynamics. Microcirculation 2005, 12, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Dumnicka, P.; Maduzia, D.; Ceranowicz, P.; Olszanecki, R.; Drożdż, R.; Kuśnierz-Cabala, B. The interplay between inflammation, coagulation and endothelial injury in the early phase of acute pancreatitis: Clinical implications. Int. J. Mol. Sci. 2017, 18, 354. [Google Scholar] [CrossRef] [Green Version]
- Dobosz, M.; Hac, S.; Mionskowska, L.; Dobrowolski, S.; Wajda, Z. Microcirculatory disturbances of the pancreas in cerulein-induced acute pancreatitis in rats with reference to L-arginine, heparin, and procaine treatment. Pharmacol. Res. 1997, 36, 123–128. [Google Scholar] [CrossRef]
- Liu, L.T.; Li, Y.; Fan, L.Q.; Zhao, Q.; Wang, D.; Cheng, S.J.; Zhang, A.M.; Qin, Y.; Zhang, B. Effect of vascular bradykinin on pancreatic microcirculation and hemorheology in rats with severe acute pancreatitis. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2646–2650. [Google Scholar] [PubMed]
- Mickevičius, A.; Valantinas, J.; Stanaitis, J.; Jucaitis, T.; Mašalaitė, L. Changes in the velocity of blood in the portal vein in mild acute pancreatitis—A preliminary clinical study. Medicina 2019, 55, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Yang, J.; Sun, X.; Jin, X.; Sun, Q.; Xie, T.; Liu, Y.; Ha, S. Effect of kallikrein on microcirculation of rats with pancreatic ischemia reperfusion injury (IRI). Pak. J. Pharm. Sci. 2020, 33, 1981–1986. [Google Scholar] [PubMed]
- Baskurt, O.K. In vivo correlates of altered blood rheology. Biorheology 2008, 45, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, N.; Peto, K.; Magyar, Z.; Klarik, Z.; Varga, G.; Oltean, M.; Mantas, A.; Czigany, Z.; Tolba, R.H. Hemorheological and microcirculatory factors in liver ischemia-reperfusion injury—An update on pathophysiology, molecular mechanisms and protective strategies. Int. J. Mol. Sci. 2021, 22, 1864. [Google Scholar] [CrossRef]
- Alexy, T.; Detterich, J.; Connes, P.; Toth, K.; Nader, E.; Kenyeres, P.; Arriola-Montenegro, J.; Ulker, P.; Simmonds, M.J. Physical properties of blood and their relationship to clinical conditions. Front. Physiol. 2022, 13, 906768. [Google Scholar] [CrossRef]
- Cokelet, G.R.; Meiselman, H.J. Macro- and micro-rheological properties of blood. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Meiselman, H.J., Eds.; IOS Press: Amsterdam, The Netherlands, 2007; pp. 45–71. [Google Scholar]
- Baskurt, O.K. Mechanisms of blood rheology alterations. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Meiselman, H.J., Eds.; IOS Press: Amsterdam, The Netherlands, 2007; pp. 170–190. [Google Scholar]
- Brun, J.F.; Varlet-Marie, E.; Myzia, J.; Raynaud de Mauverger, E.; Pretorius, E. Metabolic influences modulating erythrocyte deformability and eryptosis. Metabolites 2021, 12, 4. [Google Scholar] [CrossRef]
- Baskurt, O.K.; Neu, B.; Meiselman, H.J. Determinants of red blood cell aggregation. In Red Blood Cell Aggregation; Baskurt, O.K., Neu, B., Meiselman, H.J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 9–29. [Google Scholar]
- Nemeth, N.; Deak, A.; Szentkereszty, Z.; Peto, K. Effects and influencing factors on hemorheological variables taken into consideration in surgical pathophysiology research. Clin. Hemorheol. Microcirc. 2018, 69, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Brun, J.F.; Varlet-Marie, E.; Myzia, J.; Mercier, J.; Raynaud de Mauverger, E. Extended physiological functions for erythrocyte deformability and aggregation beyond regulation of oxygen delivery. Ser. Biomech. 2022, 36, 7–20. [Google Scholar] [CrossRef]
- Nash, G.B.; Watts, T.; Thornton, C.; Barigou, M. Red cell aggregation as a factor influencing margination and adhesion of leukocytes and platelets. Clin. Hemorheol. Microcirc. 2008, 39, 303–310. [Google Scholar] [CrossRef]
- Case, R.M. Is the rat pancreas an appropriate model of the human pancreas? Pancreatology 2006, 6, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Su, K.H.; Cuthbertson, C.; Christophi, C. Review of experimental animal models of acute pancreatitis. HPB 2006, 8, 264–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerch, M.M.; Gorelick, F.S. Models of acute and chronic pancreatitis. Gastroenterology 2013, 144, 1180–1193. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.B.; Liao, D.H.; Nissen, T.D. Animal models of pancreatitis: Can it be translated to human pain study? World J. Gastroenterol. 2013, 19, 7222–7230. [Google Scholar] [CrossRef]
- Zhan, X.; Wang, F.; Bi, Y.; Ji, B. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G343–G355. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, F.S.; Lerch, M.M. Do animal models of acute pancreatitis reproduce human disease? Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 251–262. [Google Scholar] [CrossRef] [Green Version]
- D’Haese, J.; Werner, J. Translational research for acute pancreatitis—Which results have really influenced our therapy? Visc. Med. 2018, 34, 436–438. [Google Scholar] [CrossRef]
- Silva-Vaz, P.; Abrantes, A.M.; Castelo-Branco, M.; Gouveia, A.; Botelho, M.F.; Tralhão, J.G. Murine models of acute pancreatitis: A critical appraisal of clinical relevance. Int. J. Mol. Sci. 2019, 20, 2794. [Google Scholar] [CrossRef] [Green Version]
- Vrolyk, V.; Singh, B. Animal models to study the role of pulmonary intravascular macrophages in spontaneous and induced acute pancreatitis. Cell Tissue Res. 2020, 380, 207–222. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Fu, X.; Mukherjee, R.; Xia, Q.; Jakubowska, M.A.; Ferdek, P.E.; Huang, W. Experimental acute pancreatitis models: History, current status, and role in translational research. Front. Physiol. 2020, 11, 614591. [Google Scholar] [CrossRef]
- Durand, S.; Estival, A.; Vieu, C.; Clemente, F.; Douste-Blazy, L. Lipid content of human and rat pancreas. Pancreas 1987, 2, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Hitomi, S.; Ohtsuka, A.; Taguchi, T.; Fujita, T. Pancreatic insulo-acinar portal systems in humans, rats, and some other mammals: Scanning electron microscopy of vascular casts. Microsc. Res. Tech. 1997, 37, 478–488. [Google Scholar] [CrossRef]
- Jay, T.R.; Heald, K.A.; Carless, N.J.; Topham, D.E.; Downing, R. The distribution of porcine pancreatic betacells at ages 5, 12 and 24 weeks. Xenotransplantation 1999, 6, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Regoli, M.; Bertelli, E.; Orazioli, D.; Fonzi, L.; Bastianini, A. Pancreatic lymphatic system in rodents. Anat. Rec. 2001, 263, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, T.H.; Halvorson, K.G.; Peters, C.M.; Ghilardi, J.R.; Kuskowski, M.A.; Wong, G.Y.; Mantyh, P.W. A quantitative analysis of the sensory and sympathetic innervations of the mouse pancreas. Neuroscience 2006, 137, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Levetan, C.S.; Pierce, S.M. Distinctions between the islets of mice and men: Implications for new therapies for type 1 and 2 diabetes. Endocr. Pract. 2013, 19, 301–312. [Google Scholar] [CrossRef]
- Dolenšek, J.; Rupnik, M.S.; Stožer, A. Structural similarities and differences between the human and the mouse pancreas. Islets 2015, 7, e1024405. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Orav, J.; Banks, P.A. Hemoconcentration is an early marker for organ failure and necrotizing pancreatitis. Pancreas 2000, 20, 367–372. [Google Scholar] [CrossRef]
- Gardner, T.B.; Olenec, C.A.; Chertoff, J.D.; Mackenzie, T.A.; Robertson, D.J. Hemoconcentration and pancreatic necrosis: Further defining the relationship. Pancreas 2006, 33, 169–173. [Google Scholar] [CrossRef]
- Parsa, N.; Faghih, M.; Garcia Gonzalez, F.; Moran, R.A.; Kamal, A.; Jalaly, N.Y.; Al-Grain, H.; Akshintala, V.S.; Makary, M.A.; Khashab, M.A.; et al. Early hemoconcentration is associated with increased opioid use in hospitalized patients with acute pancreatitis. Pancreas 2019, 48, 193–198. [Google Scholar] [CrossRef]
- Starikov, A.V.; Nastenko, E.P. Korrektsiia narusheniĭ reologicheskikh svoĭstv krovi pri pankreatite [The correction of disorders of the rheological properties of the blood in pancreatitis]. Klin. Khirurgiia. 1994, 3, 27–29. (In Russian) [Google Scholar]
- Yue, W.; Liu, Y.; Ding, W.; Jiang, W.; Huang, J.; Zhang, J.; Liu, J. The predictive value of the prealbumin-to-fibrinogen ratio in patients with acute pancreatitis. Int. J. Clin. Pract. 2015, 69, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Popik, E. Vörösvértestek alakváltozása acut necrotisaló pancreatitisben [Erythrocyte deformation in acute necrotizing pancreatitis]. Orv. Hetil. 1994, 135, 1165. (In Hungarian) [Google Scholar]
- Chmiel, B.; Pajak, J.; Grabowska-Bochenek, R.; Cierpka, L. Decreased red blood cells deformability in acute pancreatitis in the rat. Effect of tirilazad mesylate. Folia Med. Crac. 2003, 44, 109–115. [Google Scholar]
- Kotan, R.; Nemeth, N.; Kiss, F.; Posan, J.; Miszti-Blasius, K.; Toth, L.; Furka, I.; Miko, I.; Sapy, P.; Szentkereszty, Z. Micro-rheological changes during experimental acute pancreatitis in the rat. Clin. Hemorheol. Microcirc. 2012, 51, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szentkereszty, Z.; Kotan, R.; Kiss, F.; Klarik, Z.; Posan, J.; Furka, I.; Sapy, P.; Miko, I.; Peto, K.; Nemeth, N. Effects of various drugs (flunixin, pentoxifylline, enoxaparin) modulating micro-rheological changes in cerulein-induced acute pancreatitis in the rat. Clin. Hemorheol. Microcirc. 2014, 57, 303–314. [Google Scholar] [CrossRef]
- Schilling, M.K.; Redaelli, C.; Reber, P.U.; Friess, H.; Signer, C.; Stoupis, C.; Büchler, M.W. Microcirculation in chronic alcoholic pancreatitis: A laser Doppler flow study. Pancreas 1999, 19, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Silva-Vaz, P.; Jarak, I.; Rato, L.; Oliveira, P.F.; Morgado-Nunes, S.; Paulino, A.; Castelo-Branco, M.; Botelho, M.F.; Tralhão, J.G.; Alves, M.G.; et al. Plasmatic oxidative and metabonomic profile of patients with different degrees of biliary acute pancreatitis severity. Antioxidants 2021, 10, 988. [Google Scholar] [CrossRef]
- Reinhart, W.H.; Gaudenz, R.; Walter, R. Acidosis induced by lactate, pyruvate, or HCl increases blood viscosity. J. Crit. Care 2002, 17, 38–42. [Google Scholar] [CrossRef]
- Reinhart, W.H.; Chien, S. Red cell rheology in stomatocyte-echinocyte transformation, roles of cell geometry and cell shape. Blood 1980, 67, 1110–1118. [Google Scholar] [CrossRef] [Green Version]
- Kameneva, M.V.; Antaki, J.F. Mechanical trauma to blood. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Meiselman., H.J., Eds.; IOS Press: Amsterdam, The Netherlands, 2007; pp. 206–227. [Google Scholar]
- Gajecki, D.; Gawryś, J.; Szahidewicz-Krupska, E.; Doroszko, A. Role of erythrocytes in nitric oxide metabolism and paracrine regulation of endothelial function. Antioxidants 2022, 11, 943. [Google Scholar] [CrossRef]
- Lee, D.W.; Cho, C.M. Predicting severity of acute pancreatitis. Medicina 2022, 58, 787. [Google Scholar] [CrossRef] [PubMed]
- Zaets, S.B.; Berezina, T.L.; Caruso, J.; Xu, D.Z.; Deitch, E.A.; Machiedo, G.W. Mesenteric lymph duct ligation prevents shock-induced RBC deformability and shape changes. J. Surg. Res. 2003, 109, 51–56. [Google Scholar] [CrossRef]
- Zaets, S.B.; Berezina, T.L.; Morgan, C.; Kamiyama, M.; Spolarics, Z.; Xu, D.Z.; Deitch, E.A.; Machiedo, G.W. Effect of trauma-hemorrhagic shock on red blood cell deformability and shape. Shock 2003, 19, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Machiedo, G.W.; Zaets, S.B.; Berezina, T.L.; Xu, D.Z.; Feketova, E.; Spolarics, Z.; Deitch, E.A. Trauma-hemorrhagic shock-induced red blood cell damage leads to decreased microcirculatory blood flow. Crit. Care Med. 2009, 37, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Fanous, M.Y.; Phillips, A.J.; Windsor, J.A. Mesenteric lymph: The bridge to future management of critical illness. JOP 2007, 8, 374–399. [Google Scholar]
- Shanbhag, S.T.; Choong, B.; Petrov, M.; Delahunt, B.; Windsor, J.A.; Phillips, A.R.J. Acute pancreatitis conditioned mesenteric lymph causes cardiac dysfunction in rats independent of hypotension. Surgery 2018, 163, 1097–1105. [Google Scholar] [CrossRef]
- Donadello, K.; Piagnerelli, M.; Reggiori, G.; Gottin, L.; Scolletta, S.; Occhipinti, G.; Zouaoui Boudjeltia, K.; Vincent, J.L. Reduced red blood cell deformability over time is associated with a poor outcome in septic patients. Microvasc. Res. 2015, 101, 8–14. [Google Scholar] [CrossRef]
- Nemeth, N.; Berhes, M.; Kiss, F.; Hajdu, E.; Deak, A.; Molnar, A.; Szabo, J.; Fulesdi, B. Early hemorheological changes in a porcine model of intravenously given E. coli induced fulminant sepsis. Clin. Hemorheol. Microcirc. 2015, 61, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Bateman, R.M.; Sharpe, M.D.; Singer, M.; Ellis, C.G. The effect of sepsis on the erythrocyte. Int. J. Mol. Sci. 2017, 18, 1932. [Google Scholar] [CrossRef] [Green Version]
- Toth, J.; Debreceni, I.B.; Berhes, M.; Hajdu, E.; Deak, A.; Peto, K.; Szabo, J.; Nemeth, N.; Fulesdi, B.; Kappelmayer, J. Red blood cell and platelet parameters are sepsis predictors in an Escherichia coli induced lethal porcine model. Clin. Hemorheol. Microcirc. 2017, 66, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, N.; Peto, K.; Deak, A.; Sogor, V.; Varga, G.; Tanczos, B.; Balog, K.; Csiszko, A.; Godo, Z.; Szentkereszty, Z. Hemorheological factors can be informative in comparing treatment possibilities of abdominal compartment syndrome. Clin. Hemorheol. Microcirc. 2016, 64, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Flormann, D.; Kuder, E.; Lipp, P.; Wagner, C.; Kaestner, L. Is there a role of C-reactive protein in red blood cell aggregation? Int. J. Lab. Hematol. 2015, 37, 474–482. [Google Scholar] [CrossRef]
- Gomez Rodriguez, R.A.; Gomez Rubio, M.; Saez Royuela, F.; Heredia Centeno, M.L.; Miranda Baiocchi, R.; Bosch Benítez, J.M.; Outeriño Hernanz, J.; Hernandez Guio, C. Valor pronostico del fibrinogeno en las pancreatitis agudas [Prognostic value of fibrinogen measurement in acute pancreatitis]. Rev. Esp. Enferm. Apar. Dig. 1989, 75, 375–377. (In Spanish) [Google Scholar]
- Wang, B.; Tang, R.; Wu, S.; Liu, M.; Kanwal, F.; Rehman, M.F.U.; Wu, F.; Zhu, J. Clinical value of neutrophil CD64 index, PCT, and CRP in acute pancreatitis complicated with abdominal infection. Diagnostics 2022, 12, 2409. [Google Scholar] [CrossRef] [PubMed]
- Vanderelst, J.; Rousseau, A.; Selvais, N.; Biston, P.; Zouaoui Boudjeltia, K.; Piagnerelli, M. Evolution of red blood cell membrane complement regulatory proteins and rheology in septic patients: An exploratory study. Front. Med. 2022, 9, 880657. [Google Scholar] [CrossRef]
- Reffelmann, T.; Kloner, R.A. The “no-reflow” phenomenon, basic science and clinical correlates. Heart 2002, 87, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Kalogeris, T.; Korthuis, R.J. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic. Biol. Med. 2019, 135, 182–197. [Google Scholar] [CrossRef]
- Pantea-Roșan, L.R.; Bungau, S.G.; Radu, A.F.; Pantea, V.A.; Moisi, M.I.; Vesa, C.M.; Behl, T.; Nechifor, A.C.; Babes, E.E.; Stoicescu, M.; et al. A narrative review of the classical and modern diagnostic methods of the no-reflow phenomenon. Diagnostics 2022, 12, 932. [Google Scholar] [CrossRef]
- Huang, Z.; Ma, X.; Jia, X.; Wang, R.; Liu, L.; Zhang, M.; Wan, X.; Tang, C.; Huang, L. Prevention of severe acute pancreatitis with cyclooxygenase-2 inhibitors: A randomized controlled clinical trial. Am. J. Gastroenterol. 2020, 115, 473–480. [Google Scholar] [CrossRef]
- Silva-Vaz, P.; Abrantes, A.M.; Morgado-Nunes, S.; Castelo-Branco, M.; Gouveia, A.; Botelho, M.F.; Tralhão, J.G. Evaluation of prognostic factors of severity in acute biliary pancreatitis. Int. J. Mol. Sci. 2020, 21, 4300. [Google Scholar] [CrossRef] [PubMed]
- Horvath, I.L.; Bunduc, S.; Fehervari, P.; Vancsa, S.; Nagy, R.; Garmaa, G.; Kleiner, D.; Hegyi, P.; Eross, B.; Csupor, D. The combination of ulinastatin and somatostatin reduces complication rates in acute pancreatitis: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2022, 12, 17979. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Zhou, J.; Mao, W.; Chen, T.; Zhu, Y.; Pan, X.; Mei, H.; Singh, V.; Buxbaum, J.; Doig, G.; et al. Immune enhancement in patients with predicted severe acute necrotising pancreatitis: A multicentre double-blind randomised controlled trial. Intensive Care Med. 2022, 48, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Sardana, O.; Kumari, P.; Singh, R.; Chopra, H.; Emran, T.B. Health-related quality of life among acute pancreatitis patients correlates with metabolic variables and associated factors. Ann. Med. Surg. 2022, 82, 104504. [Google Scholar] [CrossRef] [PubMed]
- Szentkereszty, Z.; Kotan, R.; Posan, J.; Arkossy, P.; Sapy, P. Therapeutic tactics in the treatment of acute necrotizing pancreatitis. Hepatogastroenterology 2008, 55, 266–269. [Google Scholar] [PubMed]
- Wu, F.; She, D.; Ao, Q.; Zhang, S.; Li, J. Aggressive intravenous hydration protocol of Lactated Ringer’s solution benefits patients with mild acute pancreatitis: A meta-analysis of 5 randomized controlled trials. Front. Med. 2022, 9, 966824. [Google Scholar] [CrossRef]
- Antkowiak, R.; Bialecki, J.; Chabowski, M.; Domoslawski, P. Treatment of microcirculatory disturbances in acute pancreatitis: Where are we now? Pancreas 2022, 51, 415–421. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.J.; Huang, L.M.; Tang, C.W. Immunomodulatory therapies for acute pancreatitis. World J. Gastroenterol. 2014, 20, 16935–16947. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Yang, M.; Zheng, D.; Chen, L. Systematic review and meta-analysis of the safety and effectiveness of low molecular heparin for severe acute pancreatitis. Ann. Palliat. Med. 2021, 10, 11695–11704. [Google Scholar] [CrossRef]
- Matheus, A.S.; Coelho, A.M.; Sampietre, S.; Jukemura, J.; Patzina, R.A.; Cunha, J.E.; Machado, M.C. Do the effects of pentoxifylline on the inflammatory process and pancreatic infection justify its use in acute pancreatitis? Pancreatology 2009, 9, 687–693. [Google Scholar] [CrossRef]
- Werner, J.; Hartwig, W.; Hackert, T.; Kaiser, H.; Schmidt, J.; Gebhard, M.M.; Büchler, M.W.; Klar, E. Multidrug strategies are effective in the treatment of severe experimental pancreatitis. Surgery 2012, 151, 372–381. [Google Scholar] [CrossRef] [PubMed]
Parameter/Variable | Main Changes | Reference Example | |
---|---|---|---|
Clinical | Experimental | ||
Blood viscosity | Increase (mainly by hemoconcentration, dehydration) | [71,72,73] | [41] |
Plasma viscosity | Increase (depending on fibrinogen, lipoproteins, and triglyceride concentration) | [74,75] | [41] |
Red blood cell deformability (e.g., elongation index) | Impairment * | [35,76] | [28,77,78,79] |
Red blood cell aggregation (e.g., aggregation index) | Enhancement * | [74] | [41,79] |
Microcirculatory parameters (e.g., blood flux unit, perfusion units, functional capillary density) | General deterioration * | [32,42,80] | [18,30,31,32,41,43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotan, R.; Peto, K.; Deak, A.; Szentkereszty, Z.; Nemeth, N. Hemorheological and Microcirculatory Relations of Acute Pancreatitis. Metabolites 2023, 13, 4. https://doi.org/10.3390/metabo13010004
Kotan R, Peto K, Deak A, Szentkereszty Z, Nemeth N. Hemorheological and Microcirculatory Relations of Acute Pancreatitis. Metabolites. 2023; 13(1):4. https://doi.org/10.3390/metabo13010004
Chicago/Turabian StyleKotan, Robert, Katalin Peto, Adam Deak, Zsolt Szentkereszty, and Norbert Nemeth. 2023. "Hemorheological and Microcirculatory Relations of Acute Pancreatitis" Metabolites 13, no. 1: 4. https://doi.org/10.3390/metabo13010004
APA StyleKotan, R., Peto, K., Deak, A., Szentkereszty, Z., & Nemeth, N. (2023). Hemorheological and Microcirculatory Relations of Acute Pancreatitis. Metabolites, 13(1), 4. https://doi.org/10.3390/metabo13010004