Are the Bacteria and Their Metabolites Contributing for Gut Inflammation on GSD-Ia Patients?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Fecal Short Chain Fatty Acids Measurement
2.2. Statistical Analysis
3. Results
3.1. Cohort Description, Metabolite Quantification and Differences on Microbial Community between Patients and Controls
3.2. Metabolites, Fecal pH and Observed Operational Taxonomic Units
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, D.A.; Steuerwald, U.; De Souza, C.F.; Derks, T. Inborn Errors of Metabolism with Hypoglycemia: Glycogen Storage Diseases and Inherited Disorders of Gluconeogenesis. Pediatr. Clin. N. Am. 2018, 65, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Austin, S.L.; Abdenur, J.E.; Arn, P.; Bali, D.S.; Boney, A.; Chung, W.K.; Dagli, A.I.; Dale, D.; Koeberl, D.; et al. Diagnosis and management of glycogen storage disease type I: A practice guideline of the American College of Medical Genetics and Genomics. Genet. Med. 2014, 16, e1–e29. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.Y.; Mansfield, B.C. Molecular Genetics of Type 1 Glycogen Storage Diseases. Trends Endocrinol. Metab. 1999, 10, 104–113. [Google Scholar] [CrossRef]
- Labrune, P.; Ullrich, K.; Smit, P.G.; Rake, J.; Visser, G.; Leonard, J.V. Guidelines for management of glycogen storage disease type I—European Study on Glycogen Storage Disease Type I (ESGSD I). Eur. J. Pediatr. 2002, 161, S112–S119. [Google Scholar] [CrossRef] [PubMed]
- Visser, G.; Rake, J.-P.; Fernandes, J.; Labrune, P.; Leonard, J.V.; Moses, S.; Ullrich, K.; Smit, G.A. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: Results of the European Study on Glycogen Storage Disease Type I. J. Pediatr. 2000, 137, 187–191. [Google Scholar] [CrossRef]
- Lawrence, N.T.; Chengsupanimit, T.; Brown, L.M.; Derks, T.; Smit, G.P.A.; Weinstein, D.A. Inflammatory Bowel Disease in Glycogen Storage Disease Type Ia. J. Pediatr. Gastroenterol. Nutr. 2017, 64, e52–e54. [Google Scholar] [CrossRef]
- Lawrence, N.T.; Chengsupanimit, T.; Brown, L.M.; Weinstein, D.A.; Zschocke, J. High Incidence of Serologic Markers of Inflammatory Bowel Disease in Asymptomatic Patients with Glycogen Storage Disease Type Ia; Springer: Berlin/Heidelberg, Germany, 2015; Volume 24, pp. 123–128. [Google Scholar] [CrossRef]
- Yue, B.; Luo, X.; Yu, Z.; Mani, S.; Wang, Z.; Dou, W. Inflammatory Bowel Disease: A Potential Result from the Collusion between Gut Microbiota and Mucosal Immune System. Microorganisms 2019, 7, 440. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De Los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef]
- Belenguer, A.; Duncan, S.H.; Holtrop, G.; Anderson, S.E.; Lobley, G.E.; Flint, H.J. Impact of pH on Lactate Formation and Utilization by Human Fecal Microbial Communities. Appl. Environ. Microbiol. 2007, 73, 6526–6533. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.W.; Duncan, S.H.; McWilliam Leitch, E.C.; Child, M.W.; Flint, H.J. pH and Peptide Supply Can Radically Alter Bacterial Populations and Short-Chain Fatty Acid Ratios within Microbial Communities from the Human Colon. Appl. Environ. Microbiol. 2005, 71, 3692–3700. [Google Scholar] [CrossRef]
- McLoughlin, R.F.; Berthon, B.S.; Jensen, M.E.; Baines, K.J.; Wood, L.G. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 930–945. [Google Scholar] [CrossRef] [PubMed]
- Nugent, S.G.; Kumar, D.; Rampton, D.S.; Evans, D.F. Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 2001, 48, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, K.; Konop, M.; Bielinska, K.; Hutsch, T.; Dziekiewicz, M.; Banaszkiewicz, A.; Ufnal, M. Inflammatory bowel disease is associated with increased gut-to-blood penetration of short-chain fatty acids: A new, non-invasive marker of a functional intestinal lesion. Exp. Physiol. 2019, 104, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Colonetti, K.; Dos Santos, B.B.; Nalin, T.; De Souza, C.F.M.; Triplett, E.W.; Dobbler, P.C.T.; Schwartz, I.V.D.; Roesch, L.F.W. Hepatic glycogen storage diseases are associated to microbial dysbiosis. PLoS ONE 2019, 14, e0214582. [Google Scholar] [CrossRef]
- Ceccarani, C.; Bassanini, G.; Montanari, C.; Casiraghi, M.C.; Ottaviano, E.; Morace, G.; Biasucci, G.; Paci, S.; Borghi, E.; Verduci, E. Proteobacteria Overgrowth and Butyrate-Producing Taxa Depletion in the Gut Microbiota of Glycogen Storage Disease Type 1 Patients. Metabolites 2020, 10, 133. [Google Scholar] [CrossRef]
- De Baere, S.; Eeckhaut, V.; Steppe, M.; De Maesschalck, C.; De Backer, P.; Van Immerseel, F.; Croubels, S. Development of a HPLC–UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. J. Pharm. Biomed. Anal. 2013, 80, 107–115. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package Version. 2013. Available online: https://github.com/vegandevs/vegan (accessed on 25 March 2022).
- Lemos, L.N.; Fulthorpe, R.R.; Triplett, E.W.; Roesch, L.F. Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 2011, 86, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Della Guardia, L.; Codella, R. Exercise tolls the bell for key mediators of low-grade inflammation in dysmetabolic conditions. Cytokine Growth Factor Rev. 2021, 62, 83–93. [Google Scholar] [CrossRef]
- Hasan, N.; Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019, 7, e7502. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Macfarlane, G.T. Proteolysis and Amino Acid Fermentation. In Human Colonic Bacteria: Role in Nutrition, Physiology, and Pathology; Gibson, G.R., Macfarlane, G.T., Eds.; CRC Press: Boca Raton, FL, USA, 1995; p. 75. [Google Scholar]
- Bernalier, A.; Dore, J.; Durand, M. Biochemistry of Fermentation. In Colonic Microbiota, Nutrition and Health; Springer: Dordrecht, The Netherlands, 1999; pp. 37–53. [Google Scholar] [CrossRef]
- Bourriaud, C.; Robins, R.; Martin, L.; Kozlowski, F.; Tenailleau, E.; Cherbut, C.; Michel, C. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol. 2005, 99, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, Z.E.; Marcus, A.K.; Kang, D.-W.; Rittmann, B.E.; Krajmalnik-Brown, R. pH-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures. mSphere 2017, 2, e00047-17. [Google Scholar] [CrossRef] [PubMed]
- Gilissen, J.; Jouret, F.; Pirotte, B.; Hanson, J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol. Ther. 2016, 159, 56–65. [Google Scholar] [CrossRef]
- Lei, W.; Ren, W.; Ohmoto, M.; Urban, J.F.; Matsumoto, I.; Margolskee, R.F.; Jiang, P. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proc. Natl. Acad. Sci. USA 2018, 115, 5552–5557. [Google Scholar] [CrossRef]
- Macy, J.M.; Ljungdahl, L.G.; Gottschalk, G. Pathway of Succinate and Propionate Formation in Bacteroides fragilis. J. Bacteriol. 1978, 134, 84–91. [Google Scholar] [CrossRef]
- Nalin, T.; Venema, K.; Weinstein, D.A.; De Souza, C.F.M.; Perry, I.D.S.; Van Wandelen, M.T.R.; Van Rijn, M.; Smit, G.P.A.; Schwartz, I.V.D.; Derks, T.G.J. In vitro digestion of starches in a dynamic gastrointestinal model: An innovative study to optimize dietary management of patients with hepatic glycogen storage diseases. J. Inherit. Metab. Dis. 2014, 38, 529–536. [Google Scholar] [CrossRef]
- Vanderhaeghen, S.; Lacroix, C.; Schwab, C. Methanogen communities in stools of humans of different age and health status and co-occurrence with bacteria. FEMS Microbiol. Lett. 2015, 362, fnv092. [Google Scholar] [CrossRef] [Green Version]
- Bereswill, S.; Fischer, A.; Plickert, R.; Haag, L.-M.; Otto, B.; Kühl, A.A.; Dashti, J.I.; Zautner, A.E.; Muñoz, M.; Loddenkemper, C.; et al. Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity. PLoS ONE 2011, 6, e20953. [Google Scholar] [CrossRef]
- Hughes, E.R.; Winter, M.G.; Duerkop, B.A.; Spiga, L.; De Carvalho, T.F.; Zhu, W.; Gillis, C.C.; Büttner, L.; Smoot, M.P.; Behrendt, C.L.; et al. Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host Microbe 2017, 21, 208–219. [Google Scholar] [CrossRef] [Green Version]
Metabolite 1 | N 2 (Patient/Control) | Patient (mM) 3 | Control (mM) 3 | p-Value 4 | Microbial Community Difference between Groups (r2; p-Value) | |
---|---|---|---|---|---|---|
Euclidean | Bray-Curtis | |||||
Formic acid | 09/08 | 71.74 (42.28–106.88) | 41.82 (20.08–86.38) | 0.149 | 0.057; 0.443 | 0.058; 0.523 |
Acetic acid | 18/15 | 91.28 (44.96–143.20) | 85.27 (48.75–112.19) | 0.942 | 0.0276; 0.521 | 0.017; 0.989 |
Lactic acid | 13/10 | 28.86 (13.91–56.14) | 17.87 (13.08–25.78) | 0.321 | 0.0562; 0.256 | 0.065; 0.060 |
Propionic acid | 11/14 | 32.68 (11.37–10.51) | 42.06 (22.06–52.98) | >0.999 | 0.081; 0.079 | 0.027; 0.905 |
Succinic acid | 18/16 | 38.02 (24.60–60.33) | 27.53 (9.50–39.99) | 0.045 | 0.045; 0.131 | 0.034; 0.234 |
Formic + Succinic | 7/8 | 61.28 (30.52–100.04) | 37.89 (15.28–68.06) | 0.224 | 0.054; 0.557 | 0.062; 0.627 |
Acetic + Succinic | 13/15 | 101.59 (42.78–189.65) | 89.31 (46.93–129.04) | 0.440 | 0.067; 0.069 | 0.030; 0.701 |
Lactic + Succinic | 10/10 | 49.18 (27.66–78.17) | 35.28 (11.93–52.49) | 0.061 | 0.073; 0.201 | 0.332; 0.019 |
Propionic + Succinic | 10/14 | 45.17 (12.02–78.36) | 50.91 (12.02–87.41) | 0.564 | 0.111; 0.030 | 0.035; 0.688 |
Formic + Acetic | 5/7 | 105.97 (51.83–188.98) | 85.27 (41.10–151,36) | 0.696 | 0.070; 0.465 | 0.079; 0.440 |
Propionic + Acetic | 10/14 | 94.92 (14.56–189.54) | 107.77 (64.65–134.86) | 0.540 | 0.078; 0.087 | 0.223; 0.237 |
Formic + Lactic | 6/5 | 46.03 (0–90.23) | 27.49 (18.85–50.43) | 0.714 | 0.099; 0.468 | 0.310; 0.054 |
Variable | Valid Observations GSD Ia/Ib 1 | GSD Ia (n = 15) 2 | GSD Ib (n = 5) 3 | p-Value 4 | GSD III (n = 1) | GSD IX 3 (n = 3) |
---|---|---|---|---|---|---|
Formic acid (methanoic acid) | 06/02 | 52.00 (38.34–74.76) | 98.50–189.58 | NA | NA | 115.26 |
Acetic acid (ethanoic acid) | 10/04 | 71.68 (32.09–145.19) | 95.15 (35.27–221.79) | 0.777 | 109.25 | 68.28–122.67 |
Lactic acid (2-hydroxypropanoic acid) | 10/02 | 29.78 (14.22–47.08) | 16.71–124.19 | NA | NA | 5.34 |
Propionic acid (Propanoic acid) | 07/03 | 26.45 (5.86–56.85) | 11.37–162.97 | 0.305 | 109.10 | - |
Succinic acid (Butanedioic acid) | 12/03 | 35.95 (23.75–54.95) | 38.97–129.04 | 0.083 | 55.67 | 24.65–36.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colonetti, K.; de Carvalho, E.L.; Rangel, D.L.; Pinto, P.M.; Roesch, L.F.W.; Pinheiro, F.C.; Schwartz, I.V.D. Are the Bacteria and Their Metabolites Contributing for Gut Inflammation on GSD-Ia Patients? Metabolites 2022, 12, 873. https://doi.org/10.3390/metabo12090873
Colonetti K, de Carvalho EL, Rangel DL, Pinto PM, Roesch LFW, Pinheiro FC, Schwartz IVD. Are the Bacteria and Their Metabolites Contributing for Gut Inflammation on GSD-Ia Patients? Metabolites. 2022; 12(9):873. https://doi.org/10.3390/metabo12090873
Chicago/Turabian StyleColonetti, Karina, Evelise Leis de Carvalho, Darlene Lopes Rangel, Paulo Marcos Pinto, Luiz Fernando Wurdig Roesch, Franciele Cabral Pinheiro, and Ida Vanessa Doederlein Schwartz. 2022. "Are the Bacteria and Their Metabolites Contributing for Gut Inflammation on GSD-Ia Patients?" Metabolites 12, no. 9: 873. https://doi.org/10.3390/metabo12090873
APA StyleColonetti, K., de Carvalho, E. L., Rangel, D. L., Pinto, P. M., Roesch, L. F. W., Pinheiro, F. C., & Schwartz, I. V. D. (2022). Are the Bacteria and Their Metabolites Contributing for Gut Inflammation on GSD-Ia Patients? Metabolites, 12(9), 873. https://doi.org/10.3390/metabo12090873