Still Excited, but Less Aroused—The Effects of Nutritional Ketosis on Epinephrine Response and Hypothalamic Orexin Neuron Activation Following Recurrent Hypoglycemia in Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Streptozotocin (STZ)-Induced Diabetes
2.3. Hypoglycemia-Associated Autonomic Failure (HAAF) Protocol
2.4. Epinephrine, C-Peptide, Insulin, Glucagon ELISAs
2.5. Immunohistochemical Analysis of Lateral and Perifornical Hypothalamus
2.6. IHC for Insulin and Glucagon (Pancreas)
2.7. Statistical Analysis
3. Results
3.1. Ketogenic Diet Differentially Affects Weight, Blood Glucose (BG) and β-Hydroxybutyrate (BHB) of Healthy and STZ-Diabetic Rats
3.2. STZ-Diabetes Model
3.3. Hypoglycemia-Associated Autonomic Failure (HAAF) Model and Counterregulatory Hormone Response—Non-Diabetic and Diabetic Conditions
3.4. Hypothalamic Orexin Neurons Activity Is Attenuated by Recurrent Hypoglycemia in STZ-D Keto Rats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kossoff, E.H.; Wang, H.S. Dietary therapies for epilepsy. Biomed. J. 2013, 36, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Newburgh, L.H.; Marsh, P.L. The use of a high fat diet in the treatment of diabetes mellitus: First paper. Arch. Intern. Med. 1920, 26, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Newburgh, L.H.; Marsh, P.L. The use of a high fat diet in the treatment of diabetes mellitus: Second paper: Blood sugar. Arch. Intern. Med. 1921, 27, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Tinguely, D.; Gross, J.; Kosinski, C. Efficacy of Ketogenic Diets on Type 2 Diabetes: A Systematic Review. Curr. Diab. Rep. 2021, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Lennerz, B.S.; Barton, A.; Bernstein, R.K.; Dikeman, R.D.; Diulus, C.; Hallberg, S.; Rhodes, E.T.; Ebbeling, C.B.; Westman, E.C.; Yancy, W.S.; et al. Management of Type 1 Diabetes With a Very Low-Carbohydrate Diet. Pediatrics 2018, 141, e20173349. [Google Scholar] [CrossRef] [Green Version]
- Lennerz, B.S.; Koutnik, A.P.; Azova, S.; Wolfsdorf, J.I.; Ludwig, D.S. Carbohydrate restriction for diabetes: Rediscovering centuries-old wisdom. J. Clin. Investig. 2021, 131, e142246. [Google Scholar] [CrossRef]
- Buehler, L.A.; Noe, D.; Knapp, S.; Isaacs, D.; Pantalone, K.M. Ketogenic diets in the management of type 1 diabetes: Safe or safety concern? Clevel. Clin. J. Med. 2021, 88, 547–555. [Google Scholar] [CrossRef]
- Fernandez-Cardona, A.; Gonzalez-Devia, D.; Mendivil, C.O. Intermittent Fasting as a Trigger of Ketoacidosis in a Patient With Stable, Long-term Type 1 Diabetes. J. Endocr. Soc. 2020, 4, bvaa126. [Google Scholar] [CrossRef]
- Gottesman, B.L.; Yu, J.; Tanaka, C.; Longhurst, C.A.; Kim, J.J. Incidence of New-Onset Type 1 Diabetes Among US Children During the COVID-19 Global Pandemic. JAMA Pediatr. 2022, 176, 414–415. [Google Scholar] [CrossRef]
- Qeadan, F.; Tingey, B.; Egbert, J.; Pezzolesi, M.G.; Burge, M.R.; Peterson, K.A.; Honda, T. The associations between COVID-19 diagnosis, type 1 diabetes, and the risk of diabetic ketoacidosis: A nationwide cohort from the US using the Cerner Real-World Data. PLoS ONE 2022, 17, e0266809. [Google Scholar] [CrossRef]
- Kendall, E.K.; Olaker, V.R.; Kaelber, D.C.; Xu, R.; Davis, P.B. Association of SARS-CoV-2 Infection With New-Onset Type 1 Diabetes Among Pediatric Patients From 2020 to 2021. JAMA Netw. Open 2022, 5, e2233014. [Google Scholar] [CrossRef] [PubMed]
- Cryer, P.E. Glucose counterregulation: Prevention and correction of hypoglycemia in humans. Am. J. Physiol. 1993, 264 Pt 1, E149–E155. [Google Scholar] [CrossRef] [PubMed]
- Amiel, S.A.; Choudhary, P.; Jacob, P.; Smith, E.L.; De Zoysa, N.; Gonder-Frederick, L.; Kendall, M.; Heller, S.; Brooks, A.; Toschi, E.; et al. Hypoglycaemia Awareness Restoration Programme for People with Type 1 Diabetes and Problematic Hypoglycaemia Persisting Despite Optimised Self-care (HARPdoc): Protocol for a group randomised controlled trial of a novel intervention addressing cognitions. BMJ Open 2019, 9, e030356. [Google Scholar] [CrossRef] [PubMed]
- Lontchi-Yimagou, E.; You, J.Y.; Carey, M.; Gabriely, I.; Shamoon, H.; Hawkins, M. Potential approaches to prevent hypoglycemia-associated autonomic failure. J. Investig. Med. 2018, 66, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Cryer, P.E. Hypoglycemia-associated autonomic failure in diabetes. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E1115–E1121. [Google Scholar] [CrossRef]
- Owen, O.E.; Morgan, A.P.; Kemp, H.G.; Sullivan, J.M.; Herrera, M.G.; Cahill, G.J. Brain metabolism during fasting. J. Clin. Investig. 1967, 46, 1589–1595. [Google Scholar] [CrossRef]
- Nedoboy, P.E.; Cohen, M.; Farnham, M.M.J. Slow but Steady—The Responsiveness of Sympathoadrenal System to a Hypoglycemic Challenge in Ketogenic Diet-Fed Rats. Nutrients 2021, 13, 2627. [Google Scholar] [CrossRef]
- Yamada, K.A.; Rensing, N.; Thio, L.L. Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci. Lett. 2005, 385, 210–214. [Google Scholar] [CrossRef]
- Drenick, E.J.; Alvarez, L.C.; Tamasi, G.C.; Brickman, A.S. Resistance to symptomatic insulin reactions after fasting. J. Clin. Investig. 1972, 51, 2757–2762. [Google Scholar] [CrossRef] [Green Version]
- Morrison, C.D.; Hill, C.M.; DuVall, M.A.; Coulter, C.E.; Gosey, J.L.; Herrera, M.J.; Maisano, L.E.; Sikaffy, H.X.; McDougal, D.H. Consuming a ketogenic diet leads to altered hypoglycemiccounter-regulation in mice. J. Diabetes Complicat. 2020, 34, 107557. [Google Scholar] [CrossRef]
- Paxinos, G. The Rat Brain in Stereotaxic Coordinates; Paxinos, G., Watson, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Nedoboy, P.E.; Mohammed, S.; Kapoor, K.; Bhandare, A.M.; Farnham, M.M.J.; Pilowsky, P.M. pSer40 tyrosine hydroxylase immunohistochemistry identifies the anatomical location of C1 neurons in rat RVLM that are activated by hypotension. Neuroscience 2016, 317, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, E.J.; Lee, D.D.; Tao, J.; Wilson, R.A.; Park, S.Y.; Bell, G.I.; Chong, A.S. Glycemic control promotes pancreatic beta-cell regeneration in streptozotocin-induced diabetic mice. PLoS ONE 2010, 5, e8749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakall, Z.M.; Kavurma, M.M.; Cohen, E.M.; Howe, P.R.; Nedoboy, P.E.; Pilowsky, P.M. Repetitive hypoglycemia reduces activation of glucose-responsive neurons in C1 and C3 medullary brain regions to subsequent hypoglycemia. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E388–E398. [Google Scholar] [CrossRef] [Green Version]
- Sankar, A.; Khodai, T.; McNeilly, A.D.; McCrimmon, R.J.; Luckman, S.M. Experimental Models of Impaired Hypoglycaemia-Associated Counter-Regulation. Trends. Endocrinol. Metab. 2020, 31, 691–703. [Google Scholar] [CrossRef]
- Bisgaard Bengtsen, M.; Moller, N. Mini-review: Glucagon responses in type 1 diabetes—A matter of complexity. Physiol. Rep. 2021, 9, e15009. [Google Scholar] [CrossRef]
- Beall, C.; Ashford, M.; McCrimmon, R. The physiology and pathophysiology of the neural control of the counterregulatory response. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R215–R223. [Google Scholar] [CrossRef]
- Senthilkumaran, M.; Zhou, X.F.; Bobrovskaya, L. Challenges in Modelling Hypoglycaemia-Associated Autonomic Failure: A Review of Human and Animal Studies. Int. J. Endocrinol. 2016, 2016, 9801640. [Google Scholar] [CrossRef] [Green Version]
- Douris, N.; Desai, B.N.; Cisu, T.; Fowler, A.J.; Zarebidaki, E.; Nguyen, N.L.T.; Morgan, D.A.; Bartness, T.J.; Rahmouni, K.; Flier, J.S.; et al. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice. Mol. Metab. 2017, 6, 854–862. [Google Scholar] [CrossRef]
- Nasser, S.; Solé, T.; Vega, N.; Thomas, T.; Balcerczyk, A.; Strigini, M.; Pirola, L. Ketogenic diet administration to mice after a high-fat-diet regimen promotes weight loss, glycemic normalization and induces adaptations of ketogenic pathways in liver and kidney. Mol. Metab. 2022, 65, 101578. [Google Scholar] [CrossRef]
- Amiel, S.A.; Simonson, D.C.; Tamborlane, W.V.; DeFronzo, R.A.; Sherwin, R.S. Rate of glucose fall does not affect counterregulatory hormone responses to hypoglycemia in normal and diabetic humans. Diabetes 1987, 36, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Cahill, G.F., Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 2006, 26, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahill, G.F., Jr.; Veech, R.L. Ketoacids? Good medicine? Trans. Am. Clin. Climatol. Assoc. 2003, 114, 149–161, discussion 162–163. [Google Scholar] [PubMed]
- Al-Khalifa, A.; Mathew, T.C.; Al-Zaid, N.S.; Mathew, E.; Dashti, H. Low carbohydrate ketogenic diet prevents the induction of diabetes using streptozotocin in rats. Exp. Toxicol. Pathol. 2011, 63, 663–669. [Google Scholar] [CrossRef]
- Al-Khalifa, A.; Mathew, T.C.; Al-Zaid, N.S.; Mathew, E.; Dashti, H.M. Therapeutic role of low-carbohydrate ketogenic diet in diabetes. Nutrition 2009, 25, 1177–1185. [Google Scholar] [CrossRef]
- Foster, G.D.; Wyatt, H.R.; Hill, J.O.; McGuckin, B.G.; Brill, C.; Mohammed, B.S.; Szapary, P.O.; Rader, D.J.; Edman, J.S.; Klein, S. A randomized trial of a low-carbohydrate diet for obesity. N. Engl. J. Med. 2003, 348, 2082–2090. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.R.; Pissios, P.; Otu, H.; Xue, B.; Asakura, K.; Furukawa, N.; Marino, F.E.; Liu, F.F.; Kahn, B.B.; Libermann, T.A.; et al. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1724–E1739. [Google Scholar] [CrossRef]
- Bielohuby, M.; Sisley, S.; Sandoval, D.; Herbach, N.; Zengin, A.; Fischereder, M.; Menhofer, D.; Stoehr, B.J.; Stemmer, K.; Wanke, R.; et al. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1059–E1070. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.; Medak, K.D.; Townsend, L.K.; Wright, D.C. Ketogenic diet induced weight loss occurs independent of housing temperature and is followed by hyperphagia and weight regain after cessation in mice. J. Physiol. 2022, 600, 4677–4693. [Google Scholar] [CrossRef]
- James, H.; Gonsalves, W.I.; Manjunatha, S.; Dasari, S.; Lanza, I.R.; Klaus, K.A.; Vella, A.; Andrews, J.C.; Nair, K.S. The Effect of Glucagon on Protein Catabolism During Insulin Deficiency—Exchange of Amino acids Across Skeletal Muscle and The Splanchnic Bed. Diabetes 2022, 71, 1636–1648. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Ferrannini, E. Regulation of Intermediary Metabolism During Fasting and Feeding. In Endocrinology: Adult and Pediatric; Elsevier: Amsterdam, The Netherlands, 2016; pp. 598–626.e3. [Google Scholar]
- Robinson, A.M.; Williamson, D.H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 1980, 60, 143–187. [Google Scholar] [CrossRef] [PubMed]
- Inouye, K.E.; Yue, J.T.; Chan, O.; Kim, T.; Akirav, E.M.; Park, E.; Riddell, M.C.; Burdett, E.; Matthews, S.G.; Vranic, M. Effects of insulin treatment without and with recurrent hypoglycemia on hypoglycemic counterregulation and adrenal catecholamine-synthesizing enzymes in diabetic rats. Endocrinology 2006, 147, 1860–1870. [Google Scholar] [CrossRef] [Green Version]
- Li, A.J.; Wang, Q.; Elsarelli, M.M.; Brown, R.L.; Ritter, S. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats. Endocrinology 2015, 156, 2807–2820. [Google Scholar] [CrossRef] [PubMed]
- Korim, W.S.; Llewellyn-Smith, I.J.; Verberne, A.J. Activation of Medulla-Projecting Perifornical Neurons Modulates the Adrenal Sympathetic Response to Hypoglycemia: Involvement of Orexin Type 2 (OX2-R) Receptors. Endocrinology 2016, 157, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Peyron, C.; Tighe, D.K.; Van Den Pol, A.N.; De Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems. J. Neurosci. 1998, 18, 9996–10015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriguchi, T.; Sakurai, T.; Nambu, T.; Yanagisawa, M.; Goto, K. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci. Lett. 1999, 264, 101–104. [Google Scholar] [CrossRef]
- Paranjape, S.A.; Vavaiya, K.K.; Kale, A.Y.; Briski, K.P. Habituation of insulin-induced hypoglycemic transcription activation of lateral hypothalamic orexin-A-containing neurons to recurring exposure. Regul. Pept. 2006, 135, 1–6. [Google Scholar] [CrossRef]
- Evans, S.B.; Wilkinson, C.W.; Bentson, K.; Gronbeck, P.; Zavosh, A.; Figlewicz, D.P. PVN activation is suppressed by repeated hypoglycemia but not antecedent corticosterone in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1426–R1436. [Google Scholar] [CrossRef]
- Otlivanchik, O.; Sanders, N.M.; Dunn-Meynell, A.; Levin, B.E. Orexin signaling is necessary for hypoglycemia-induced prevention of conditioned place preference. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R66–R73. [Google Scholar] [CrossRef] [Green Version]
- Bracey, E.; Grujic, N.; Peleg-Raibstein, D.; Burdakov, D. Coding of reward uncertainty and probability by orexin neurons. bioRxiv 2022. [Google Scholar] [CrossRef]
- Tkacs, N.C.; Pan, Y.; Sawhney, G.; Mann, G.L.; Morrison, A.R. Hypoglycemia activates arousal-related neurons and increases wake time in adult rats. Physiol. Behav. 2007, 91, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauch-Chara, K.; Schultes, B. Sleep and the response to hypoglycaemia. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Sarkar, P.; Siegel, D.M.; Teegala, S.B.; Hirschberg, P.R.; Wajid, H.; Itani, O.; Routh, V.H. The Anti-Narcolepsy Drug Modafinil Reverses Hypoglycemia Unawareness and Normalizes Glucose Sensing of Orexin Neurons in Male Mice. Diabetes 2022. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedoboy, P.E.; Farnham, M.M.-J. Still Excited, but Less Aroused—The Effects of Nutritional Ketosis on Epinephrine Response and Hypothalamic Orexin Neuron Activation Following Recurrent Hypoglycemia in Diabetic Rats. Metabolites 2023, 13, 42. https://doi.org/10.3390/metabo13010042
Nedoboy PE, Farnham MM-J. Still Excited, but Less Aroused—The Effects of Nutritional Ketosis on Epinephrine Response and Hypothalamic Orexin Neuron Activation Following Recurrent Hypoglycemia in Diabetic Rats. Metabolites. 2023; 13(1):42. https://doi.org/10.3390/metabo13010042
Chicago/Turabian StyleNedoboy, Polina E., and Melissa M.-J. Farnham. 2023. "Still Excited, but Less Aroused—The Effects of Nutritional Ketosis on Epinephrine Response and Hypothalamic Orexin Neuron Activation Following Recurrent Hypoglycemia in Diabetic Rats" Metabolites 13, no. 1: 42. https://doi.org/10.3390/metabo13010042
APA StyleNedoboy, P. E., & Farnham, M. M. -J. (2023). Still Excited, but Less Aroused—The Effects of Nutritional Ketosis on Epinephrine Response and Hypothalamic Orexin Neuron Activation Following Recurrent Hypoglycemia in Diabetic Rats. Metabolites, 13(1), 42. https://doi.org/10.3390/metabo13010042