Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Application of Elicitors
2.3. Preliminary Assessment for the Detection of Withanolide A and Withaferin A
2.4. Preparation of Methanolic Extracts
2.5. Spotting of Samples on TLC Plates
2.6. Quantification of Withanolide A and Withaferin A
3. Results
3.1. Effect of Elicitors on the Accumulation of Withanolide A and Withaferin A Contents
3.2. Effect of Elicitors on the Accumulation of Biomass and Yield of Withanolide A and Withaferin A
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, M.; Poddar, N.K.; Singh, D.; Agrawal, S. Foliar Application of Elicitors Enhanced the Yield of Withanolide Contents in Withania somnifera (L.) Dunal (Variety, Poshita). 3 Biotech 2020, 10, 157. [Google Scholar] [CrossRef]
- Kushwaha, S.; Roy, S.; Maity, R.; Mallick, A.; Soni, V.K.; Singh, P.K.; Chaurasiya, N.D.; Sangwan, R.S.; Misra-Bhattacharya, S.; Mandal, C. Chemotypical Variations in Withania somnifera Lead to Differentially Modulated Immune Response in BALB/c Mice. Vaccine 2012, 30, 1083–1093. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.S.; Choi, M.J.; Kim, J.H.; Choi, K.S.; Kwon, T.K. Withaferin A Enhances Radiation-Induced Apoptosis in Caki Cells through Induction of Reactive Oxygen Species, Bcl-2 Downregulation and Akt Inhibition. Chem. Biol. Interact. 2011, 190, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.K.; Madina, B.R.; Chaturvedi, P.; Sangwan, R.S.; Tuli, R. Molecular Cloning and Characterization of One Member of 3β-Hydroxy Sterol Glucosyltransferase Gene Family in Withania somnifera. Arch. Biochem. Biophys. 2007, 460, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Hassannia, B.; Logie, E.; Vandenabeele, P.; Berghe, T.V.; Berghe, W.V. Withaferin A: From Ayurvedic Folk Medicine to Preclinical Anti-Cancer Drug. Biochem. Pharmacol. 2020, 173, 113602. [Google Scholar] [CrossRef]
- Singh, M.; Shah, P.; Punetha, H.; Agrawal, S. Varietal Comparison of Withanolide Contents in Different Tissues of Withania somnifera (L.) Dunal (Ashwagandha). Int. J. Life Sci. Sci. Res. 2018, 4, 1752–1758. [Google Scholar] [CrossRef]
- Sangwan, R.S.; Chaurasiya, N.D.; Misra, L.N.; Lal, P.; Uniyal, G.C.; Sharma, R.; Sangwan, N.S.; Suri, K.A.; Qazi, G.N.; Tuli, R. Phytochemical Variability in Commercial Herbal Products and Preparations of Withania somnifera (Ashwagandha). Curr. Sci. 2004, 461–465. [Google Scholar]
- Kuo, Y.-T.; Liao, H.-H.; Chiang, J.-H.; Wu, M.-Y.; Chen, B.-C.; Chang, C.-M.; Yeh, M.-H.; Chang, T.-T.; Sun, M.-F.; Yeh, C.-C. Complementary Chinese Herbal Medicine Therapy Improves Survival of Patients with Pancreatic Cancer in Taiwan: A Nationwide Population-Based Cohort Study. Integr. Cancer Ther. 2018, 17, 411–422. [Google Scholar] [CrossRef]
- Renu, S.; Manvi, M.; Sapna, B. Evaluation of Antibacterial Potential of Stem Bark of Moringa Oleifera Lam. Bioscan 2010, 1, 89–94. [Google Scholar]
- Thakur, G.S.; Sharma, R.; Sanodiya, B.S.; Baghel, R.; Thakur, R.; Singh, B.N.; Savita, A.; Dubey, A.; Sikarwar, L.; Jaiswal, P. In Vitro Induction of Tuber Formation for the Synthesis of Secondary Metabolites in Chlorophytum Borivilianum Sant. et Fernand. Afr. J. Biotechnol. 2013, 12, 2900–2907. [Google Scholar]
- Ali, M.; Abbasi, B.H.; Ali, G.S. Elicitation of Antioxidant Secondary Metabolites with Jasmonates and Gibberellic Acid in Cell Suspension Cultures of Artemisia Absinthium L. Plant Cell Tissue Organ. Cult. 2015, 120, 1099–1106. [Google Scholar] [CrossRef]
- Zulak, K.G.; Cornish, A.; Daskalchuk, T.E.; Deyholos, M.K.; Goodenowe, D.B.; Gordon, P.M.K.; Klassen, D.; Pelcher, L.E.; Sensen, C.W.; Facchini, P.J. Gene Transcript and Metabolite Profiling of Elicitor-Induced Opium Poppy Cell Cultures Reveals the Coordinate Regulation of Primary and Secondary Metabolism. Planta 2007, 225, 1085–1106. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Tassoni, A. Chitosan as Elicitor of Health Beneficial Secondary Metabolites in in Vitro Plant Cell Cultures. Handb. Chitosan Res. Appl. Nov. Sci. Publ. N. Y. 2011, 389–414. [Google Scholar]
- Senthil, K.; Thirugnanasambantham, P.; Oh, T.J.; Kim, S.H.; Choi, H.K. Free Radical Scavenging Activity and Comparative Metabolic Profiling of in Vitro Cultured and Field Grown Withania somnifera Roots. PLoS ONE 2015, 10, e0123360. [Google Scholar] [CrossRef]
- Gupta, A.; Ansari, S.; Gupta, S.; Narwani, M.; Gupta, M.; Singh, M. Therapeutics Role of Neem and Its Bioactive Constituents in Disease Prevention and Treatment. J. Pharmacogn. Phytochem. 2019, 8, 680–691. [Google Scholar]
- Singh, P.; Guleri, R.; Angurala, A.; Kaur, K.; Kaur, K.; Kaul, S.C.; Wadhwa, R.; Pati, P.K. Addressing Challenges to Enhance the Bioactives of Withania somnifera through Organ, Tissue, and Cell Culture Based Approaches. Biomed Res. Int. 2017, 2017, 1–15. [Google Scholar]
- Chatterjee, S.; Srivastava, S.; Khalid, A.; Singh, N.; Sangwan, R.S.; Sidhu, O.P.; Roy, R.; Khetrapal, C.L.; Tuli, R. Comprehensive Metabolic Fingerprinting of Withania somnifera Leaf and Root Extracts. Phytochemistry 2010, 71, 1085–1094. [Google Scholar] [CrossRef]
- Lee, J.; Hahm, E.-R.; Singh, S. V Withaferin A Inhibits Activation of Signal Transducer and Activator of Transcription 3 in Human Breast Cancer Cells. Carcinogenesis 2010, 31, 1991–1998. [Google Scholar] [CrossRef]
- Maitra, R.; Porter, M.A.; Huang, S.; Gilmour, B.P. Inhibition of NFκB by the Natural Product Withaferin A in Cellular Models of Cystic Fibrosis Inflammation. J. Inflamm. 2009, 6, 15. [Google Scholar] [CrossRef]
- Mayola, E.; Gallerne, C.; Esposti, D.D.; Martel, C.; Pervaiz, S.; Larue, L.; Debuire, B.; Lemoine, A.; Brenner, C.; Lemaire, C. Withaferin A Induces Apoptosis in Human Melanoma Cells through Generation of Reactive Oxygen Species and Down-Regulation of Bcl-2. Apoptosis 2011, 16, 1014–1027. [Google Scholar] [CrossRef]
- Min, K.; Choi, K.; Kwon, T.K. Withaferin A Down-Regulates Lipopolysaccharide-Induced Cyclooxygenase-2 Expression and PGE2 Production through the Inhibition of STAT1/3 Activation in Microglial Cells. Int. Immunopharmacol. 2011, 11, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Hammers, H.; Bargagna-Mohan, P.; Zhan, X.; Herbstritt, C.; Ruiz, A.; Zhang, L.; Hanson, A.; Conner, B.; Rougas, J. Withaferin A Is a Potent Inhibitor of Angiogenesis. Angiogenesis 2004, 7, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Ganzera, M.; Choudhary, M.I.; Khan, I.A. Quantitative HPLC Analysis of Withanolides in Withania somnifera. Fitoterapia 2003, 74, 68–76. [Google Scholar] [CrossRef]
- Zhao, J.; Nakamura, N.; Hattori, M.; Kuboyama, T.; Tohda, C.; Komatsu, K. Withanolide Derivatives from the Roots of Withania somnifera and Their Neurite Outgrowth Activities. Chem. Pharm. Bull. 2002, 50, 760–765. [Google Scholar] [CrossRef]
- Thirugnanasambantham, P.; Senthil, K.; Oh, T.J.; Choi, H.-K. Comparative Chemometric Profiles between Leaf Tissues of Withania somnifera Cultured in Vitro and Field. Int. J. Pharm. Pharm. Sci. 2015, 7, 66–71. [Google Scholar]
- Gupta, A.P. Quantitative Determination of Withanferin-A in Different Plant Parts of Withania somnifera by TLC Densitometry. J. Medi. Aro. Plant Sci. 1996, 18, 788–790. [Google Scholar]
- Ray, S.; Jha, S. Withanolide Synthesis in Cultures of Withania somnifera Transformed with Agrobacterium Tumefaciens. Plant Sci. 1999, 146, 1–7. [Google Scholar] [CrossRef]
- Mir, B.A.; Khazir, J.; Hakeem, K.R.; Koul, S.; Cowan, D.A. Enhanced Production of Withaferin-A in Shoot Cultures of Withania somnifera (L.) Dunal. J. Plant Biochem. Biotechnol. 2014, 23, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Siriwardane, A.S.; Dharmadasa, R.M.; Samarasinghe, K. Distribution of Withaferin A, an Anticancer Potential Agent, in Different Parts of Two Varieties of Withania somnifera (L.) Dunal. Grown in Sri Lanka. Pakistan J. Biol. Sci. 2013, 16, 141–144. [Google Scholar] [CrossRef]
- Das, A.; Kumar, D.A. Assessment of Cytomorphological Parameters and Chemical Contents in in Vitro and Seed Propagated Plants of Elite Genotypes of Withania somnifera (L.) Dunal. Int. J. Res. Ayurveda Pharm. 2011, 2, 1768–1771. [Google Scholar]
- Dewir, Y.H.; Chakrabarty, D.; Lee, S.-H.; Hahn, E.-J.; Paek, K.-Y. Indirect Regeneration of Withania somnifera and Comparative Analysis of Withanolides in in Vitro and Greenhouse Grown Plants. Biol. Plant. 2010, 54, 357–360. [Google Scholar] [CrossRef]
- Gupta, S.M.; Pandey, P.; Grover, A.; Patade, V.Y.; Singh, S.; Ahmed, Z. Cloning and Characterization of GPAT Gene from Lepidium Latifolium L.: A Step towards Translational Research in Agri-Genomics for Food and Fuel. Mol. Biol. Rep. 2013, 40, 4235–4240. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.K.; Taj, G.; Pandey, D.; Arora, S.; Kumar, A. Modeling of the MAPK Machinery Activation in Response to Various Abiotic and Biotic Stresses in Plants by a System Biology Approach. Bioinformation 2013, 9, 443–459. [Google Scholar] [CrossRef]
- Chaurasiya, N.D.; Sangwan, N.S.; Sabir, F.; Misra, L.; Sangwan, R.S. Withanolide Biosynthesis Recruits Both Mevalonate and DOXP Pathways of Isoprenogenesis in Ashwagandha Withania somnifera L.(Dunal). Plant Cell Rep. 2012, 31, 1889–1897. [Google Scholar] [CrossRef]
- Viji, M.O.; Mathew, M.M.; Parvatham, R. Effects of Light Intensity and Imbibition Frequency of in Vivo and in Vitro Propagated Seeds of Withania somnifera (L.) Poshita on Germination. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 354–360. [Google Scholar]
- Dhar, R.S.; Verma, V.; Suri, K.A.; Sangwan, R.S.; Satti, N.K.; Kumar, A.; Tuli, R.; Qazi, G.N. Phytochemical and Genetic Analysis in Selected Chemotypes of Withania somnifera. Phytochemistry 2006, 67, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mir, B.A.; Sehgal, D.; Dar, T.H.; Koul, S.; Kaul, M.K.; Raina, S.N.; Qazi, G.N. Utility of a Multidisciplinary Approach for Genome Diagnostics of Cultivated and Wild Germplasm Resources of Medicinal Withania somnifera, and the Status of New Species, W. Ashwagandha, in the Cultivated Taxon. Plant Syst. Evol. 2011, 291, 141–151. [Google Scholar] [CrossRef]
- Scartezzini, P.; Antognoni, F.; Conte, L.; Maxia, A.; Troia, A.; Poli, F. Genetic and Phytochemical Difference between Some Indian and Italian Plants of Withania somnifera (L.) Dunal. Nat. Prod. Res. 2007, 21, 923–932. [Google Scholar] [CrossRef]
- Singh, N.; Iqbal, Z.; Ansari, T.A.; Khan, M.A.; Ali, N.; Khan, A.; Singh, M. The Portent Plant with a Purpose: Aloe Vera. J. Pharmacogn. Phytochem. 2019, 8, 4124–4130. [Google Scholar]
- Sivanandhan, G.; Kapil Dev, G.; Jeyaraj, M.; Rajesh, M.; Muthuselvam, M.; Selvaraj, N.; Manickavasagam, M.; Ganapathi, A. A Promising Approach on Biomass Accumulation and Withanolides Production in Cell Suspension Culture of Withania somnifera (L.) Dunal. Protoplasma 2013, 250, 885–898. [Google Scholar] [CrossRef]
- Agarwal, A.V.; Gupta, P.; Singh, D.; Dhar, Y.V.; Chandra, D.; Trivedi, P.K. Comprehensive Assessment of the Genes Involved in Withanolide Biosynthesis from Withania somnifera: Chemotype-Specific and Elicitor-Responsive Expression. Funct. Integr. Genomics 2017, 17, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, P.K. Salicylic Acid Induced Biochemical Changes in Cucumber Cotyledons. Indian J. Agric. Biochem. 2008, 21, 35–38. [Google Scholar]
- Bhasin, S.; Singh, M.; Singh, D. Review on Bioactive Metabolites of Withania somnifera (L.) Dunal and Its Pharmacological Significance. J. Pharmacogn. Phytochem. 2019, 8, 3906–3909. [Google Scholar]
- Gangopadhyay, M.; Dewanjee, S.; Bhattacharya, S. Enhanced Plumbagin Production in Elicited Plumbago Indica Hairy Root Cultures. J. Biosci. Bioeng. 2011, 111, 706–710. [Google Scholar] [CrossRef]
- Osano, A.; Fultang, N.; Davis, J. Exogenous Pre-Harvest Treatment with Methyl Jasmonate and Chitosan Elicits Lycopene Biosynthesis in Tomato Plants. J Env. Sci Eng 2017, 6, 561–568. [Google Scholar]
- Sivanandhan, G.; Arun, M.; Mayavan, S.; Rajesh, M.; Mariashibu, T.S.; Manickavasagam, M.; Selvaraj, N.; Ganapathi, A. Chitosan Enhances Withanolides Production in Adventitious Root Cultures of Withania somnifera (L.) Dunal. Ind. Crops Prod. 2012, 37, 124–129. [Google Scholar] [CrossRef]
- Sivanandhan, G.; Selvaraj, N.; Ganapathi, A.; Manickavasagam, M. Enhanced Biosynthesis of Withanolides by Elicitation and Precursor Feeding in Cell Suspension Culture of Withania somnifera (L.) Dunal in Shake-Flask Culture and Bioreactor. PLoS ONE 2014, 9, e104005. [Google Scholar] [CrossRef]
- Dhar, N.; Rana, S.; Bhat, W.W.; Razdan, S.; Pandith, S.A.; Khan, S.; Dutt, P.; Dhar, R.S.; Vaishnavi, S.; Vishwakarma, R. Dynamics of Withanolide Biosynthesis in Relation to Temporal Expression Pattern of Metabolic Genes in Withania somnifera (L.) Dunal: A Comparative Study in Two Morpho-Chemovariants. Mol. Biol. Rep. 2013, 40, 7007–7016. [Google Scholar] [CrossRef]
- Dhar, N.; Rana, S.; Razdan, S.; Bhat, W.W.; Hussain, A.; Dhar, R.S.; Vaishnavi, S.; Hamid, A.; Vishwakarma, R.; Lattoo, S.K. Cloning and Functional Characterization of Three Branch Point Oxidosqualene Cyclases from Withania somnifera (L.) Dunal. J. Biol. Chem. 2014, 289, 17249–17267. [Google Scholar] [CrossRef]
- Vasconsuelo, A.; Boland, R. Molecular Aspects of the Early Stages of Elicitation of Secondary Metabolites in Plants. Plant Sci. 2007, 172, 861–875. [Google Scholar] [CrossRef]
- Singh, M.; Shah, P.; Punetha, H.; Gaur, A.K.; Kumar, A.; Agrawal, S. Isolation and Quantification of a Potent Anti Cancerous Compound, Withaferin A from the Aerial Parts of Withania somnifera (Ashwagandha). Ad Plant Sci 2017, 30, 231–235. [Google Scholar]
Soil Samples | Control | Mango Garden | Transgenic Laboratory |
---|---|---|---|
Salinity (PSU) | 33 | 44 | 94 |
Electrical conductivity (µS/cm) | 65 | 56 | 187 |
pH (With pH Scale) | 7.23 | 7.40 | 7.86 |
Temperature (°C) | 29 | 28.5 | 25 |
Organic carbon (mg/L) | 12 | 6.3 | 4.3 |
Potassium (K) (mg/g) | 18.3 | 22.6 | 69.9 |
Phosphorous (mg/g) | 0.04 | 0.035 | 0.032 |
Nitrogen (N2) (mg/g) | 3.3 | 3.8 | 4.2 |
Vanadium (μg/g) | 112.35 | 117.96 | 121.96 |
Chromium (μg/g) | 79.06 | 65.03 | 69.50 |
Manganese (μg/g) | 452.56 | 402 | 418.03 |
Iron (μg/g) | 52,063.91 | 50,569.36 | 45,235.25 |
Cobalt (μg/g) | 62.36 | 36.25 | 30.24 |
Nickel (μg/g) | 7.45 | 6.98 | 56.32 |
Copper (μg/g) | 8.65 | 75.25 | 60.24 |
Zinc (μg/g) | 39.57 | 48.27 | 52.45 |
Genotypes/Standard | Rf of Withaferin A | Rf of Withanolide A |
---|---|---|
Withaferin A Standard | 0.41 | - |
Withanolide A Standard | - | 0.50 |
Jawahar-20 | - | - |
Leaf | 0.41 (+++) | 0.50 (+++) |
Root | 0.41 (++) | 0.50 (+) |
Stem | 0.41 (++) | 0.41 (++) |
Elicitors | Open Environment | Controlled Environment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Plant Biomass FW (g) | Plant Biomass DW (g) | Yield (Withaferin A) mg/Plant | Yield (Withanolide A) mg/Plant | Plant Height (cm) | Plant Biomass FW (g) | Plant Biomass DW (g) | Yield (Withaferin A) mg/Plant | Yield (Withanolide A) mg/Plant | |
Control | 30 ± 0.01 a | 27 ± 0.2 ab | 18 ± 0.3 ab | 0.536 a | 0.248 a | 30 ± 0.15 a | 25 ± 0.6 b | 19 ± 0.2 b | 3.85 b | 1.17 a |
C10 | 45 ± 0.12 g | 32 ± 0.0 bc | 11 ± 0.5 a | 5.64 b | 1.38 b | 33 ± 0.2 b | 22 ± 0.0 a | 15 ± 0.1 g | 11.445 g | 3.62 d |
C50 | 57 ± 0.27 i | 42 ± 0.1 ab | 16 ± 0.4 bc | 4.848 f | 5.63 h | 61 ± 0.01 g | 39 ± 0.2 f | 23 ± 0.1 f | 7.544 e | 2.200 c |
C100 | 53 ± 0.55 g | 38 ± 0.5 cd | 19 ± 0.01 bc | 5.997 d | 1.906 c | 72 ± 0.3 h | 45 ± 0.2 g | 32 ± 0.0 j | 24.64 h | 14.73 i |
JA50 | 55 ± 0.36 h | 40 ± 0.11 cd | 13 ± 0.01 ab | 7.41 e | 2.205 c | 61 ± 0.1 g | 34 ± 0.7 d | 21 ± 0.2 f | 10.35 f | 1.351 a |
JA200 | 57 ± 0.35 i | 41 ± 0.14 bc | 12 ± 0.8 ab | 2.16 e | 2.73 e | 41 ± 0.1 e | 29 ± 0.1 c | 19 ± 0.2 h | 14.37 h | 1.539 b |
JA400 | 50 ± 0.78 f | 36 ± 0.23 cd | 13 ± 0.1 ab | 2.822 c | 3.33 f | 50 ± 0.0 f | 36 ± 0.6 e | 22 ± 0.5 i | 15.01 i | 5.84 f |
SA0.5 | 47 ± 0.65 e | 35 ± 0.1 cd | 10 ± 0.1 ab | 4.876 c | 1.57 b | 38 ± 0.5 c | 24 ± 0.2 b | 14 ± 0.1 a | 1.395 a | 5.06 f |
SA1.0 | 37 ± 0.12 b | 29 ± 0.01 bc | 18 ± 0.08 e | 7.182 a | 2.46 d | 32 ± 0.25 b | 23 ± 0.4 a | 9 ± 0.6 c | 5.541 c | 0.63 a |
SA2.0 | 50 ± 0.06 f | 40 ± 0.1 d | 34 ± 0.12 c | 16.66 de | 4.36 g | 40 ± 0.8 d | 38 ± 0.5 f | 23 ± 0.8 fg | 10.971 fg | 10.296 h |
CD at 1% | 2.06 | 2.5 | 3.29 | 3.30 | 1.17 | 2.41 | 2.15 | 1.9 | 1.77 | 0.02 |
CD at 5% | 1.4 | 1.83 | 2.35 | 2.36 | 0.83 | 1.72 | 1.25 | 1.3 | 1.26 | 0.02 |
CV | 1.4 | 2.44 | 4.64 | 4.47 | 3.62 | 5.2 | 3.5 | 4.8 | 3.23 | 2.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Agrawal, S.; Afzal, O.; Altamimi, A.S.A.; Redhwan, A.; Alshammari, N.; Patel, M.; Adnan, M.; Elasbali, A.M.; Khan, S. Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.). Metabolites 2022, 12, 854. https://doi.org/10.3390/metabo12090854
Singh M, Agrawal S, Afzal O, Altamimi ASA, Redhwan A, Alshammari N, Patel M, Adnan M, Elasbali AM, Khan S. Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.). Metabolites. 2022; 12(9):854. https://doi.org/10.3390/metabo12090854
Chicago/Turabian StyleSingh, Manali, Sanjeev Agrawal, Obaid Afzal, Abdulmalik S. A. Altamimi, Alya Redhwan, Nawaf Alshammari, Mitesh Patel, Mohd Adnan, Abdelbaset Mohamed Elasbali, and Shahanavaj Khan. 2022. "Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.)" Metabolites 12, no. 9: 854. https://doi.org/10.3390/metabo12090854
APA StyleSingh, M., Agrawal, S., Afzal, O., Altamimi, A. S. A., Redhwan, A., Alshammari, N., Patel, M., Adnan, M., Elasbali, A. M., & Khan, S. (2022). Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.). Metabolites, 12(9), 854. https://doi.org/10.3390/metabo12090854