Non-Invasive Metabolic and Structural Retinal Markers in Patients with Giant Cell Arteritis and Polymyalgia Rheumatica: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Variables
2.3. Clinical Examinations
2.4. Retinal Oximetry and Image Analysis
2.5. Ethics
2.6. Statistical Methods
3. Results
3.1. Patient Population
3.2. Clinical Characteristics
3.3. Retinal Metabolism and Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, J.; Dimitrijevic, I.; Sundquist, J.; Sundquist, K.; Zöller, B. Risk of ocular manifestations in patients with giant cell arteritis: A nationwide study in Sweden. Scand. J. Rheumatol. 2017, 46, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mohammad, A.J.; Turesson, C. Incidence and prevalence of giant cell arteritis and polymyalgia rheumatica: A systematic literature review. Semin. Arthritis Rheum. 2020, 50, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- De Smit, E.; Palmer, A.J.; Hewitt, A.W. Projected worldwide disease burden from giant cell arteritis by 2050. J. Rheumatol. 2015, 42, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Einarsdottir, A.B.; Hardarson, S.H.; Kristjansdottir, J.V.; Bragason, D.T.; Snaedal, J.; Stefánsson, E. Retinal oximetry imaging in Alzheimer’s disease. J. Alzheimer’s Dis. 2016, 49, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Einarsdottir, A.B.; Olafsdottir, O.B.; Hjaltason, H.; Hardarson, S.H. Retinal oximetry is affected in multiple sclerosis. Acta Ophthalmol. 2018, 96, 528–530. [Google Scholar] [CrossRef]
- Olafsdottir, O.B.; Vandewalle, E.; Abegão Pinto, L.; Geirsdottir, A.; De Clerck, E.; Stalmans, P.; Gottfredsdottir, M.S.; Kristjansdottir, J.V.; Van Calster, J.; Zeyen, T.; et al. Retinal oxygen metabolism in healthy subjects and glaucoma patients. Br. J. Ophthalmol. 2014, 98, 329–333. [Google Scholar] [CrossRef]
- Osaka, R.; Nakano, Y.; Takasago, Y.; Fujita, T.; Yamashita, A.; Shiragami, C.; Muraoka, Y.; Tsujikawa, A. Retinal oximetry in branch retinal vein occlusion. Acta Ophthalmol. 2019, 97, e896–e901. [Google Scholar] [CrossRef]
- Kindt, A.; Byg, K.E.; Wied, J.; Ellingsen, T.; Davidsen, J.R.; Grauslund, J. Altered retinal oxygen metabolism in patients with combined ocular and central nervous system sarcoidosis. Rheumatology 2021, 60, 3301–3306. [Google Scholar] [CrossRef]
- Olafsdottir, O.B.; Eliasdottir, T.S.; Kristjansdottir, J.V.; Hardarson, S.H.; Stefánsson, E. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals. PLoS ONE 2015, 10, e0128780. [Google Scholar] [CrossRef]
- Abu El-Asrar, A.M.; Alotaibi, M.D.; Gikandi, P.W.; Stefánsson, E. Effect of immunosuppressive therapy on oxygen saturation and diameter of retinal vessels in initial onset acute uveitis associated with Vogt-Koyanagi-Harada disease. Acta Ophthalmol. 2021, 99, 75–82. [Google Scholar] [CrossRef]
- Palkovits, S.; Lasta, M.; Told, R.; Schmidl, D.; Boltz, A.; Napora, K.J.; Werkmeister, R.M.; Popa-Cherecheanu, A.; Garhöfer, G.; Schmetterer, L. Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4707–4713. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Lin, L.; Yi, C.; Huang, X.; Fu, Y.; Dong, Y.; Qian, X.; Li, Y.; Gao, Q. Retinal vessel oxygen saturation and vessel diameter in retinitis pigmentosa at various ages. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Palsson, O.; Geirsdottir, A.; Hardarson, S.H.; Olafsdottir, O.B.; Kristjansdottir, J.V.; Stefánsson, E. Retinal oximetry images must be standardized: A methodological analysis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1729–1733. [Google Scholar] [CrossRef] [PubMed]
- Blondal, R.; Sturludottir, M.K.; Hardarson, S.H.; Halldorsson, G.H.; Stefánsson, E. Reliability of vessel diameter measurements with a retinal oximeter. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Türksever, C.; Daikeler, T.; Konieczka, K.; Todorova, M.G. Retinal vessel oxygen saturation in giant cell arteritis patients without ocular symptoms. Klin. Monbl. Augenheilkd 2014, 231, 442–446. [Google Scholar] [CrossRef]
- Dejaco, C.; Ramiro, S.; Duftner, C.; Besson, F.L.; Bley, T.A.; Blockmans, D.; Brouwer, E.; Cimmino, M.A.; Clark, E.; Dasgupta, B.; et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann. Rheum. Dis. 2018, 77, 636–643. [Google Scholar] [CrossRef]
- Dasgupta, B.; Cimmino, M.A.; Maradit-Kremers, H.; Schmidt, W.A.; Schirmer, M.; Salvarani, C.; Bachta, A.; Dejaco, C.; Duftner, C.; Jensen, H.S.; et al. 2012 provisional classification criteria for polymyalgia rheumatica: A European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann. Rheum. Dis. 2012, 71, 484–492. [Google Scholar] [CrossRef]
- Jørgensen, C.M.; Hardarson, S.H.; Bek, T. The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy. Acta Ophthalmol. 2014, 92, 34–39. [Google Scholar] [CrossRef]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- Geirsdottir, A.; Palsson, O.; Hardarson, S.H.; Olafsdottir, O.B.; Kristjansdottir, J.V.; Stefánsson, E. Retinal vessel oxygen saturation in healthy individuals. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5433–5442. [Google Scholar] [CrossRef] [Green Version]
- Pournaras, C.J.; Rungger-Brändle, E.; Riva, C.E.; Hardarson, S.H.; Stefansson, E. Regulation of retinal blood flow in health and disease. Prog. Retin. Eye Res. 2008, 27, 284–330. [Google Scholar] [CrossRef] [PubMed]
- Bek, T. Diameter Changes of Retinal Vessels in Diabetic Retinopathy. Curr. Diab. Rep. 2017, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- de Jong, F.J.; Ikram, M.K.; Witteman, J.C.; Hofman, A.; de Jong, P.T.; Breteler, M.M. Retinal vessel diameters and the role of inflammation in cerebrovascular disease. Ann. Neurol. 2007, 61, 491–495. [Google Scholar] [CrossRef]
- Emamifar, A.; Hess, S.; Ellingsen, T.; Gerke, O.; Ahangarani Farahani, Z.; Syrak Hansen, P.; Hansen, I.M.J.; Thye-Rønn, P. Clinical presentation and treatment response in patients with polymyalgia rheumatica and giant cell arteritis during a 40-week follow-up. Rheumatol. Adv. Pract. 2021, 5, rkab091. [Google Scholar] [CrossRef] [PubMed]
Control Participants | GCA Patients | PMR Patients | p-Value | p-Value †† | ||
---|---|---|---|---|---|---|
Individuals overall, (n) | 12 | 20 | 19 | |||
Age +80 years, n (%) | 4 (33%) | 1 (5%) | 1 (5%) | |||
Age 71–80 years, n (%) | 5 (42%) | 8 (40%) | 5 (26%) | |||
Age 61–70 years, n (%) | 3 (25%) | 11 (55%) | 11 (58%) | |||
Age 50–60 years, n (%) | 0 (0%) | 0 (0%) | 2 (11%) | |||
Age at visit (years), median (IQR) | 75.5 (71.5 to 81.0) | 69.0 (66.5 to 76.5) | 69.0 (67.0 to 72.0) | 0.039 †* | 0.58 § | |
Sex, n (%) | Male | 3 (25%) | 7 (35%) | 10 (53%) | 0.27 ‡ | 0.27 ‡ |
Body mass index (weight/(height2)), median (IQR) | 25.6 (23.0 to 29.5) | 25.6 (24.2 to 29.4) | 28.4 (23.9 to 31.5) | 0.65 † | 0.50 § | |
Systolic blood pressure (mmHg), median (IQR) | 149.0 (130.0 to 172.5) | 150.5 (137.5 to 159.5) | 144.0 (125.0 to 156.0) | 0.53 † | 0.29 § | |
Diastolic blood pressure (mmHg), median (IQR) | 85.5 (82.5 to 97.0) | 89.5 (82.0 to 94.5) | 90.0 (76.0 to 94.0) | 0.92 † | 0.70 § | |
Mean arterial blood pressure (mmHg), median (IQR) | 111.2 (98.5 to 117.7) | 109.5 (104.0 to 115.8) | 110.0 (94.0 to 113.0) | 0.59 † | 0.37 § | |
Calculated Charlson score, median (IQR) | 3.0 (3.0 to 3.5) | 4.0 (4.0 to 5.0) | 4.0 (3.0 to 5.0) | <0.001 †*** | 0.70 § | |
Adjusted Charlson score for GCA and PMR, median (IQR) ‡‡ | 3.0 (3.0 to 3.5) | 3.0 (3.0 to 4.0) | 3.0 (2.0 to 4.5) | 0.54 † | 0.70 § | |
Prednisolone dose at visit (mg), median (IQR) | 7.5 (3.5 to 10.0) ‖ | 5.0 (2.5 to 8.8) ¶ | 0.37 § | |||
CRP value closest to inclusion (mg/L), median (IQR) | 3.0 (1.4 to 5.0) | 3.4 (1.0 to 7.5) | 0.46 § | |||
Time from symptom debut to diagnosis (months), median (IQR) | 1.7 (0.9 to 3.7) | 2.6 (1.1 to 4.3) | 0.19 § | |||
Time from diagnosis to inclusion (months), median (IQR) | 11.3 (6.6 to 19.2) | 9.7 (6.2 to 18.5) | 0.91 § | |||
Age at time of diagnosis (years), median (IQR) | 68.5 (65.0 to 76.0) | 68.0 (66.0 to 71.0) | 0.45 § | |||
Pseudophakic in both eyes, n (%) | Yes | 12 (100%) | 5 (25%) | 3 (16%) | <0.001 ‡*** | 0.45 ‡ |
Eyes, (n) | 20 | 38 | 35 | |||
Best-corrected visual acuity (ETDRS), median (IQR) | 84.5 (84.0 to 90.5) | 82.0 (77.0 to 85.0) | 84.0 (81.0 to 87.0) | 0.017 †* | 0.15 § | |
IOP (mmHg), median (IQR) | 13.0 (11.6 to 14.0) | 16.0 (13.5 to 18.7) §§ | 15.6 (10.5 to 17.8) | 0.002 †** | 0.18 § | |
Image quality (0 to 10), median (IQR) | 8.1 (7.7 to 8.5) | 7.4 (6.9 to 7.9) | 7.6 (6.8 to 8.1) | 0.002 †** | 0.28 § |
Control Participants | GCA Patients | p-Value † | PMR Patients | p-Value ‡ | |
---|---|---|---|---|---|
Retinal arteriolar oxygen saturation, % (SE) | 91.3 (0.92) | 92.9 (0.86) | 93.4 (0.87) | ||
Difference compared to controls (%), β (95%CI) | Reference | 1.53 (−0.79 to 3.85) | 0.20 | 2.02 (−0.57 to 4.61) | 0.13 |
Retinal venular oxygen saturation, % (SE) | 55.0 (2.20) | 53.7 (2.30) | 53.0 (2.04) | ||
Difference compared to controls (%), β (95%CI) | Reference | −1.29 (−7.52 to 4.93) | 0.68 | −2.04 (−8.32 to 4.24) | 0.52 |
Difference in retinal arterio-venular saturation, % (SE) | 36.3 (1.79) | 39.1 (1.83) | 40.4 (1.92) | ||
Difference compared to controls (%), β (95%CI) | Reference | 2.80 (−2.38 to 7.98) | 0.29 | 4.05 (−1.44 to 9.54) | 0.15 |
Retinal arteriolar vessel diameter, µm (SE) | 115.3 (3.03) | 124.4 (2.40) | 124.8 (3.68) | ||
Difference compared to controls (µm), β (95%CI) | Reference | 9.14 (1.24 to 17.05) | 0.023 * | 9.54 (0.03 to 19.05) | 0.049 * |
Retinal venular vessel diameter, µm (SE) | 155.1 (4.02) | 162.0 (2.51) | 160.1 (3.11) | ||
Difference compared to controls (µm), β (95%CI) | Reference | 6.83 (−1.80 to 15.43) | 0.12 | 4.97 (−5.00 to 14.94) | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lowater, S.J.; Ellingsen, T.J.; Pedersen, J.K.; Wied, J.; Grauslund, J.; Byg, K.-E. Non-Invasive Metabolic and Structural Retinal Markers in Patients with Giant Cell Arteritis and Polymyalgia Rheumatica: A Cross-Sectional Study. Metabolites 2022, 12, 872. https://doi.org/10.3390/metabo12090872
Lowater SJ, Ellingsen TJ, Pedersen JK, Wied J, Grauslund J, Byg K-E. Non-Invasive Metabolic and Structural Retinal Markers in Patients with Giant Cell Arteritis and Polymyalgia Rheumatica: A Cross-Sectional Study. Metabolites. 2022; 12(9):872. https://doi.org/10.3390/metabo12090872
Chicago/Turabian StyleLowater, Simon J., Torkell J. Ellingsen, Jens K. Pedersen, Jimmi Wied, Jakob Grauslund, and Keld-Erik Byg. 2022. "Non-Invasive Metabolic and Structural Retinal Markers in Patients with Giant Cell Arteritis and Polymyalgia Rheumatica: A Cross-Sectional Study" Metabolites 12, no. 9: 872. https://doi.org/10.3390/metabo12090872
APA StyleLowater, S. J., Ellingsen, T. J., Pedersen, J. K., Wied, J., Grauslund, J., & Byg, K. -E. (2022). Non-Invasive Metabolic and Structural Retinal Markers in Patients with Giant Cell Arteritis and Polymyalgia Rheumatica: A Cross-Sectional Study. Metabolites, 12(9), 872. https://doi.org/10.3390/metabo12090872