Effects of PUFA-Rich Dietary Strategies on Ruminants’ Mammary Gland Gene Network: A Nutrigenomics Review
Abstract
:1. Introduction
2. The Mammary Gland: Gene Network and Milk Fat Synthesis
3. PUFA Dietary Supplementation Modifies a Complex Gene Network in Ruminants’ Mammary Glands
Method | Diet Supplement | Level/Detail | Effect | Reference |
---|---|---|---|---|
Dairy cows | ||||
In vivo | Fish oil | 3.7% of DM unprotected fish oil, or 1.5% or 3.0% of DM glutaraldehyde-protected microcapsules of fish oil |
| [29] |
In vivo | Fish oil or DHA-rich microalgae | 200 g/d |
| [30] |
In vivo | Soybean oil or fish oil | 2.9% of DM unrefined soybean oil or 2.9% DM of fish oil manufactured from salmon oil |
| [31] |
In vivo | Short-term administration of trans-10, cis-12 CLA, and a low forage/high oil (LF/HO) diet | 10 g/d infusion of trans-10, cis-12 CLA and LF/HO diet, including 3.0% soybean oil and 1.5% fish oil |
| [32] |
In vivo | Silage-based diets supplemented with palm fat, linseed oil plus DHA-rich algae, or sunflower oil plus DHA-rich algae | 3.1% of the basal diet DM of rumen-stable fractionated palm fat, a mixture of linseed oil (2.7% of the basal diet DM) plus DHA-rich algae (0.4% of the basal diet DM), or a mixture of sunflower oil (2.7% of the basal diet DM) plus DHA-rich algae (0.4% of the basal diet DM) |
| [33] |
In vivo | Fish and soybean oil | 3.5% of DM (1% fish oil and 2.5% soybean oil) |
| [39] |
In vivo | Sunflower oil | 1% of DM sunflower oil |
| [40] |
In vivo | Linseed or safflower oil | 5% linseed or safflower oil on DM |
| [42] |
In vivo | Soybean, rapeseed, or linseed oil | 2.7% soybean, rapeseed, or linseed oil on DM basis, or 2.7% of a 1:1:1 mixture of the 3 oils |
| [43] |
In vivo | Rapeseed or sunflower oil | 130 g/d of oil from whole, intact rapeseeds in a HF diet (F:C = 64:36), or 130 g/d of sunflower oil in a LF diet (F:C = 43:57) |
| [44] |
In vivo | Rapeseed or sunflower oil | 13.9% of DM whole, intact rapeseeds in a HF diet (F:C = 65:35) or 4% of DM sunflower oil in a LF diet (F:C = 46:54) |
| [45] |
In vivo | Linoleate–safflower seed | low-fat control supplement (64.2% cracked corn, 32.1% safflower seed meal, and 3.7% liquid molasses) fed at 0.35% of BW daily (DM basis) or a cracked, high-linoleate safflower seed supplement (94.0% cracked, high-linoleate safflower seeds and 6% liquid molasses) at 0.23% of BW daily (DM basis) |
| [47] |
In vivo | Canola seeds | 4.8% of DM canola meal, 3.3% of DM unprotected canola seeds plus 1.5% canola meal, or 4.8% of DM formaldehyde-protected canola seeds |
| [50] |
In vivo | Infusion of trans-10, cis-12 CLA | 13.6 g/d |
| [53] |
In vivo | Infusion of trans-10, cis-12 CLA | 7.5 g/d |
| [54] |
In vivo | Infusion of trans-10, cis-12 CLA | 10 g/d |
| [55] |
Dairy ewes | ||||
In vivo | Fish oil | 20 g of fish oil/kg of DM |
| [34] |
In vivo | Fish oil | Transcriptome analysis in milk somatic cell (MECs) of ewes suffering from fish oil-induced MFD |
| [35] |
In vivo | Fish oil | 17 g of fish oil/kg of diet DM |
| [36] |
In vivo | Linseed | 20% of DM linseed panel |
| [49] |
In vivo | Trans-10, cis-12 CLA-induced MFD | 10 g of a rumen-protected CLA product/kg of diet DM |
| [56] |
In vivo | Lipid-encapsulated CLA supplement containing cis-9, trans-11 and trans-10, cis-12 CLA isomers | 15 g/d |
| [57] |
In vivo | Comparative study between the inclusion of fish oil- or trans-10, cis-12 CLA | 2.4% of DM fish oil or 1% of DM a commercial product rich in trans-10,cis-12 CLA |
| [58] |
Dairy goats | ||||
In vivo | Fish and linseed oil | 530 g/day of extruded linseeds (EL) or 340 g/day of extruded linseeds plus 39 g/day of fish oil (ELFO) | ELFO:
| [37] |
In vivo | Fish oil | 90 g/day of sunflower oil and fish oil (2:1) plus additional starch |
| [38] |
In vivo | Sunflower oil or linseed oil following hay-based diets | 55 g/kg diet DM sunflower oil or linseed oil |
| [41] |
In vivo | Sunflower oil and linseed oil in maize silage-based diets | 6.1% of diet DM sunflower oil or 6.2% of diet DM linseed oil |
| [46] |
In vivo | Formaldehyde-treated linseed or oleic sunflower oil | 11.2% of DM intake formaldehyde-treated linseed or 3.5% of DM intake oleic sunflower oil |
| [48] |
In vivo | Soybeans | 22% of DM soybeans |
| [51] |
In vivo | Safflower or linseed oil | 50 g/kg of TMR DM safflower oil or 50 g/kg of TMR DM linseed oil |
| [52] |
Dairy ewes and goats | ||||
In vivo | Two feeding strategies: group or individual basis | Basic diets |
| [59] |
4. Bioactive Nutrients: An Ally of Mammary Gland Homeostasis
4.1. NFE2L2 Factor and Its Significance in Antioxidant Cellular Defense
4.2. Nutrients Affect Homeostatic Mammary Gland Gene Networks
Animal Species | Experimental Method | Nutrition Tested | Level | Effect | Reference |
---|---|---|---|---|---|
Bovine MECs | In vitro | Tea-polyphenols (GTP), H2O2, combination | 500 µM H2O2 100 µg/mL GTP 100 µg/mL GTP plus 500 µM H2O2 | GTP:
| [95] |
Bovine MECs | In vitro | -Organic Se source hydroxy-selenomethionine (HMSeBA) -Selenomethionine (SeMet) -Sodium selenite (SS) | 0 20 nM HMSeBA 50 nM HMSeBA 100 nM HMSeBA 150 nM HMSeBA 100 nM SeMet 100 nM SS | HMSeBA:
| [104] |
Dairy cows | In vivo | Rumen-protected methionine | 0.09% and 0.10% of DMI |
| [88] |
Dairy cows | In vivo | Nano-selenium (nano-Se) Sodium selenite (SS) | 0.30 mg Se/kg DM SS 0.30 mg Se/kg DM Nano-Se |
| [105] |
Dairy cows | In vivo | Flax hulls | no flax hulls (CONT) 9·88% flax hulls (HULL) 500 g flax oil/d (COFO) 9·88% flax hulls and 500 g flax oil/d (HUFO) | HULL vs. CONT:
| [109] |
Dairy cows | In vivo | Flax hulls | no flax hulls (CONT) 9·88% flax hulls (HULL) 500 g flax oil/d (COFO) 9·88% flax hulls and 500 g flax oil/d (HUFO) | HULL:
| [111] |
Dairy cows | In vivo | Flax meal (FM) | 5% (5FM) 10% (10FM) 15% (15FM) |
| [110] |
Dairy goats | In vivo | Piper meal | CPM diet (1.3% piper meal per kg dry matter) |
| [112] |
5. Further Prospects
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Word or phrase in full |
AAs | amino acids |
ACC | acetyl-CoA carboxylase |
ACL | ATP-citrate lyase |
ACSL1 | acyl-CoA synthetase long chain family member 1 |
ACSS2 | acyl-CoA synthetase short-chain family member 2 |
AGPAT | acyl glycerol phosphate acyl transferase; lysophosphatidic acid acyltransferase |
ALA | α-linolenic acid |
ARE | antioxidant response element |
Arg | arginine |
BAX | Bcl-2 associated X-protein |
BCL2 | B-cell lymphoma-2 |
BHBA | β-hydroxybutyrate |
BTN1A1 | butyrophilin subfamily 1 member A1 |
CAT | catalase |
CD36 | CD36 molecule; fatty acid transferase |
CLA | conjugated linoleic acid |
CLD | cytoplasmic lipid droplet |
CM | chylomicrons |
CoA | coenzyme A |
CUL3 | cullin-3 |
DAG | diacylglycerol |
DGAT | diacylglycerol acyltransferase |
DHA | docosahexaenoic acid |
DNA | deoxyribonucleic acid |
DPA | docosapentaenoic acid |
ECM | extra-cellular matrix proteins |
ELOVL | fatty acid elongase |
EPA | eicosapentaenoic acid |
ER | endoplasmic reticulum |
FABP | fatty acid binding protein |
FADS | fatty acid desaturase |
FAs | fatty acids |
FAS | fatty acid synthase |
FATP | fatty acid transport protein |
FECH | ferrochelatase |
FFARs | free fatty acid receptors |
FFAs | free fatty acids |
FTH1 | ferritin heavy chain 1 |
G6PDH | glucose-6-phosphate dehydrogenase |
GCLC | glutamate-cysteine ligase catalytic subunit |
GCLM | glutamate-cysteine ligase modifier subunit |
Glut1 | glucose transporter1 |
glycerol-3-P | glycerol-3-phosphate |
GPAM | glycerol-3-phosphate acyltransferase, mitochondrial |
GPAT | glycerol-3-phosphate acyltransferase |
GPX | glutathione peroxidase |
GSH | glutathione |
GSR | glutathione-disulfide reductase |
GSTM1 | glutathione s-transferase mu 1 |
HMOX1 | heme oxygenase 1 |
HMSeBA | hydroxy-selenomethionine |
IL | interleukin |
INSIG | insulin-induced gene |
KEAP1 | Kelch-like epichlorohydrin-associated protein 1 |
LCFAs | long-chain fatty acids |
LPA | lysophosphatidic acid |
LPIN | lipin |
LPL | lipoprotein lipase |
MAPK14 | mitogen-activated protein kinase 14 |
MCFAs | medium chain fatty acids |
MDA | malondialdehyde |
ME1 | malic enzyme 1 |
MECs | mammary epithelial cells |
Met | methionine |
MFD | milk fat depression |
MFG | milk fat globule |
mRNA | messenger ribonucleic acid |
mTOR | mechanistic target of rapamycin |
NADPH | nicotinamide adenine dinucleotide phosphate |
NEFA | non-esterified FA |
NFE2L2 | nuclear factor erythroid 2-like 2 |
NFKB | nuclear factor-kappa B |
NQO1 | NAD(P)H dehydrogenase [quinone] 1 |
O2 | oxygen |
PA | phosphatidate |
PIR | pirin |
PLIN2 | perilipin 2 |
PPARs | proliferator-activated receptors |
PPARγ | proliferator-activated receptor γ |
PPARγC1A | PPARγ coactivator 1 alpha |
PUFAs | polyunsaturated fatty acids |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
SCD | stearoyl-CoA desaturase |
SCFAs | short chain fatty acids |
Se | selenium |
SeMet | selenomethionine |
SFAs | saturated fatty acids |
SLC27A6 | solute carrier family 27-member 6 |
SOD | superoxide dismutase |
SREBF1 | sterol regulatory element binding transcription factor 1 |
SS | sodium selenite |
TAGs | triglycerides |
TALDO1 | transaldolase 1 |
TFs | transcription factors |
TNFA | tumor necrosis factor alpha |
TXN | thioredoxin |
UFAs | unsaturated fatty acids |
VLDL | very-low-density lipoprotein |
XDH | xanthine dehydrogenase |
References
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-Processed Food Intake and Risk of Cardiovascular Disease: Prospective Cohort Study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Prospective Studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brondel, L.; Quilliot, D.; Mouillot, T.; Khan, N.A.; Bastable, P.; Boggio, V.; Leloup, C.; Pénicaud, L. Taste of Fat and Obesity: Different Hypotheses and Our Point of View. Nutrients 2022, 14, 555. [Google Scholar] [CrossRef] [PubMed]
- King, H. Hippocrates Now: The “Father of Medicine” in the Internet Age; Bloomsbury Studies in Classical Reception; Bloomsbury Academic: London, UK, 2019; ISBN 9781350005891. [Google Scholar]
- Kholif, A.; Olafadehan, O. Dietary strategies to enrich milk with healthy fatty acids—A review. Ann. Anim. Sci. 2022, 22, 523–536. [Google Scholar] [CrossRef]
- Plata-Pérez, G.; Angeles-Hernandez, J.C.; Morales-Almaráz, E.; Del Razo-Rodríguez, O.E.; López-González, F.; Peláez-Acero, A.; Campos-Montiel, R.G.; Vargas-Bello-Pérez, E.; Vieyra-Alberto, R. Oilseed Supplementation Improves Milk Composition and Fatty Acid Profile of Cow Milk: A Meta-Analysis and Meta-Regression. Animals 2022, 12, 1642. [Google Scholar] [CrossRef] [PubMed]
- Toral, P.G.; Monahan, F.J.; Hervás, G.; Frutos, P.; Moloney, A.P. Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities. Animal 2018, 12, s272–s281. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, O.; Mendizabal, J.A.; Alfonso, L.; Soret, B.; Insausti, K.; Arana, A. Adipose Tissue Modification through Feeding Strategies and Their Implication on Adipogenesis and Adipose Tissue Metabolism in Ruminants. Int. J. Mol. Sci. 2020, 21, 3183. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Chronopoulou, E.G.; Sotirakoglou, K.; Labrou, N.E.; Zervas, G.; Tsiplakou, E. The Impact of the Dietary Supplementation Level with Schizochytrium sp., on the Oxidative Capacity of Both Goats’ Organism and Milk. Livest. Sci. 2018, 218, 37–43. [Google Scholar] [CrossRef]
- Barrea, L.; Annunziata, G.; Bordoni, L.; Muscogiuri, G.; Colao, A.; Savastano, S. Nutrigenetics-Personalized Nutrition in Obesity and Cardiovascular Diseases. Int. J. Obes. Suppl. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Personalised Nutrition and Health. BMJ 2018, 361, bmj.k2173. [Google Scholar] [CrossRef]
- Kizilaslan, M.; Arzik, Y.; Cinar, M.U.; Konca, Y. Genome-Wise Engineering of Ruminant Nutrition—Nutrigenomics: Applications, Challenges, and Future Perspectives—A Review. Ann. Anim. Sci. 2022, 22, 511–521. [Google Scholar] [CrossRef]
- Nayeri, S.; Stothard, P. Tissues, Metabolic Pathways and Genes of Key Importance in Lactating Dairy Cattle. Springer Sci. Rev. 2016, 4, 49–77. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.G. The Composition of Bovine Milk Lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and Nutritional Regulation of Lipogenic Genes in the Ruminant Lactating Mammary Gland. Adv. Exp. Med. Biol. 2008, 606, 67–108. [Google Scholar] [CrossRef]
- Guo, W.; Choi, J.-K.; Kirkland, J.L.; Corkey Barbara, E.; Hamilton, J.A. Esterification of Free Fatty Acids in Adipocytes: A Comparison between Octanoate and Oleate. Biochem. J. 2000, 349, 463. [Google Scholar] [CrossRef]
- Mu, T.; Hu, H.; Ma, Y.; Feng, X.; Zhang, J.; Gu, Y. Regulation of Key Genes for Milk Fat Synthesis in Ruminants. Front. Nutr. 2021, 8, 765147. [Google Scholar] [CrossRef]
- Bernard, L.; Leroux, C.; Chilliard, Y. Nutritional Regulation of Mammary Lipogenesis and Milk Fat in Ruminant: Contribution to Sustainable Milk Production. Rev. Colomb. Cienc. Pecu. 2013, 26, 292–302. [Google Scholar]
- Loften, J.R.; Linn, J.G.; Drackley, J.K.; Jenkins, T.C.; Soderholm, C.G.; Kertz, A.F. Invited Review: Palmitic and Stearic Acid Metabolism in Lactating Dairy Cows. J. Dairy Sci. 2014, 97, 4661–4674. [Google Scholar] [CrossRef] [Green Version]
- Burns, T. Fatty Acids and Lipogenesis in Ruminant Adipocytes. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2011. [Google Scholar]
- Osorio, J.S.; Lohakare, J.; Bionaz, M. Biosynthesis of Milk Fat, Protein, and Lactose: Roles of Transcriptional and Posttranscriptional Regulation. Physiol. Genom. 2016, 48, 231–256. [Google Scholar] [CrossRef] [Green Version]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in Fatty Acids Nutrition in Dairy Cows: From Gut to Cells and Effects on Performance. J. Anim. Sci. Biotechnol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene Networks Driving Bovine Milk Fat Synthesis during the Lactation Cycle. BMC Genom. 2008, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Geldsetzer-Mendoza, C.; Morales, M.S.; Toro-Mujica, P.; Fellenberg, M.A.; Ibáñez, R.A.; Gómez-Cortés, P.; Garnsworthy, P.C. Effect of Olive Oil in Dairy Cow Diets on the Fatty Acid Profile and Sensory Characteristics of Cheese. Int. Dairy J. 2018, 85, 8–15. [Google Scholar] [CrossRef]
- Nguyen, D.v.; Malau-Aduli, B.S.; Cavalieri, J.; Nichols, P.D.; Malau-Aduli, A.E.O. Supplementation with Plant-Derived Oils Rich in Omega-3 Polyunsaturated Fatty Acids for Lamb Production. Vet. Anim. Sci. 2018, 6, 29–40. [Google Scholar] [CrossRef] [PubMed]
- González-Becerra, K.; Ramos-Lopez, O.; Barrón-Cabrera, E.; Riezu-Boj, J.I.; Milagro, F.I.; Martínez-López, E.; Martínez, J.A. Fatty Acids, Epigenetic Mechanisms and Chronic Diseases: A Systematic Review. Lipids Health Dis. 2019, 18, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, D.E.; Mather, I.H.; Wall, R.J.; Lock, A.L. Major Advances Associated with the Biosynthesis of Milk. J. Dairy Sci. 2006, 89, 1235–1243. [Google Scholar] [CrossRef]
- Thering, B.J.; Graugnard, D.E.; Piantoni, P.; Loor, J.J. Adipose Tissue Lipogenic Gene Networks Due to Lipid Feeding and Milk Fat Depression in Lactating Cows. J. Dairy Sci. 2009, 92, 4290–4300. [Google Scholar] [CrossRef] [Green Version]
- Ahnadi, C.E.; Beswick, N.; Delbecchi, L.; Kennelly, J.J.; Lacasse, P. Addition of Fish Oil to Diets for Dairy Cows. II. Effects on Milk Fat and Gene Expression of Mammary Lipogenic Enzymes. J. Dairy Res. 2002, 69, 521–531. [Google Scholar] [CrossRef]
- Vahmani, P.; Glover, K.E.; Fredeen, A.H. Effects of Pasture versus Confinement and Marine Oil Supplementation on the Expression of Genes Involved in Lipid Metabolism in Mammary, Liver, and Adipose Tissues of Lactating Dairy Cows. J. Dairy Sci. 2014, 97, 4174–4183. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Bello-Pérez, E.; Cancino-Padilla, N.; Geldsetzer-Mendoza, C.; Morales, M.S.; Leskinen, H.; Garnsworthy, P.C.; Loor, J.J.; Romero, J. Effects of Dietary Polyunsaturated Fatty Acid Sources on Expression of Lipid-Related Genes in Bovine Milk Somatic Cells. Sci. Rep. 2020, 10, 14850. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Bauman, D.E. SREBP1 and Thyroid Hormone Responsive Spot 14 (S14) Are Involved in the Regulation of Bovine Mammary Lipid Synthesis during Diet-Induced Milk Fat Depression and Treatment with CLA. J. Nutr. 2006, 136, 2468–2474. [Google Scholar] [CrossRef] [Green Version]
- Angulo, J.; Mahecha, L.; Nuernberg, K.; Nuernberg, G.; Dannenberger, D.; Olivera, M.; Boutinaud, M.; Leroux, C.; Albrecht, E.; Bernard, L. Effects of Polyunsaturated Fatty Acids from Plant Oils and Algae on Milk Fat Yield and Composition Are Associated with Mammary Lipogenic and SREBF1 Gene Expression. Animal 2012, 6, 1961–1972. [Google Scholar] [CrossRef]
- Frutos, P.; Toral, P.G.; Hervás, G. Individual Variation of the Extent of Milk Fat Depression in Dairy Ewes Fed Fish Oil: Milk Fatty Acid Profile and MRNA Abundance of Candidate Genes Involved in Mammary Lipogenesis. J. Dairy Sci. 2017, 100, 9611–9622. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Vega, A.; Toral, P.G.; Gutiérrez-Gil, B.; Hervás, G.; Arranz, J.J.; Frutos, P. Elucidating Fish Oil-Induced Milk Fat Depression in Dairy Sheep: Milk Somatic Cell Transcriptome Analysis. Sci. Rep. 2017, 7, 45905. [Google Scholar] [CrossRef] [Green Version]
- Carreño, D.; Hervás, G.; Toral, P.G.; Castro-Carrera, T.; Frutos, P. Fish Oil-Induced Milk Fat Depression and Associated Downregulation of Mammary Lipogenic Genes in Dairy Ewes. J. Dairy Sci. 2016, 99, 7971–7981. [Google Scholar] [CrossRef] [Green Version]
- Faulconnier, Y.; Bernard, L.; Boby, C.; Domagalski, J.; Chilliard, Y.; Leroux, C. Extruded Linseed Alone or in Combination with Fish Oil Modifies Mammary Gene Expression Profiles in Lactating Goats. Animal 2018, 12, 1564–1575. [Google Scholar] [CrossRef]
- Toral, P.G.; Bernard, L.; Delavaud, C.; Gruffat, D.; Leroux, C.; Chilliard, Y. Effects of Fish Oil and Additional Starch on Tissue Fatty Acid Profile and Lipogenic Gene MRNA Abundance in Lactating Goats Fed a Diet Containing Sunflower-Seed Oil. Animal 2013, 7, 948–956. [Google Scholar] [CrossRef]
- Invernizzi, G.; Thering, B.J.; McGuire, M.A.; Savoini, G.; Loor, J.J. Sustained Upregulation of Stearoyl-CoA Desaturase in Bovine Mammary Tissue with Contrasting Changes in Milk Fat Synthesis and Lipogenic Gene Networks Caused by Lipid Supplements. Funct. Integr. Genom. 2010, 10, 561–575. [Google Scholar] [CrossRef]
- Peterson, D.G.; Matitashvili, E.A.; Bauman, D.E. Diet-Induced Milk Fat Depression in Dairy Cows Results in Increased Trans-10, Cis-12 CLA in Milk Fat and Coordinate Suppression of MRNA Abundance for Mammary Enzymes Involved in Milk Fat Synthesis. J. Nutr. 2003, 133, 3098–3102. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Leroux, C.; Faulconnier, Y.; Durand, D.; Shingfield, K.J.; Chilliard, Y. Effect of Sunflower-Seed Oil or Linseed Oil on Milk Fatty Acid Secretion and Lipogenic Gene Expression in Goats Fed Hay-Based Diets. J. Dairy Res. 2009, 76, 241–248. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Li, R.; Ammah, A.A.; Dudemaine, P.-L.; Bissonnette, N.; Benchaar, C.; Zhao, X. Transcriptome Adaptation of the Bovine Mammary Gland to Diets Rich in Unsaturated Fatty Acids Shows Greater Impact of Linseed Oil over Safflower Oil on Gene Expression and Metabolic Pathways. BMC Genom. 2016, 17, 104. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.A.A.; van Baal, J.; Smits, M.A.; Taweel, H.Z.H.; Hendriks, W.H.; van Vuuren, A.M.; Dijkstra, J. Effects of Feeding Rapeseed Oil, Soybean Oil, or Linseed Oil on Stearoyl-CoA Desaturase Expression in the Mammary Gland of Dairy Cows. J. Dairy Sci. 2011, 94, 874–887. [Google Scholar] [CrossRef] [PubMed]
- Ollier, S.; Leroux, C.; de la Foye, A.; Bernard, L.; Rouel, J.; Chilliard, Y. Whole Intact Rapeseeds or Sunflower Oil in High-Forage or High-Concentrate Diets Affects Milk Yield, Milk Composition, and Mammary Gene Expression Profile in Goats. J. Dairy Sci. 2009, 92, 5544–5560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroux, C.; Bernard, L.; Faulconnier, Y.; Rouel, J.; de la Foye, A.; Domagalski, J.; Chilliard, Y. Bovine Mammary Nutrigenomics and Changes in the Milk Composition Due to Rapeseed or Sunflower Oil Supplementation of High-Forage or High-Concentrate Diets. Lifestyle Genom. 2016, 9, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Bernard, L.; Bonnet, M.; Leroux, C.; Shingfield, K.J.; Chilliard, Y. Effect of Sunflower-Seed Oil and Linseed Oil on Tissue Lipid Metabolism, Gene Expression, and Milk Fatty Acid Secretion in Alpine Goats Fed Maize Silage–Based Diets. J. Dairy Sci. 2009, 92, 6083–6094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murrieta, C.M.; Hess, B.W.; Scholljegerdes, E.J.; Engle, T.E.; Hossner, K.L.; Moss, G.E.; Rule, D.C. Evaluation of Milk Somatic Cells as a Source of MRNA for Study of Lipogenesis in the Mammary Gland of Lactating Beef Cows Supplemented with Dietary High-Linoleate Safflower Seeds1. J. Anim. Sci. 2006, 84, 2399–2405. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Rouel, J.; Leroux, C.; Ferlay, A.; Faulconnier, Y.; Legrand, P.; Chilliard, Y. Mammary Lipid Metabolism and Milk Fatty Acid Secretion in Alpine Goats Fed Vegetable Lipids. J. Dairy Sci. 2005, 88, 1478–1489. [Google Scholar] [CrossRef] [Green Version]
- Conte, G.; Giordani, T.; Vangelisti, A.; Serra, A.; Pauselli, M.; Cavallini, A.; Mele, M. Transcriptome Adaptation of the Ovine Mammary Gland to Dietary Supplementation of Extruded Linseed. Animals 2021, 11, 2707. [Google Scholar] [CrossRef]
- Delbecchi, L.; Ahnadi, C.E.; Kennelly, J.J.; Lacasse, P. Milk Fatty Acid Composition and Mammary Lipid Metabolism in Holstein Cows Fed Protected or Unprotected Canola Seeds. J. Dairy Sci. 2001, 84, 1375–1381. [Google Scholar] [CrossRef]
- Bernard, L.; Leroux, C.; Bonnet, M.; Rouel, J.; Martin, P.; Chilliard, Y. Expression and Nutritional Regulation of Lipogenic Genes in Mammary Gland and Adipose Tissues of Lactating Goats. J. Dairy Res. 2005, 72, 250–255. [Google Scholar] [CrossRef]
- Li, X.Z.; Yan, C.G.; Lee, H.G.; Choi, C.W.; Song, M.K. Influence of Dietary Plant Oils on Mammary Lipogenic Enzymes and the Conjugated Linoleic Acid Content of Plasma and Milk Fat of Lactating Goats. Anim. Feed Sci. Technol. 2012, 174, 26–35. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Matitashvili, E.; Corl, B.A.; Dwyer, D.A.; Bauman, D.E. Trans-10, Cis-12 Conjugated Linoleic Acid Decreases Lipogenic Rates and Expression of Genes Involved in Milk Lipid Synthesis in Dairy Cows. J. Dairy Sci. 2002, 85, 2155–2163. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Perfield, J.W.; Bauman, D.E. Expression of Enzymes and Key Regulators of Lipid Synthesis Is Upregulated in Adipose Tissue during CLA-Induced Milk Fat Depression in Dairy Cows. J. Nutr. 2009, 139, 849–854. [Google Scholar] [CrossRef] [Green Version]
- Gervais, R.; McFadden, J.W.; Lengi, A.J.; Corl, B.A.; Chouinard, P.Y. Effects of Intravenous Infusion of Trans-10, Cis-12 18:2 on Mammary Lipid Metabolism in Lactating Dairy Cows. J. Dairy Sci. 2009, 92, 5167–5177. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Vega, A.; Gutiérrez-Gil, B.; Toral, P.G.; Hervás, G.; Arranz, J.J.; Frutos, P. Conjugated Linoleic Acid (CLA)-Induced Milk Fat Depression: Application of RNA-Seq Technology to Elucidate Mammary Gene Regulation in Dairy Ewes. Sci. Rep. 2019, 9, 4473. [Google Scholar] [CrossRef] [Green Version]
- Hussein, M.; Harvatine, K.H.; Weerasinghe, W.M.P.B.; Sinclair, L.A.; Bauman, D.E. Conjugated Linoleic Acid-Induced Milk Fat Depression in Lactating Ewes Is Accompanied by Reduced Expression of Mammary Genes Involved in Lipid Synthesis. J. Dairy Sci. 2013, 96, 3825–3834. [Google Scholar] [CrossRef] [Green Version]
- Toral, P.G.; Hervás, G.; Belenguer, A.; Carreño, D.; Frutos, P. MRNA Abundance of Genes Involved in Mammary Lipogenesis during Fish Oil- or Trans-10, Cis-12 CLA-Induced Milk Fat Depression in Dairy Ewes. J. Dairy Sci. 2017, 100, 3182–3192. [Google Scholar] [CrossRef] [Green Version]
- Tsiplakou, E.; Flemetakis, E.; Kalloniati, C.; Papadomichelakis, G.; Katinakis, P.; Zervas, G. Sheep and Goats Differences in CLA and Fatty Acids Milk Fat Content in Relation with MRNA Stearoyl-CoA Desaturase and Lipogenic Genes Expression in Their Mammary Gland. J. Dairy Res. 2009, 76, 392–401. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bernard, L.; Leroux, C.; Chilliard, Y. Role of Trans Fatty Acids in the Nutritional Regulation of Mammary Lipogenesis in Ruminants. Animal 2010, 4, 1140–1166. [Google Scholar] [CrossRef] [Green Version]
- Bauman, D.E.; Harvatine, K.J.; Lock, A.L. Nutrigenomics, Rumen-Derived Bioactive Fatty Acids, and the Regulation of Milk Fat Synthesis. Annu. Rev. Nutr. 2011, 31, 299–319. [Google Scholar] [CrossRef]
- Bionaz, M.; Osorio, J.; Loor, J.J. Triennial Lactation Symposium: Nutrigenomics in Dairy Cows: Nutrients, Transcription Factors, and Techniques. J. Anim. Sci. 2015, 93, 5531–5553. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Corl, B.A. Transcriptional Regulation of Lipid Synthesis in Bovine Mammary Epithelial Cells by Sterol Regulatory Element Binding Protein-1. J. Dairy Sci. 2012, 95, 3743–3755. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Espenshade, P.J.; Wright, M.E.; Yabe, D.; Gong, Y.; Aebersold, R.; Goldstein, J.L.; Brown, M.S. Crucial Step in Cholesterol Homeostasis. Cell 2002, 110, 489–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, N.; Jacobs, A.A.A.; Kruijt, L.; van Baal, J.; Smits, M.A. Alteration of Gene Expression in Mammary Gland Tissue of Dairy Cows in Response to Dietary Unsaturated Fatty Acids. Animal 2011, 5, 1217–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Carrera, T.; Frutos, P.; Leroux, C.; Chilliard, Y.; Hervás, G.; Belenguer, A.; Bernard, L.; Toral, P.G. Dietary Sunflower Oil Modulates Milk Fatty Acid Composition without Major Changes in Adipose and Mammary Tissue Fatty Acid Profile or Related Gene MRNA Abundance in Sheep. Animal 2015, 9, 582–591. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and Nutritional Regulation of Stearoyl-CoA Desaturase Genes in the Ruminant Mammary Gland: Relationship with Milk Fatty Acid Composition. In Stearoyl-CoA Desaturase Genes in Lipid Metabolism; Springer: New York, NY, USA, 2013; pp. 161–193. [Google Scholar]
- Kadegowda, A.K.G.; Bionaz, M.; Piperova, L.S.; Erdman, R.A.; Loor, J.J. Peroxisome Proliferator-Activated Receptor-γ Activation and Long-Chain Fatty Acids Alter Lipogenic Gene Networks in Bovine Mammary Epithelial Cells to Various Extents. J. Dairy Sci. 2009, 92, 4276–4289. [Google Scholar] [CrossRef] [Green Version]
- Gama, M.A.S.; Garnsworthy, P.C.; Griinari, J.M.; Leme, P.R.; Rodrigues, P.H.M.; Souza, L.W.O.; Lanna, D.P.D. Diet-Induced Milk Fat Depression: Association with Changes in Milk Fatty Acid Composition and Fluidity of Milk Fat. Livest. Sci. 2008, 115, 319–331. [Google Scholar] [CrossRef]
- Bichi, E.; Hervás, G.; Toral, P.G.; Loor, J.J.; Frutos, P. Milk Fat Depression Induced by Dietary Marine Algae in Dairy Ewes: Persistency of Milk Fatty Acid Composition and Animal Performance Responses. J. Dairy Sci. 2013, 96, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Bichi, E.; Frutos, P.; Toral, P.G.; Keisler, D.; Hervás, G.; Loor, J.J. Dietary Marine Algae and Its Influence on Tissue Gene Network Expression during Milk Fat Depression in Dairy Ewes. Anim. Feed Sci. Technol. 2013, 186, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Mele, M.; Serra, A.; Conte, G.; Pollicardo, A.; del Viva, M.; Secchiari, P. Whole Extruded Linseed in the Diet of Dairy Ewes during Early Lactation: Effect on the Fatty Acid Composition of Milk and Cheese. Ital. J. Anim. Sci. 2007, 6, 560–562. [Google Scholar] [CrossRef] [Green Version]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Loor, J.J.; Bionaz, M.; Drackley, J.K. Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annu. Rev. Anim. Biosci. 2013, 1, 365–392. [Google Scholar] [CrossRef]
- Roche, J.R.; Bell, A.W.; Overton, T.R.; Loor, J.J. Nutritional Management of the Transition Cow in the 21st Century—A Paradigm Shift in Thinking. Anim. Prod. Sci. 2013, 53, 1000. [Google Scholar] [CrossRef]
- Mitsiopoulou, C.; Sotirakoglou, K.; Labrou, N.E.; Tsiplakou, E. The Effect of Whole Sesame Seeds on Milk Chemical Composition, Fatty Acid Profile and Antioxidant Status in Goats. Livest. Sci. 2021, 245, 104452. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Mitsiopoulou, C.; Karaiskou, C.; Simoni, M.; Pappas, A.C.; Righi, F.; Sotirakoglou, K.; Labrou, N.E. Sesame Meal, Vitamin E and Selenium Influence Goats’ Antioxidant Status. Antioxidants 2021, 10, 392. [Google Scholar] [CrossRef]
- Sordillo, L.M. Symposium Review: Oxylipids and the Regulation of Bovine Mammary Inflammatory Responses. J. Dairy Sci. 2018, 101, 5629–5641. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Juniper, D.T. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals 2019, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, K.; Yamamoto, M. The KEAP1–NRF2 System as a Molecular Target of Cancer Treatment. Cancers 2020, 13, 46. [Google Scholar] [CrossRef]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell Survival Responses to Environmental Stresses via the Keap1-Nrf2-ARE Pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Canning, P.; Sorrell, F.J.; Bullock, A.N. Structural Basis of Keap1 Interactions with Nrf2. Free Radic. Biol. Med. 2015, 88, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.-L. The Keap1-Nrf2 Pathway: Mechanisms of Activation and Dysregulation in Cancer. Redox Biol. 2013, 1, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Bataille, A.M.; Manautou, J.E. Nrf2: A Potential Target for New Therapeutics in Liver Disease. Clin. Pharmacol. Ther. 2012, 92, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Yamamoto, M. Molecular Basis of the Keap1–Nrf2 System. Free Radic. Biol. Med. 2015, 88, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; O’Connor, T.; Yamamoto, M. Keap1 Regulates Both Cytoplasmic-Nuclear Shuttling and Degradation of Nrf2 in Response to Electrophiles. Genes Cells 2003, 8, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, A.; Manda, G.; Hassan, A.; Alcaraz, M.J.; Barbas, C.; Daiber, A.; Ghezzi, P.; León, R.; López, M.G.; Oliva, B.; et al. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol. Rev. 2018, 70, 348–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Batistel, F.; Ma, Y.; Alharthi, A.S.M.; Parys, C.; Loor, J.J. Methionine Supply Alters Mammary Gland Antioxidant Gene Networks via Phosphorylation of Nuclear Factor Erythroid 2-like 2 (NFE2L2) Protein in Dairy Cows during the Periparturient Period. J. Dairy Sci. 2018, 101, 8505–8512. [Google Scholar] [CrossRef]
- Jin, X.; Wang, K.; Liu, H.; Hu, F.; Zhao, F.; Liu, J. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol. Oxid. Med. Cell. Longev. 2016, 2016, 2572175. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Shimazawa, M.; Nagano, R.; Kuse, Y.; Takahashi, K.; Tsuruma, K.; Hayashi, M.; Ishibashi, T.; Maoka, T.; Hara, H. Astaxanthin Analogs, Adonixanthin and Lycopene, Activate Nrf2 to Prevent Light-Induced Photoreceptor Degeneration. J. Pharmacol. Sci. 2017, 134, 147–157. [Google Scholar] [CrossRef]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef] [Green Version]
- Ford, H.R.; Busato, S.; Bionaz, M. In Vitro–In Vivo Hybrid Approach for Studying Modulation of NRF2 in Immortalized Bovine Mammary Cells. Front. Anim. Sci. 2021, 2, 674355. [Google Scholar] [CrossRef]
- Coleman, D.N.; Lopreiato, V.; Alharthi, A.; Loor, J.J. Amino Acids and the Regulation of Oxidative Stress and Immune Function in Dairy Cattle. J. Anim. Sci. 2020, 98, S175–S193. [Google Scholar] [CrossRef]
- Yang, F.; Li, X. Role of Antioxidant Vitamins and Trace Elements in Mastitis in Dairy Cows. J. Adv. Vet. Anim. Res 2015, 2, 1. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, X.; An, Y.; Sun, Y.; Dou, W.; Li, M.; Bao, H.; Zhang, C. Green Tea Polyphenols Alleviate Hydrogen Peroxide-Induced Oxidative Stress, Inflammation, and Apoptosis in Bovine Mammary Epithelial Cells by Activating ERK1/2–NFE2L2–HMOX1 Pathways. Front. Vet. Sci. 2022, 8, 804241. [Google Scholar] [CrossRef]
- Osorio, J.S.; Trevisi, E.; Ji, P.; Drackley, J.K.; Luchini, D.; Bertoni, G.; Loor, J.J. Biomarkers of Inflammation, Metabolism, and Oxidative Stress in Blood, Liver, and Milk Reveal a Better Immunometabolic Status in Peripartal Cows Supplemented with Smartamine M or MetaSmart. J. Dairy Sci. 2014, 97, 7437–7450. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Vailati-Riboni, M.; Trevisi, E.; Drackley, J.K.; Luchini, D.N.; Loor, J.J. Better Postpartal Performance in Dairy Cows Supplemented with Rumen-Protected Methionine Compared with Choline during the Peripartal Period. J. Dairy Sci. 2016, 99, 8716–8732. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Wang, C.; Ding, L.; Shen, Y.; Cui, H.; Wang, M.; Wang, H. Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide. Mediat. Inflamm. 2016, 2016, 9618795. [Google Scholar] [CrossRef] [Green Version]
- Mu, T.; Kong, G.-H.; Han, Z.-Y.; Li, H.-X. Cytoprotection of Methionine on Hyperthermia-Induced Damage in Bovine Mammary Epithelial Cells. Cell Biol. Int. 2014, 38, 971–976. [Google Scholar] [CrossRef]
- Han, Z.-Y.; Mu, T.; Yang, Z. Methionine Protects against Hyperthermia-Induced Cell Injury in Cultured Bovine Mammary Epithelial Cells. Cell Stress Chaperones 2015, 20, 109–120. [Google Scholar] [CrossRef]
- Zhao, F.F.; Wu, T.Y.; Wang, H.R.; Ding, L.Y.; Ahmed, G.; Li, H.W.; Tian, W.; Shen, Y.Z. Jugular Arginine Infusion Relieves Lipopolysaccharide-Triggered Inflammatory Stress and Improves Immunity Status of Lactating Dairy Cows. J. Dairy Sci. 2018, 101, 5961–5970. [Google Scholar] [CrossRef] [Green Version]
- Sordillo, L.M. Nutritional Strategies to Optimize Dairy Cattle Immunity. J. Dairy Sci. 2016, 99, 4967–4982. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F. Selenium in Nutrition and Health; Nottingham University Press: Nottingham, UK, 2006; ISBN 190476116X. [Google Scholar]
- Sun, L.; Wang, F.; Wu, Z.; Ma, L.; Baumrucker, C.; Bu, D. Comparison of Selenium Source in Preventing Oxidative Stress in Bovine Mammary Epithelial Cells. Animals 2020, 10, 842. [Google Scholar] [CrossRef]
- Han, L.; Pang, K.; Fu, T.; Phillips, C.J.C.; Gao, T. Nano-Selenium Supplementation Increases Selenoprotein (Sel) Gene Expression Profiles and Milk Selenium Concentration in Lactating Dairy Cows. Biol. Trace Elem. Res. 2021, 199, 113–119. [Google Scholar] [CrossRef]
- Elolimy, A.A.; Liang, Y.; Lopes, M.G.; Loor, J.J. Antioxidant Networks and the Microbiome as Components of Efficiency in Dairy Cattle. Livest. Sci. 2021, 251, 104656. [Google Scholar] [CrossRef]
- Gessner, D.K.; Brock, C.; Hof, L.M.; Most, E.; Koch, C.; Eder, K. Effects of Supplementation of Green Tea Extract on the Milk Performance of Peripartal Dairy Cows and the Expression of Stress Response Genes in the Liver. J. Anim. Sci. Biotechnol. 2020, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Gessner, D.K.; Ringseis, R.; Eder, K. Potential of Plant Polyphenols to Combat Oxidative Stress and Inflammatory Processes in Farm Animals. J. Anim. Physiol. Anim. Nutr. 2017, 101, 605–628. [Google Scholar] [CrossRef] [PubMed]
- Côrtes, C.; Palin, M.-F.; Gagnon, N.; Benchaar, C.; Lacasse, P.; Petit, H.v. Mammary Gene Expression and Activity of Antioxidant Enzymes and Concentration of the Mammalian Lignan Enterolactone in Milk and Plasma of Dairy Cows Fed Flax Lignans and Infused with Flax Oil in the Abomasum. Br. J. Nutr. 2012, 108, 1390–1398. [Google Scholar] [CrossRef] [Green Version]
- Schogor, A.L.B.; Palin, M.-F.; dos Santos, G.T.; Benchaar, C.; Lacasse, P.; Petit, H.v. Mammary Gene Expression and Activity of Antioxidant Enzymes and Oxidative Indicators in the Blood, Milk, Mammary Tissue and Ruminal Fluid of Dairy Cows Fed Flax Meal. Br. J. Nutr. 2013, 110, 1743–1750. [Google Scholar] [CrossRef] [Green Version]
- Palin, M.-F.; Côrtes, C.; Benchaar, C.; Lacasse, P.; Petit, H.v. MRNA Expression of Lipogenic Enzymes in Mammary Tissue and Fatty Acid Profile in Milk of Dairy Cows Fed Flax Hulls and Infused with Flax Oil in the Abomasum. Br. J. Nutr. 2014, 111, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P.; Salem, A.Z.M.; Juan Boo, L. Mammary Gene Expressions and Oxidative Indicators in Ruminal Fluid, Blood, Milk, and Mammary Tissue of Dairy Goats Fed a Total Mixed Ration Containing Piper Meal (Piper betle L.). Ital. J. Anim. Sci. 2022, 21, 129–141. [Google Scholar] [CrossRef]
Full Name | Key Gene | Function |
---|---|---|
Acyl-CoA synthetase short-chain family member 2 | ACSS2 | De novo synthesis of FA |
Fatty acid synthase | FAS | |
Acetyl-CoA carboxylase | ACC | |
Fatty acid transferase (CD36) | CD36 | LCFA uptake in blood |
Solute carrier family 27-member 6 | SLC27A6 | |
Acyl-CoA synthetase long chain family member 1 | ACSL1 | |
Fatty acid binding protein 3 | FABP3 | LCFA transport and desaturation |
Stearoyl-CoA desaturase 1 | SCD1 | |
1-Acylglycerol-3-phosphate o-acyltransferase 6 | AGPAT6 | TAG synthesis |
Diacylglycerol O-acyltransferase 1 | DGAT1 | |
Lipin 1 | LPIN1 | |
Glycerol-3-phosphate acyltransferase, mitochondrial | GPAM | |
Perilipin 2 | PLIN2 | Lipid droplet secretion |
Xanthine dehydrogenase | XDH | |
Butyrophilin subfamily 1 member A1 | BTN1A1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakaki, P.; Zisis, F.; Pappas, A.C.; Mavrommatis, A.; Tsiplakou, E. Effects of PUFA-Rich Dietary Strategies on Ruminants’ Mammary Gland Gene Network: A Nutrigenomics Review. Metabolites 2023, 13, 44. https://doi.org/10.3390/metabo13010044
Kyriakaki P, Zisis F, Pappas AC, Mavrommatis A, Tsiplakou E. Effects of PUFA-Rich Dietary Strategies on Ruminants’ Mammary Gland Gene Network: A Nutrigenomics Review. Metabolites. 2023; 13(1):44. https://doi.org/10.3390/metabo13010044
Chicago/Turabian StyleKyriakaki, Panagiota, Foivos Zisis, Athanasios C. Pappas, Alexandros Mavrommatis, and Eleni Tsiplakou. 2023. "Effects of PUFA-Rich Dietary Strategies on Ruminants’ Mammary Gland Gene Network: A Nutrigenomics Review" Metabolites 13, no. 1: 44. https://doi.org/10.3390/metabo13010044
APA StyleKyriakaki, P., Zisis, F., Pappas, A. C., Mavrommatis, A., & Tsiplakou, E. (2023). Effects of PUFA-Rich Dietary Strategies on Ruminants’ Mammary Gland Gene Network: A Nutrigenomics Review. Metabolites, 13(1), 44. https://doi.org/10.3390/metabo13010044