Coumarins of Lovage Roots (Levisticum officinale W.D.J.Koch): LC-MS Profile, Quantification, and Stability during Postharvest Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Plant Extracts Preparation
2.3. High-Performance Liquid Chromatography with Photodiode Array Detection and Electrospray Ionization Triple Quadrupole Mass Spectrometric Detection (HPLC-PDA-ESI-TQ-MS) Metabolite Profiling
2.4. HPLC-PDA-MS Metabolite Quantification
2.5. Lovage Roots Storage Experiment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Metabolite Profiling of Fresh Lovage Roots
3.2. Quantification of Four Principal Coumarins in Lovage Roots
3.3. Post-Harvest Changes in Four Principal Coumarins in Lovage Roots
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iran, M.H.M.; Javanmardi, J. Lovage. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 371–390. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Złotek, U.; Rybczyńska-Tkaczyk, K. Influence of elicitation and drying methods on anti-metabolic syndrome, and antimicrobial properties of extracts and hydrolysates obtained from elicited lovage (Levisticum officinale Koch). Nutrients 2021, 13, 4365. [Google Scholar] [CrossRef] [PubMed]
- Matłok, N.; Gorzelany, J.; Figiel, A.; Balawejder, M. Effect of fertilisation on the quality of dried coriander (Coriandrum sativum L.) and lovage (Levisticum officinale). Agriculture 2021, 11, 386. [Google Scholar] [CrossRef]
- Naves, Y.R. Etudes sur les matières végétales volatiles XXIV. Composition de l’huile essentielle et du résinoïde de livèche (Levisticum officinale Koch). Helv. Chim. Acta 1943, 26, 1281–1295. [Google Scholar] [CrossRef]
- Fehr, D. Über das ätherische Öl von Levisticum officinale. Planta Med. 1980, 40, 34–40. [Google Scholar] [CrossRef]
- Bylaitė, E.; Venskutonis, R.P.; Roozen, J.P. Influence of harvesting time on the composition of volatile components in different anatomical parts of lovage (Levisticum officinale Koch.). J. Agric. Food Chem. 1998, 46, 3735–3740. [Google Scholar] [CrossRef]
- Mitsuhashi, H.; Muramatsu, T.; Nagai, U.; Nakano, T.; Ueno, K. Studies on the constituents of Umbelliferae plants. VIII. Distribution of alkylphthalides in Umbelliferae plants. Chem. Pharm. Bull. 1963, 11, 1317–1319. [Google Scholar] [CrossRef] [Green Version]
- Gijbels, M.; Scheffer, J.; Baerheim Svendsen, A. Z-Butylidenephtalide in the essential oil from roots of Levisticum officinale. Planta Med. 1980, 40, 41–47. [Google Scholar] [CrossRef]
- Gijbels, M.; Scheffer, J.; Baerheim Svendsen, A. Phthalides in the essential oil from roots of Levisticum officinale. Planta Med. 1982, 44, 207–211. [Google Scholar] [CrossRef]
- Zschocke, S.; Liu, J.-H.; Stuppner, H.; Bauer, R. Comparative study of roots of Angelica sinensis and related umbelliferous drugs by thin layer chromatography, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. Phytochem. Anal. 1998, 9, 283–290. [Google Scholar] [CrossRef]
- Moradalizadeh, M.; Akhgar, M.R.; Rajaei, P.; Faghihi-Zarandi, A. Chemical composition of the essential oils of Levisticum officinale growing wild in Iran. Chem. Nat. Comp. 2012, 47, 1007–1009. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Cichy, M.; Wray, V.; Höfle, G. Neue Inhaltsstoffe von Levisticum officinale Koch (Liebstöckel). Liebigs Ann. Chem. 1984, 1984, 397–400. [Google Scholar] [CrossRef]
- Złotek, U.; Szymanowska, U.; Pecio, Ł.; Kozachok, S.; Jakubczyk, A. Antioxidative and potentially anti-inflammatory activity of phenolics from lovage leaves Levisticum officinale Koch elicited with jasmonic acid and yeast extract. Molecules 2019, 24, 1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Złotek, U.; Szymanowska, U.; Rybczyńska-Tkaczyk, K.; Jakubczyk, A. Effect of jasmonic acid, yeast extract elicitation, and drying methods on the main bioactive compounds and consumer quality of lovage (Levisticum officinale Koch). Foods 2020, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Miran, M.; Monsef Esfahani, H.; Jung, J.H.; Aliahmadi, A.; Skropeta, D. Characterization and antibacterial activity of phthalides from the roots of the medicinal herb Levisticum officinale W.D.J. Koch. Iran J. Pharm. Res. 2020, 19, e124420. [Google Scholar] [CrossRef]
- Schinkovitz, A.; Stavri, M.; Gibbons, S.; Bucar, F. Antimycobacterial polyacetylenes from Levisticum officinale. Phytother. Res. 2008, 22, 681–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemzūraitė, A.; Venskutonis, P.R.; Baranauskienė, R.; Navikienė, D. Optimization of supercritical CO2 extraction of different anatomical parts of lovage (Levisticum officinale Koch.) using response surface methodology and evaluation of extracts composition. J. Supercrit. Fluids 2014, 87, 93–103. [Google Scholar] [CrossRef]
- Cu, J.-Q.; Pu, F.; Shi, Y.; Perineau, F.; Delmas, M.; Gaset, A. The chemical composition of lovage headspace and essential oils produced by solvent extraction with various solvents. J. Essent. Oil Res. 1990, 2, 53–59. [Google Scholar] [CrossRef]
- Szebeni-Galambosi, Z.; Galambosi, B.; Holm, Y. Growth, yield and essential oil of lovage grown in Finland. J. Essent. Oil Res. 1992, 4, 375–380. [Google Scholar] [CrossRef]
- Raal, A.; Arak, E.; Orav, A.; Kailas, T.; Müürisepp, M. Composition of the essential oil of Levisticum officinale W.D.J. Koch from some European countries. J. Essent. Oil Res. 2008, 20, 318–322. [Google Scholar] [CrossRef]
- Dayeni, M.; Omidbaigi, R.; Bastan, M.R. Essential oil content and composition of Levisticum officinale large scale cultivated in Iran. J. Essent. Oil Bear. Plants 2006, 9, 152–155. [Google Scholar] [CrossRef]
- Heidarpour, O.; Souri, M.K.; Omidbaigi, R. Changes in content and constituents of essential oil in different plant parts of Lovage (Levisticum officinale Koch. Cv. Budakalaszi) cultivated in Iran. J. Essent. Oil Bear. Plants 2013, 16, 318–322. [Google Scholar] [CrossRef]
- Miran, M.; Monsef Esfahani, H.; Moridi Farimani, M.; Ahmadi, A.A.; Ebrahimi, S.N. Essential oil composition and antibacterial activity of Levisticum officinale Koch at different developmental stages. J. Essent. Oil Bear. Plants 2018, 21, 1051–1055. [Google Scholar] [CrossRef]
- Mirjalili, M.; Salehi, P.; Sonboli, A.; Hadian, J.; Ebrahimi, S.; Yousefzadi, M. The composition and antibacterial activity of the essential oil of Levisticum officinale Koch. flowers and fruits at different developmental stages. J. Serb. Chem. Soc. 2010, 75, 1661–1669. [Google Scholar] [CrossRef]
- Sertel, S.; Eichhorn, T.; Plinkert, P.K.; Efferth, T. Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res. 2011, 31, 185–191. [Google Scholar]
- Samiee, K.; Akhgar, M.R.; Rustaiyan, A.; Masoudi, S. Composition of the volatiles of Ferulago carduchorum Boiss. et Hausskn. and Levisticum officinale Koch. obtained by hydrodistillation and extraction. J. Essent. Oil Res. 2006, 18, 19–22. [Google Scholar] [CrossRef]
- Ceska, O.; Chaudhary, S.K.; Warrington, P.J.; Ashwood-Smith, M.J. Photoactive furocoumarins in fruits of some umbellifers. Phytochemistry 1986, 26, 165–169. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Hallmann, E.; Kopczyńska, K.; Góralska-Walczak, R.; Barański, M.; Grycz, A.; Seidler-Łożykowska, K.; Rembiałkowska, E.; Kazimierczak, R. Profile of selected secondary metabolites and antioxidant activity of valerian and lovage grown in organic and low-input conventional system. Metabolites 2022, 12, 835. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Finimundy, T.C.; Pereira, C.; Alves, M.J.; Calhelha, R.C.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Lovage (Levisticum officinale W.D.J. Koch) roots: A source of bioactive compounds towards a circular economy. Resources 2020, 9, 81. [Google Scholar] [CrossRef]
- Tajner-Czopek, A.; Gertchen, M.; Rytel, E.; Kita, A.; Kucharska, A.Z.; Sokół-Łętowska, A. Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivatives. Antioxidants 2020, 9, 412. [Google Scholar] [CrossRef]
- Heghes, S.C.; Vostinaru, O.; Mogosan, C.; Miere, D.; Iuga, C.A.; Filip, L. Safety profile of nutraceuticals rich in coumarins: An update. Front. Pharmacol. 2022, 13, 803338. [Google Scholar] [CrossRef] [PubMed]
- Lončar, M.; Jakovljević, M.; Šubarić, D.; Pavlić, M.; Buzjak Služek, V.; Cindrić, I. Coumarins in food and methods of their determination. Foods 2020, 9, 645. [Google Scholar] [CrossRef] [PubMed]
- Arsenov, D.; Župunski, M.; Pajević, S.; Nemeš, I.; Simin, N.; Alnuqaydan, A.M.; Watson, M.; Aloliqi, A.A.; Mimica-Dukić, N. Roots of Apium graveolens and Petroselinum crispum—Insight into phenolic status against toxicity level of trace elements. Plants 2021, 10, 1785. [Google Scholar] [CrossRef] [PubMed]
- Kovač-Bešović, E.E.; Durić, K. Thin layer chromatography application in qualitative analysis on presence of coumarins and flavonoids in plant material. Bosn. J. Basic Med. Sci. 2003, 3, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Nam, J.; Chang, W.; Zulfugarov, I.S.; Okhlopkova, Z.M.; Olennikov, D.N.; Chirikova, N.K.; Kim, S.-W. Angelica gigas Nakai and decursin downregulate Myc expression to promote cell death in B-cell lymphoma. Sci. Rep. 2018, 8, 10590. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N. New coumarins from roots and fruit of Peucedanum morisonii. Chem. Nat. Compd. 2022, 58, 816–821. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Fedorov, I.A.; Kashchenko, N.I.; Chirikova, N.K.; Vennos, C. Khellactone derivatives and other phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV profile, and antiobesity potential of dihydrosamidin. Molecules 2019, 24, 2286. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Chirikova, N.K. New compounds from flowers of Phlojodicarpus sibiricus. Chem. Nat. Compd. 2020, 56, 628–632. [Google Scholar] [CrossRef]
- Hassan, S.T.S.; Šudomová, M.; Mazurakova, A.; Kubatka, P. Insights into antiviral properties and molecular mechanisms of non-flavonoid polyphenols against human herpesviruses. Int. J. Mol. Sci. 2022, 23, 13891. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Ng, Y.-Y.; Li, W.-S.; Tzeng, C.-Y.; Hsu, T.-Y.; Huang, W.-H.; Tsai, J.-C. Ameliorative effect of imperatorin on Dermatophagoides pteronyssinus-induced allergic asthma by suppressing the Th2 response in mice. Molecules 2022, 27, 7028. [Google Scholar] [CrossRef]
- Ali, M.Y.; Zamponi, G.W.; Seong, S.H.; Jung, H.A.; Choi, J.S. 6-Formyl umbelliferone, a furanocoumarin from Angelica decursiva L., inhibits key diabetes-related enzymes and advanced glycation end-product formation. Molecules 2022, 27, 5720. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, J.; Nakos-Bimpos, M.; Polissidis, A.; Dalla, C.; Kokras, N.; Skalicka-Woźniak, K.; Budzyńska, B. Imperatorin influences depressive-like behaviors: A preclinical study on behavioral and neurochemical sex differences. Molecules 2022, 27, 1179. [Google Scholar] [CrossRef] [PubMed]
- Issa, M.Y.; Elshal, M.F.; Fathallah, N.; Abdelkawy, M.A.; Bishr, M.; Salama, O.; Abulfadl, Y.S. Potential anticancer activity of the furanocoumarin derivative xanthotoxin isolated from Ammi majus L. fruits: In vitro and in silico studies. Molecules 2022, 27, 943. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Y.; Jo, A.; Shin, J.; Lim, E.H.; Lee, Y.E.; Jeong, D.E.; Lee, M. Anti-inflammatory activities of isogosferol, a furanocoumarin isolated from Citrus junos seed shells through bioactivity-guided fractionation. Molecules 2019, 24, 4088. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y. Changes in carotenoid content of carrots during growth and post-harvest storage. Food Chem. 1986, 20, 285–293. [Google Scholar] [CrossRef]
- Sobratee, N.; Workneh, T.S. Modelling of changes in postharvest quality parameters of stored carrots subjected to pre- and postharvest treatments. Int. J. Food Eng. 2015, 11, 801–813. [Google Scholar] [CrossRef]
- Imsic, M.; Winkler, S.; Tomkins, B.; Jones, R. Effect of storage and cooking on β-carotene isomers in carrots (Daucus carota L. cv. “Stefano”). J. Agric. Food Chem. 2010, 58, 5109–5113. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Falagán, N.; Rossi, S.; Terry, L.A. A comprehensive study of factors affecting postharvest disorder development in celery. Postharv. Biol. Technol. 2021, 172, 111384. [Google Scholar] [CrossRef]
- Johnson, C.E.; Elbe, J.H.; Lindsay, R.C. Extension of post-harvest storage life of sliced celery. J. Food Sci. 1974, 39, 678–680. [Google Scholar] [CrossRef]
- Tattini, M.; Di Ferdinando, M.; Brunetti, C.; Goti, A.; Pollastri, S.; Bellasio, C.; Agati, G. Esculetin and esculin (esculetin 6-O-glucoside) occur as inclusions and are differentially distributed in the vacuole of palisade cells in Fraxinus ornus leaves: A fluorescence microscopy analysis. J. Photochem. Photobiol. 2014, 140, 28–35. [Google Scholar] [CrossRef]
- Moon, K.; Park, H.S.; Lee, A.; Min, J.; Park, Y.; Cha, J. Synthesis of α-cichoriin using Deinococcus geothermalis amylosucrase and its antiproliferative effect. Microbiol. Biotechnol. Lett. 2022, 50, 218–227. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Harnly, J.M. Identification of hydroxycinnamoylquinic acids of arnica flowers and burdock roots using a standardized LC-DAD-ESI/MS profiling method. J. Agric. Food Chem. 2008, 56, 10105–10114. [Google Scholar] [CrossRef] [PubMed]
- Khaikin, M.S.; Rakova, N.F. Ultraviolet spectra of some 6,7- and 7,8-dihydroxycoumarins. J. Appl. Spectr. 1968, 8, 640–642. [Google Scholar] [CrossRef]
- Petruľová-Poracká, V.; Repčák, M.; Vilková, M.; Imrich, J. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem. 2013, 141, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Steck, W.; Wetter, L.R. Apterin, an unusual glucoside of Zizia aptera. Phytochemistry 1974, 13, 1925–1927. [Google Scholar] [CrossRef]
- Jian, X.; Zhao, Y.; Wang, Z.; Li, S.; Li, L.; Luo, J.; Kong, L. Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum Dunn. Plant Mol. Biol. 2020, 104, 327–337. [Google Scholar] [CrossRef]
- Steck, W.; Bailey, B.K. Characterization of plant coumarins by combined gas chromatography, ultraviolet absorption spectroscopy, and nuclear magnetic resonance analysis. Can. J. Chem. 1969, 47, 3577–3583. [Google Scholar] [CrossRef]
- Finkelstein, N.; Albrecht, C.F.; van Jaarsveld, P.P. Isolation and structure elucidation of xanthotoxin, a phototoxic furanocoumarin, from Peucedanum galbanum. S. Afr. J. Bot. 1993, 59, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Frérot, E.; Decorzant, E. Quantification of total furocoumarins in Citrus oils by HPLC coupled with UV, fluorescence, and mass detection. J. Agric. Food Chem. 2004, 52, 6879–6886. [Google Scholar] [CrossRef]
- Wu, X.; Gao, X.; Zhu, X.; Zhang, S.; Liu, X.; Yang, H.; Song, H.; Chen, Q. Fingerprint analysis of Cnidium monnieri (L.) Cusson by high-speed counter-current chromatography. Molecules 2019, 24, 4496. [Google Scholar] [CrossRef]
- Krivut, B.A.; Perel’son, M.E. Spectrophotometric determination of peucedanin. Chem. Nat. Compd. 1970, 6, 1–4. [Google Scholar] [CrossRef]
- Talcott, S.T.; Howard, L.R. Determination and distribution of 6-methoxymellein in fresh and processed carrot puree by a rapid spectrophotometric assay. J. Agric. Food Chem. 1999, 47, 3237–3242. [Google Scholar] [CrossRef]
- Cherng, J.-M.; Chiang, W.; Chiang, L.-C. Immunomodulatory activities of common vegetables and spices of Umbelliferae and its related coumarins and flavonoids. Food Chem. 2008, 106, 944–950. [Google Scholar] [CrossRef]
- Frederik, F.C.; Svendsen, A.B. Apterin, a common furanocoumarin glycoside in the umbelliferae. Phytochemistry 1976, 15, 1079–1080. [Google Scholar] [CrossRef]
- Hisamoto, M.; Kikuzaki, H.; Ohigashi, H.; Nakatani, N. Antioxidant compounds from the leaves of Peucedanum japonicum Thunb. J. Agric. Food Chem. 2003, 51, 5255–5261. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Q.; Li, X.; Wang, X.-N.; Wei, N.-N.; Lou, H.-X. Coumarins from Cicuta virosa and their modulating effects on multidrug-resistant (MDR) tumors. Phytochem. Lett. 2011, 4, 97–100. [Google Scholar] [CrossRef]
- Dincel, D.; Hatipoǧlu, S.D.; Gören, A.C.; Topcü, G. Anticholinesterase furocoumarins from Heracleum platytaenium, a species endemic to the Ida Mountains. Turk. J. Chem. 2013, 37, 14. [Google Scholar] [CrossRef]
- Iwase, M.; Yamamoto, T.; Nishimura, K.; Takahashi, H.; Mohri, S.; Li, Y.; Goto, T. Suksdorfin promotes adipocyte differentiation and improves abnormalities in glucose metabolism via PPARγ activation. Lipids 2017, 52, 657–664. [Google Scholar] [CrossRef]
- Mi, J.; Peng, Y.; Zhang, H.; Wang, X.; Huo, Y.; Wang, Z.; Zhang, H. A new benzofuran derivative glycoside and a new coumarin glycoside from roots of Heracleum dissectum Ledeb. Med. Chem. Res. 2017, 27, 470–475. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Wu, X.-Y.; Mi, J.; Peng, Y.-J.; Wang, Z.-G.; Liu, Y.; Gao, Y. A new anti-inflammatory alkaloid from roots of Heracleum dissectum. Chem. Biodivers. 2017, 14, e1700184. [Google Scholar] [CrossRef]
- Wu, A.; Lu, J.; Zhong, G.; Lu, L.; Qu, Y.; Zhang, C. Xanthotoxin (8-methoxypsoralen): A review of its chemistry, pharmacology, pharmacokinetics, and toxicity. Phytother. Res. 2022, 36, 3805–3832. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yuan, Z.; Tian, X.; Xiong, X.; Guo, F.; Lin, Z.; Qin, Z. Pimpinellin inhibits collagen-induced platelet aggregation and activation through inhibiting granule secretion and PI3K/Akt pathway. Front. Pharmacol. 2021, 12, 706363. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.-Y.; Wang, C.-J.; Han, J.; Li, Y.-Q.; Wang, G.-C. Synergism of coumarins from the Chinese drug Zanthoxylum nitidum with antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2016, 23, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wu, Y.; Li, Y.; Huang, Y.; Liu, Y.; Luo, P.; Zhang, Z. Effect of different post-harvest processing methods on the chemical constituents of Notopterygium franchetii by an UHPLC-QTOF-MS-MS metabolomics approach. Molecules 2019, 24, 3188. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, H.; Rodriguez, M.X.; Tohme, J.; Beeching, J.R. Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Ann. Bot. 2000, 86, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Felicetti, D.A.; Schrader, L.E. Postharvest changes in pigment concentrations in “Fuji” apples with “Fuji” stain. Sci. Hortic. 2010, 125, 283–288. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Vasilieva, A.G.; Chirikova, N.K. Fragaria viridis fruit metabolites: Variation of LC-MS profile and antioxidant potential during ripening and storage. Pharmaceuticals 2020, 13, 262. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Khandy, M.T.; Chirikova, N.K. Oriental strawberry metabolites: LC–MS profiling, antioxidant potential, and postharvest changes of Fragaria orientalis fruits. Horticulturae 2022, 8, 975. [Google Scholar] [CrossRef]
- Gazzarrini, S.; McCourt, P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol. 2001, 4, 387–391. [Google Scholar] [CrossRef]
Compounds | Source [Ref.] |
---|---|
Phtalides | |
Butyl phtalide | Roots [4,5], fruit, leaves, stems [5,6], flowers [6] |
Butyl dihydrophtalide | Roots [4] |
Butyl tetrahydrophtalide | Roots [4] |
(Z)- and (E)-Butylidene phthalide | Roots [4,7,8,9,10], leaves, stems, fruits, flowers [5,6,11,12] |
Butylidene 4,5-dihydrophthalide | Roots, fruit, leaves, stems [5] |
Propylidene phthalide | Roots [9] |
(Z)- and (E)-Ligustilide | Roots [7,9,10,13], leaves, stems, fruits, flowers [6,11,12,14,15] |
7-Methoxy-3-propylidenephthalide | Roots [16] |
5-Hydroxybutylidene phthalide | Roots [16] |
7-Hydroxybutylidene phthalide | Roots [16] |
Senkyunolide | Roots [9] |
Isosenkyunolide | Roots [9] |
Validene-4,5-dihydrophthalide | Roots [9], leaves, stems, fruits, flowers [6] |
Sedanolide | Leaves, stems [6] |
Polyynes | |
Falcarindiol | Roots [10,13,17] |
Falcarinol | Roots [17,18] |
Terpenes | |
Monoterpenes and sesquiterpenes of essential oils | Roots [5,6,8,9,11,18,19,20,21,22,23,24], fruits [5,6,11,23,25], leaves [5,6,11,12,18,21,26], stems [5,6,11,12,18], flowers [23,24,25,27] |
Phenols | |
Eugenol | Roots [4] |
Carvacrol | Roots [4] |
Methyl salycilate | Fruits [6] |
Cuminaldehyde | Fruits [25] |
Estragole | Roots [11] |
Pentyl benzene | Leaves, roots [21] |
Coumarins | |
Psoralen | Fruits [28] |
5-Methoxypsoralen | Fruits [28] |
Imperatorin | Fruits [28] |
Bergapten | Roots [4] |
Apterin | Leaves [14,15] |
Phenolic acids | |
Gallic acid | Roots [29] |
Vanillic acid | Roots [30] |
Hydroxycinnamates | |
p-Coumaric acid | Roots [29] |
Caffeic acid | Roots [29], leaves [14,15] |
Ferulic acid | Roots [29] |
3-O-, 4-O-, 5-O-Caffeoylquinic acids | Leaves, stems [12,14,15,31] |
Caffeoylglucaric acid | Roots [30] |
Coniferyl ferulate | Roots [10] |
Flavonoids | |
Kaempferol | Roots [29] |
Quercetin | Roots [29] |
Myricetin | Roots [29] |
Nicotiflorin | Leaves, stems [12] |
Isoquercitrin | Roots [29] |
Rutin | Roots [29], leaves, stems [12,14,15] |
Maclurin-3-C-glucoside | Leaves, stems [12] |
Other groups | |
Catalpol | Roots [30] |
Sedanonic anhydride, butyric acid, palmitic acid | Roots [4] |
Angeolide | Roots [13] |
Nutrients, fatty acids, tocopherols | Leaves, stems [12] |
No. | t, min | UV, λmax, nm | [M+H]+, m/z | [M+Na]+, m/z | [M+K]+, m/z | Other Ions, m/z | Compound [Ref.] |
---|---|---|---|---|---|---|---|
1 | 1.124 | 350 | 341 (5) | 363 (100) | 379 (32) | 179 (9) | Esculin (esculetin 6-O-glucoside) [51] |
2 | 1.243 | 348 | 341 (3) | 363 (100) | 379 (24) | 179 (2) | Cichoriin (esculetin 7-O-glucoside) [52] |
3 | 1.376 | 258, 312 | 457 (7) | 479 (100) | 495 (38) | 163 (14) | Apiosylskimmin [39] |
4 | 1.567 | 240, 327 | 355 (100) | 193 (30) | 5-O-Caffeoylquinic acid [53] | ||
5 | 1.624 | 258, 298, 352 | 179 (100) | 201 (7) | 217 (4) | Esculetin [54] | |
6 | 1.687 | 258, 312 | 325 (1) | 347 (100) | 363 (29) | 163 (8) | Skimmin (umbelliferone O-glucoside) [55] |
7 | 1.752 | 240, 327 | 517 (100) | 355 (42), 193 (2) | 1,3-Di-O-caffeoylquinic acid [53] | ||
8 | 1.942 | 238, 321 | 369 (100) | 195 (20), 191 (18) | 5-O-Feruloylquinic acid [53] | ||
9 | 2.042 | 258, 324 | 425 (2) | 447 (100) | 463 (27) | 263 (11) | Apterin (vaginol 8-O-glucoside) [56] |
10 | 2.084 | 322 | 163 (100) | 185 (14) | 201 (12) | Umbelliferone [55] | |
11 | 2.127 | 240, 329 | 517 (100) | 355 (38), 193 (4) | 3,4-Di-O-caffeoylquinic acid [53] | ||
12 | 2.208 | 240, 329 | 517 (100) | 355 (37), 193 (1) | 3,5-Di-O-caffeoylquinic acid [53] | ||
13 | 2.458 | 240, 329 | 517 (100) | 355 (40), 193 (1) | 4,5-Di-O-caffeoylquinic acid [53] | ||
14 | 2.567 | 254, 326 | 263 (100) | 285 (15) | 301 (7) | Vaginol [56] | |
15 | 2.693 | 244, 298, 334 | 187 (100) | 209 (5) | 225 (1) | Psoralen [57] | |
16 | 2.942 | 245, 304 | 187 (100) | 209 (10) | 225 (3) | Angelicin [57] | |
17 | 3.083 | 250, 270, 311 | 217 (100) | 239 (11) | 255 (7) | Bergapten [58] | |
18 | 3.342 | 242, 251, 301 | 217 (100) | 239 (5) | 255 (1) | Xanthotoxin [59] | |
19 | 3.621 | 268, 312 | 247 (100) | 269 (21) | 285 (18) | Isopimpinellin [60] | |
20 | 3.759 | 251, 306 | 247 (100) | 269 (4) | 285 (1) | Pimpinellin [60] | |
21 | 3.882 | 251, 270 | 217 (100) | 239 (25) | 255 (20) | Isobergapten [60] | |
22 | 4.012 | 351, 301 | 271 (100) | 293 (18) | 309 (10) | Imperatorin [60] | |
23 | 4.086 | 256, 324 | 245 (100) | 267 (11) | 283 (7) | Osthole [61] | |
24 | 4.382 | 255, 294, 341 | 259 (100) | 281 (7) | 297 (3) | Peucedanin [62] | |
25 | 4.501 | 252, 309 | 271 (100) | 293 (5) | 309 (2) | Isoimperatorin [60] |
Compound | a a | b a | Correlation Coefficient (r2) | SYX | LOD/ LOQ (µg/mL) | Linear Range (µg/mL) | RSD% (Intra-Day) | RSD% (Inter-Day) | Recovery of Spiked Sample REC% |
---|---|---|---|---|---|---|---|---|---|
Apterin | 1.4400 | −0.5261 | 0.9925 | 10.14 · 10−2 | 0.23/0.70 | 0–1000 | 1.20 | 1.59 | 101.70 |
Xanthotoxin | 1.7207 | −0.0152 | 0.9981 | 9.76 · 10−2 | 0.18/0.56 | 0–800 | 0.96 | 1.40 | 98.92 |
Isopimpinellin | 1.9320 | −0.2419 | 0.9953 | 11.52 · 10−2 | 0.20/0.60 | 0–800 | 1.07 | 1.73 | 99.12 |
Pimpinellin | 1.2844 | −0.2915 | 0.9962 | 10.02 · 10−2 | 0.26/0.78 | 0–800 | 1.14 | 1.93 | 98.51 |
Plant Source | Apterin | Xanthotoxin | Isopimpinellin | Pimpinellin | Total |
---|---|---|---|---|---|
Fresh roots, μg/g fresh weight ± S.D. | |||||
cv. Amur | 357 ± 7 | 307 ± 6 | 683 ± 14 | 1152 ± 23 | 2499 |
cv. Don Juan | 289 ± 5 | 273 ± 5 | 592 ± 11 | 1062 ± 21 | 2216 |
cv. Heracles | 197 ± 4 | 152 ± 4 | 486 ± 10 | 904 ± 18 | 1739 |
cv. Lider | 391 ± 7 | 352 ± 7 | 863 ± 17 | 1296 ± 25 | 2902 |
cv. Magnus | 326 ± 6 | 286 ± 5 | 794 ± 15 | 1272 ± 25 | 2678 |
cv. Preobrazhenskii | 321 ± 6 | 292 ± 5 | 837 ± 16 | 1110 ± 22 | 2560 |
cv. Udalets | 350 ± 7 | 311 ± 6 | 783 ± 15 | 993 ± 19 | 2437 |
Dried roots, mg/g dry weight ± S.D. | |||||
A Gift from Nature Comp. (Orlando, FL, USA) | 2.83 ± 0.05 | 2.96 ± 0.05 | 7.41 ± 0.14 | 11.26 ± 0.22 | 24.46 |
Alpine Herb Company Inc. (Scarborough, ON, Canada) | 1.93 ± 0.03 | 2.53 ± 0.05 | 5.72 ± 0.11 | 8.63 ± 0.17 | 18.81 |
Evalar, CJSC (Biysk, Russia) | 3.83 ± 0.07 | 3.25 ± 0.06 | 6.49 ± 0.12 | 10.68 ± 0.21 | 24.25 |
Khorst, LLC (Barnaul, Russia) | 3.26 ± 0.06 | 2.83 ± 0.05 | 5.73 ± 0.11 | 9.14 ± 0.18 | 20.96 |
Lekra-Set, LLC (Barnaul, Russia) | 4.11 ± 0.08 | 3.75 ± 0.07 | 5.37 ± 0.10 | 10.06 ± 0.20 | 23.29 |
Russkie Korni Comp. (Korolyov, Russia) | 3.70 ± 0.07 | 3.14 ± 0.06 | 5.26 ± 0.10 | 9.47 ± 0.18 | 21.57 |
Starwest Botanicals, Inc. (Sacramento, CA, USA) | 4.06 ± 0.08 | 3.52 ± 0.07 | 7.80 ± 0.15 | 8.26 ± 0.16 | 23.64 |
TerraVita Comp. (Wilmington, DE, USA) | 1.53 ± 0.03 | 1.40 ± 0.02 | 4.83 ± 0.09 | 7.36 ± 0.14 | 15.12 |
Storage Duration | Apterin | Xanthotoxin | Isopimpinellin | Pimpinellin | Total |
---|---|---|---|---|---|
Fresh roots (cv. Lider), μg/g fresh weight ± S.D. | |||||
Before storage | 391 ± 7 | 352 ± 7 | 863 ± 17 | 1296 ± 25 | 2902 |
Months | Chill storage (1 °C) | ||||
1 | 342 ± 7 * | 341 ± 7 | 854 ± 17 | 1215 ± 24 * | 2752 |
2 | 304 ± 6 * | 337 ± 7 * | 832 ± 16 | 1183 ± 23 * | 2656 |
3 | 286 ± 6 * | 311 ± 6 * | 806 ± 16 * | 1157 ± 23 * | 2560 |
4 | 221 ± 4 * | 293 ± 6 * | 782 ± 15 * | 1102 ± 22 * | 2398 |
5 | 163 ± 3 * | 276 ± 5 * | 774 ± 15 * | 1083 ± 21 * | 2296 |
6 | 127 ± 2 * | 242 ± 5 * | 764 ± 15 * | 1026 ± 20 * | 2159 |
Days | Room storage (20 °C) | ||||
1 | 388 ± 7 | 350 ± 7 | 862 ± 17 | 1290 ± 25 | 2890 |
3 | 370 ± 7 * | 348 ± 6 | 860 ± 17 | 1283 ± 23 | 2861 |
7 | 342 ± 6 * | 345 ± 7 | 853 ± 18 | 1272 ± 25 | 2812 |
11 | 304 ± 7 * | 340 ± 7 | 850 ± 16 | 1254 ± 24 | 2748 |
14 | 265 ± 5 * | 332 ± 7 * | 842 ± 18 | 1231 ± 24 * | 2670 |
Dried roots (Evalar, CJSC), mg/g dry weight ± S.D. | |||||
Before storage | 3.83 ± 0.07 | 3.25 ± 0.06 | 6.49 ± 0.12 | 10.68 ± 0.21 | 24.25 |
Years | 10 °C storage | ||||
1 | 3.70 ± 0.07 | 3.25 ± 0.06 | 6.45 ± 0.12 | 10.65 ± 0.20 | 24.05 |
2 | 3.52 ± 0.07 * | 3.22 ± 0.06 | 6.42 ± 0.12 | 10.60 ± 0.21 | 23.76 |
3 | 3.34 ± 0.06 * | 3.21 ± 0.06 | 6.38 ± 0.11 | 10.58 ± 0.21 | 23.51 |
4 | 3.19 ± 0.06 * | 3.19 ± 0.06 | 6.35 ± 0.12 | 10.54 ± 0.20 | 23.27 |
5 | 3.02 ± 0.06 * | 3.16 ± 0.06 | 6.30 ± 0.11 | 10.40 ± 0.20 | 22.88 |
6 | 2.86 ± 0.05 * | 3.10 ± 0.06 * | 6.25 ± 0.11 * | 10.22 ± 0.20 * | 22.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olennikov, D.N. Coumarins of Lovage Roots (Levisticum officinale W.D.J.Koch): LC-MS Profile, Quantification, and Stability during Postharvest Storage. Metabolites 2023, 13, 3. https://doi.org/10.3390/metabo13010003
Olennikov DN. Coumarins of Lovage Roots (Levisticum officinale W.D.J.Koch): LC-MS Profile, Quantification, and Stability during Postharvest Storage. Metabolites. 2023; 13(1):3. https://doi.org/10.3390/metabo13010003
Chicago/Turabian StyleOlennikov, Daniil N. 2023. "Coumarins of Lovage Roots (Levisticum officinale W.D.J.Koch): LC-MS Profile, Quantification, and Stability during Postharvest Storage" Metabolites 13, no. 1: 3. https://doi.org/10.3390/metabo13010003
APA StyleOlennikov, D. N. (2023). Coumarins of Lovage Roots (Levisticum officinale W.D.J.Koch): LC-MS Profile, Quantification, and Stability during Postharvest Storage. Metabolites, 13(1), 3. https://doi.org/10.3390/metabo13010003