Trans- and Multigenerational Maternal Social Isolation Stress Programs the Blood Plasma Metabolome in the F3 Generation
Abstract
:1. Introduction
2. Results
2.1. Trans- and Multigenerational Stress Generate Unique Metabolic Profiles
2.2. Trans- and Multigenerational Stress Differentially Program Amino Acid Metabolism Pathways
2.3. Trans- and Multigenerational Stress-Induced Shifts in Energy Metabolism Are Associated with Altered Exploratory Behaviours
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.1.1. Animal Model
4.1.2. Gestational Stress
4.1.3. Breeding Colony
4.2. Behavioural Testing
4.3. Sample Collection and Preparation
4.4. NMR Data Acquisition and Processing
4.5. Statistical Analysis
4.6. Metabolite Identification
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Casas, M.; Project, O.B.O.T.I.; Forns, J.; Martínez, D.; Guxens, M.; Fernandez-Somoano, A.; Ibarluzea, J.; Lertxundi, N.; Murcia, M.; Rebagliato, M.; et al. Maternal pre-pregnancy obesity and neuropsychological development in pre-school children: A prospective cohort study. Pediatr. Res. 2017, 82, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Mina, T.H.; Lahti, M.; Drake, A.J.; Forbes, S.; Denison, F.C.; Räikkönen, K.; Norman, J.E.; Reynolds, R.M. Maternal lipids in pregnancy are associated with increased offspring cortisol reactivity in childhood. Psychoneuroendocrinology 2017, 83, 79–83. [Google Scholar] [CrossRef]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Contu, L.; Hawkes, C.A. A Review of the impact of maternal obesity on the cognitive function and mental health of the offspring. Int. J. Mol. Sci. 2017, 18, 1093. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, K.M.; Reynolds, R.; Prescott, S.L.; Nyirenda, M.; Jaddoe, V.W.V.; Eriksson, J.G.; Broekman, B.F.P. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2016, 5, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Charil, A.; Laplante, D.P.; Vaillancourt, C.; King, S. Prenatal stress and brain development. Brain Res. Rev. 2010, 65, 56–79. [Google Scholar] [CrossRef]
- King, S.; Laplante, D.P. The effects of prenatal maternal stress on children’s cognitive development: Project Ice Storm. Stress 2005, 8, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Ping, E.Y.; Laplante, D.P.; Elgbeili, G.; Hillerer, K.M.; Brunet, A.; O’Hara, M.W.; King, S. Prenatal maternal stress predicts stress reactivity at 2½ years of age: The Iowa Flood Study. Psychoneuroendocrinology 2015, 56, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.; Seckl, J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 2011, 59, 279–289. [Google Scholar] [CrossRef]
- Dancause, K.N.; Vilar, M.; Wilson, M.; Soloway, L.E.; Dehuff, C.; Chan, C.; Tarivonda, L.; Regenvanu, R.; Kaneko, A.; Lum, J.K.; et al. Behavioral risk factors for obesity during health transition in Vanuatu, South Pacific. Obesity 2012, 21, E98–E104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, R.M. Corticosteroid-mediated programming and the pathogenesis of obesity and diabetes. J. Steroid Biochem. Mol. Biol. 2010, 122, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Van den Bergh, B.R.H.; van den Heuvel, M.I.; Lahti-Pulkkinen, M.; Braeken, M.; de Rooij, S.R.; Entringer, S.; Hoyer, D.; Roseboom, T.; Räikkönen, K.; King, S.; et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. 2020, 117, 26–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maric, N.P.; Dunjic, B.; Stojiljkovic, D.J.; Britvic, D.; Jasovic-Gasic, M. Prenatal stress during the 1999 bombing associated with lower birth weight—a study of 3,815 births from Belgrade. Arch. Women’s Ment. Health 2009, 13, 83–89. [Google Scholar] [CrossRef]
- Lederman, S.A.; Rauh, V.; Weiss, L.; Stein, J.L.; Hoepner, L.; Becker, M.; Perera, F.P. The effects of the World Trade Center event on birth outcomes among term deliveries at three Lower Manhattan hospitals. Environ. Health Perspect. 2004, 112, 1772–1778. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wang, W.; Wu, G.; Wang, J. Nutritional support for low birth weight infants: Insights from animal studies. Br. J. Nutr. 2017, 117, 1390–1402. [Google Scholar] [CrossRef] [Green Version]
- Reid, K.M.; Taylor, M.G. Social support, stress, and maternal postpartum depression: A comparison of supportive relationships. Soc. Sci. Res. 2015, 54, 246–262. [Google Scholar] [CrossRef]
- Lebel, C.; MacKinnon, A.; Bagshawe, M.; Tomfohr-Madsen, L.; Giesbrecht, G. Elevated depression and anxiety symptoms among pregnant individuals during the COVID-19 pandemic. J. Affect. Disord. 2020, 277, 5–13. [Google Scholar] [CrossRef]
- Lei, C.-L.; Massart, R.; Suderman, M.J.; Machnes, Z.; Elgbeili, G.; Laplante, D.P.; Szyf, M.; King, S. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PLoS ONE 2014, 9, e107653. [Google Scholar] [CrossRef] [Green Version]
- Zucchi, F.C.R.; Yao, Y.; Ward, I.D.; Ilnytskyy, Y.; Olson, D.M.; Benzies, K.; Kovalchuk, I.; Kovalchuk, O.; Metz, G.A.S. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS ONE 2013, 8, e56967. [Google Scholar] [CrossRef]
- Hollins, S.; Cairns, M.J. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog. Neurobiol. 2016, 143, 61–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meaney, M.J.; Szyf, M. Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialog-Clin. Neurosci. 2005, 7, 103–123. [Google Scholar] [CrossRef]
- Babenko, O.; Kovalchuk, I.; Metz, G.A.S. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci. Biobehav. Rev. 2015, 48, 70–91. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Robinson, A.M.; Zucchi, F.C.R.; Robbins, J.C.; Babenko, O.; Kovalchuk, O.; Kovalchuk, I.; Olson, D.M.; Metz, G.A.S. Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Med. 2014, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Aerts, L.; Van Assche, F. Animal evidence for the transgenerational development of diabetes mellitus. Int. J. Biochem. Cell Biol. 2006, 38, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Thamotharan, M.; Garg, M.; Oak, S.; Rogers, L.M.; Pan, G.; Sangiorgi, F.; Lee, P.W.N.; Devaskar, S.U. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring. Am. J. Physiol. Metab. 2007, 292, E1270–E1279. [Google Scholar] [CrossRef] [Green Version]
- Skinner, M.K.; Anway, M.D.; Savenkova, M.I.; Gore, A.C.; Crews, D. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS ONE 2008, 3, e3745. [Google Scholar] [CrossRef]
- Gapp, K.; Jawaid, A.; Sarkies, P.; Bohacek, J.; Pelczar, P.; Prados, J.; Farinelli, L.; Miska, E.; Mansuy, I.M. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 2014, 17, 667–669. [Google Scholar] [CrossRef] [Green Version]
- Kiss, D.; Ambeskovic, M.; Montina, T.; Metz, G.A.S. Stress transgenerationally programs metabolic pathways linked to altered mental health. Cell. Mol. Life Sci. 2016, 73, 4547–4557. [Google Scholar] [CrossRef]
- Ambeskovic, M.; Ilnytskyy, Y.; Kiss, D.; Currie, C.; Montina, T.; Kovalchuk, I.; Metz, G.A. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk. Aging 2020, 12, 3828–3847. [Google Scholar] [CrossRef]
- Ambeskovic, M.; Babenko, O.; Ilnytskyy, Y.; Kovalchuk, I.; Kolb, B.; Metz, G.A.S. Ancestral stress alters lifetime mental health trajectories and cortical neuromorphology via epigenetic regulation. Sci. Rep. 2019, 9, 6389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambeskovic, M.; Roseboom, T.J.; Metz, G.A. Transgenerational effects of early environmental insults on aging and disease incidence. Neurosci. Biobehav. Rev. 2020, 117, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P. Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Van Steenwyk, G.; Roszkowski, M.; Manuella, F.; Franklin, T.B.; Mansuy, I.M. Transgenerational inheritance of behavioral and metabolic effects of paternal exposure to traumatic stress in early postnatal life: Evidence in the 4th generation. Environ. Epigenetics 2018, 4, dvy023. [Google Scholar] [CrossRef]
- McCreary, J.K.; Erickson, Z.T.; Paxman, E.; Kiss, D.; Montina, T.; Olson, D.M.; Metz, G.A.S. The rat cumulative allostatic load measure (rCALM): A new translational assessment of the burden of stress. Environ. Epigenetics 2019, 5, dvz005. [Google Scholar] [CrossRef]
- Paxman, E.J.; Boora, N.S.; Kiss, D.; Laplante, D.P.; King, S.; Montina, T.; Metz, G.A.S. Prenatal maternal stress from a natural disaster alters urinary metabolomic profiles in Project Ice Storm participants. Sci. Rep. 2018, 8, 12932. [Google Scholar] [CrossRef]
- Esmailnasab, N.; Moradi, G.; Delaveri, A. Risk factors of non-communicable diseases and metabolic syndrome. Iran. J. Public Health 2012, 41, 77–85. [Google Scholar]
- Hjemdahl, P. Stress and the Metabolic Syndrome: An interesting but enigmatic association. Circulation 2002, 106, 2634–2636. [Google Scholar] [CrossRef] [Green Version]
- Poplawski, J.; Radmilovic, A.; Montina, T.D.; Metz, G.A.S. Cardiorenal metabolic biomarkers link early life stress to risk of non-communicable diseases and adverse mental health outcomes. Sci. Rep. 2020, 10, 13295. [Google Scholar] [CrossRef]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [Green Version]
- van Steenwyk, G.; Gapp, K.; Jawaid, A.; Germain, P.; Manuella, F.; Tanwar, D.K.; Zamboni, N.; Gaur, N.; Efimova, A.; Thumfart, K.M.; et al. Involvement of circulating factors in the transmission of paternal experiences through the germline. EMBO J. 2020, 39, e104579. [Google Scholar] [CrossRef] [PubMed]
- McCreary, J.K.; Truica, L.S.; Friesen, B.; Yao, Y.; Olson, D.M.; Kovalchuk, I.; Cross, A.R.; Metz, G.A. Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats. Neuroscience 2016, 330, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Skelin, I.; Needham, M.; Molina, L.; Metz, G.; Gruber, A. Multigenerational prenatal stress increases the coherence of brain signaling among cortico–striatal–limbic circuits in adult rats. Neuroscience 2015, 289, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Seckl, J.R. Glucocorticoid “programming” and PTSD risk. Ann. N. Y. Acad. Sci. 2006, 1071, 351–378. [Google Scholar] [CrossRef]
- Meaney, M.J.; Szyf, M.; Seckl, J.R. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol. Med. 2007, 13, 269–277. [Google Scholar] [CrossRef]
- Baker, J.S.; McCormick, M.C.; Robergs, R.A. Interaction among skeletal muscle metabolic energy systems during intense exercise. J. Nutr. Metab. 2010, 2010, 905612. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.J. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci. Biobehav. Rev. 2012, 36, 1442–1462. [Google Scholar] [CrossRef] [Green Version]
- Oizel, K.; Tait-Mulder, J.; Fernandez-De-Cossio-Diaz, J.; Pietzke, M.; Brunton, H.; Lilla, S.; Dhayade, S.; Athineos, D.; Blanco, G.R.; Sumpton, D.; et al. Formate induces a metabolic switch in nucleotide and energy metabolism. Cell Death Dis. 2020, 11, 310. [Google Scholar] [CrossRef]
- Raaijmakers, A.; Zhang, Z.-Y.; Claessens, J.; Cauwenberghs, N.; van Tienoven, T.P.; Wei, F.-F.; Jacobs, L.; Levtchenko, E.; Pauwels, S.; Kuznetsova, T.; et al. Does extremely low birth weight predispose to low-renin hypertension? Hypertension 2017, 69, 443–449. [Google Scholar] [CrossRef]
- Cherak, S.J.; Giesbrecht, G.F.; Metcalfe, A.; Ronksley, P.E.; Malebranche, M.E. The effect of gestational period on the association between maternal prenatal salivary cortisol and birth weight: A systematic review and meta-analysis. Psychoneuroendocrinology 2018, 94, 49–62. [Google Scholar] [CrossRef]
- Gunther, N.; Drukker, M.; Feron, F.; Van Os, J. Association of mental health problems in childhood with prenatal and postnatal physical growth. Eur. Psychiatry 2005, 20, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Martyn, C.N. Birth weight and later risk of depression in a national birth cohort. Br. J. Psychiatry 2004, 184, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breslau, N. Psychiatric sequelae of low birth weight. Epidemiol. Rev. 1995, 17, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Alexandre-Gouabau, M.-C.; Moyon, T.; David-Sochard, A.; Fenaille, F.; Cholet, S.; Royer, A.-L.; Guitton, Y.; Billard, H.; Darmaun, D.; Rozé, J.-C.; et al. Comprehensive preterm breast milk metabotype associated with optimal infant early growth [attern. Nutrients 2019, 11, 528. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ye, D.; Xie, W.; Hua, F.; Yang, Y.; Wu, J.; Gu, A.; Ren, Y.; Mao, K. Defect of branched-chain amino acid metabolism promotes the development of Alzheimer’s disease by targeting the mTOR signaling. Biosci. Rep. 2018, 38, BSR20180127. [Google Scholar] [CrossRef] [Green Version]
- Fontana, L.; Cummings, N.E.; Apelo, S.I.A.; Neuman, J.C.; Kasza, I.; Schmidt, B.; Cava, E.; Spelta, F.; Tosti, V.; Syed, F.A.; et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016, 16, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Rosa, L.; Scaini, G.; Furlanetto, C.B.; Galant, L.S.; Vuolo, F.; Dall’Igna, D.M.; Schuck, P.F.; Ferreira, G.C.; Dal-Pizzol, F.; Streck, E.L. Administration of branched-chain amino acids alters the balance between pro-inflammatory and anti-inflammatory cytokines. Int. J. Dev. Neurosci. 2015, 48, 24–30. [Google Scholar] [CrossRef]
- Robergs, R.A.; Ghiasvand, F.; Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol. Integr. Comp. Physiol. 2004, 287, R502–R516. [Google Scholar] [CrossRef]
- Zheng, S.; Yu, M.; Lu, X.; Huo, T.; Ge, L.; Yang, J.; Wu, C.; Li, F. Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression. Clin. Chim. Acta 2010, 411, 204–209. [Google Scholar] [CrossRef]
- Garcia-Alvarez, M.; Marik, P.; Bellomo, R. Stress hyperlactataemia: Present understanding and controversy. Lancet Diabetes Endocrinol. 2014, 2, 339–347. [Google Scholar] [CrossRef]
- Kushimoto, S.; Akaishi, S.; Sato, T.; Nomura, R.; Fujita, M.; Kudo, D.; Kawazoe, Y.; Yoshida, Y.; Miyagawa, N. Lactate, a useful marker for disease mortality and severity but an unreliable marker of tissue hypoxia/hypoperfusion in critically ill patients. Acute Med. Surg. 2016, 3, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, L.M.; da Costa, K.-A.; Kwock, L.; Galanko, J.; Zeisel, S.H. Dietary choline requirements of women: Effects of estrogen and genetic variation. Am. J. Clin. Nutr. 2010, 92, 1113–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leermakers, E.T.; Moreira, E.M.; Jong, J.C.K.-D.; Darweesh, S.K.; Visser, T.; Voortman, T.; Bautista, P.K.; Chowdhury, R.; Gorman, D.; Bramer, W.M.; et al. Effects of choline on health across the life course: A systematic review. Nutr. Rev. 2015, 73, 500–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabaie, L.; Klomp, L.; Berger, R.; de Koning, T. l-Serine synthesis in the central nervous system: A review on serine deficiency disorders. Mol. Genet. Metab. 2010, 99, 256–262. [Google Scholar] [CrossRef]
- De Koning, T.J.; Snell, K.; Duran, M.; Berger, R.; Poll-The, B.-T.; Surtees, R. l-Serine in disease and development. Biochem. J. 2003, 371, 653–661. [Google Scholar] [CrossRef]
- Nederhof, E.; Ormel, J.; Oldehinkel, A.J. Mismatch or Cumulative Stress: The pathway to depression is conditional on attention style. Psychol. Sci. 2014, 25, 684–692. [Google Scholar] [CrossRef]
- Faraji, J.; Soltanpour, N.; Ambeskovic, M.; Zucchi, F.C.R.; Beaumier, P.; Kovalchuk, I.; Metz, G.A.S. Evidence for ancestral programming of resilience in a two-hit stress model. Front. Behav. Neurosci. 2017, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Costall, B.; Jones, B.; Kelly, M.; Naylor, R.; Tomkins, D. Exploration of mice in a black and white test box: Validation as a model of anxiety. Pharmacol. Biochem. Behav. 1989, 32, 777–785. [Google Scholar] [CrossRef]
- McCreary, J.K.; Erickson, Z.T.; Hao, Y.; Ilnytskyy, Y.; Kovalchuk, I.; Metz, G.A.S. Environmental intervention as a therapy for adverse programming by ancestral stress. Sci. Rep. 2016, 6, 37814. [Google Scholar] [CrossRef] [Green Version]
- Faraji, J.; Soltanpour, N.; Jafari, S.Y.; Moeeini, R.; Pakdel, S.; Moharreri, A.; Metz, G.A. Stress inhibits psychomotor performance differently in simple and complex open field environments. Horm. Behav. 2014, 65, 66–75. [Google Scholar] [CrossRef]
- Ennaceur, A. Tests of unconditioned anxiety—Pitfalls and disappointments. Physiol. Behav. 2014, 135, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, T.; Song, H.; Cui, S.; Liu, G.; Christoforou, A.; Flaherty, P.; Luo, X.; Wood, L.; Wang, Q.M. Targeted metabolomic profiling reveals association between altered amino acids and poor functional recovery after stroke. Front. Neurol. 2019, 10, 1425. [Google Scholar] [CrossRef] [PubMed]
- Tofte, N.; Suvitaival, T.; Trost, K.; Mattila, I.M.; Theilade, S.; Winther, S.A.; Ahluwalia, T.S.; Frimodt-Møller, M.; Legido-Quigley, C.; Rossing, P. Metabolomic assessment reveals alteration in polyols and branched chain amino acids associated with present and future renal impairment in a discovery cohort of 637 persons with type 1 diabetes. Front. Endocrinol. 2019, 10, 818. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Franquesa, A.; Burkart, A.M.; Isganaitis, E.; Patti, M.-E. What have metabolomics approaches taught us about type 2 diabetes? Curr. Diabetes Rep. 2016, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.-Y.; Kwon, Y.-K.; Lee, D.; Jung, H.-Y.; Ryu, H.-M.; Cho, J.-H.; Ryu, D.H.; Kim, Y.-L.; Hwang, G.-S. Changes in serum metabolites with the stage of chronic kidney disease: Comparison of diabetes and non-diabetes. Clin. Chim. Acta 2016, 459, 123–131. [Google Scholar] [CrossRef]
- Skinner, M.K. What is an epigenetic transgenerational phenotype?: F3 or F2. Reprod. Toxicol. 2008, 25, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Zucchi, F.C.R.; Yao, Y.; Metz, G.A. The secret language of destiny: Stress imprinting and transgenerational origins of disease. Front. Genet. 2012, 3, 96. [Google Scholar] [CrossRef] [Green Version]
- Cable, J.; Pourquié, O.; Wellen, K.E.; Finley, L.W.S.; Aulehla, A.; Gould, A.P.; Teleman, A.; Tu, W.B.; Garrett, W.S.; Miguel-Aliaga, I.; et al. Metabolic decisions in development and disease—a Keystone Symposia report. Ann. N. Y. Acad. Sci. 2021, 1506, 55–73. [Google Scholar] [CrossRef]
- Hawkley, L.C.; Gu, Y.; Luo, Y.-J.; Cacioppo, J.T. The mental representation of social connections: Generalizability extended to Beijing adults. PLoS ONE 2012, 7, e44065. [Google Scholar] [CrossRef]
- McCreary, J.K.; Erickson, Z.T.; Metz, G.A. Environmental enrichment mitigates the impact of ancestral stress on motor skill and corticospinal tract plasticity. Neurosci. Lett. 2016, 632, 181–186. [Google Scholar] [CrossRef]
- Barton, R.H.; Waterman, D.; Bonner, F.W.; Holmes, E.; Clarke, R.; Procardis, C.; Nicholson, J.K.; Lindon, J.C. The influence of EDTA and citrate anticoagulant addition to human plasma on information recovery from NMR-based metabolic profiling studies. Mol. BioSyst. 2009, 6, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Gowda, G.A.N.; Raftery, D. Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Anal. Chem. 2014, 86, 5433–5440. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.E.; Mahle, D.A.; Doom, T.E.; Reo, N.V.; DelRaso, N.J.; Raymer, M.L. Dynamic adaptive binning: An improved quantification technique for NMR spectroscopic data. Metabolomics 2010, 7, 179–190. [Google Scholar] [CrossRef]
- Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, A.J.K.; Lindon, J.C. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal. Chem. 2006, 78, 2262–2267. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, A.M.; Romick-Rosendale, L.; Kennedy, M.A. Statistical significance analysis of nuclear magnetic resonance-based metabonomics data. Anal. Biochem. 2010, 401, 134–143. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.-H.; Liang, F.; Deng, B.-C.; Lai, G.-B.; Gonçalves, C.M.V.; Lu, H.-M.; Yan, J.; Huang, X.; Yi, L.-Z.; Liang, Y.-Z. Informative metabolites identification by variable importance analysis based on random variable combination. Metabolomics 2015, 11, 1539–1551. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wishart, D.S. MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010, 38, W71–W77. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2008, 37, D603–D610. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef] [PubMed]
Group | Metabolite | NMR Chemical Shift Range of Bin (ppm) | Mann-Whitney U Test | VIAVC | VIP Score | Regulation |
---|---|---|---|---|---|---|
F3-TPS vs. F3-CONT | Creatine phosphate | 3.035641–3.028 | 1.62 × 10−2 | 4.40 × 10−9 | 1.51 | Up |
Formate | 8.5343705–8.442 | 2.83 × 10−2 | 2.09 × 10−6 | 1.51 | Up | |
Glucose.1 | 3.715–3.704 | 1.09 × 10−1 | 7.02 × 10−6 | 0.87 | Down | |
Leucine.1, isoleucine.1, 2-hydroxyisovalerate.1 | 0.9586–0.9476 | 7.27 × 10−2 | 1.12 × 10−47 | 0.84 | Down | |
Alanine | 1.498–1.4878 | 4.85 × 10−2 | 2.35 × 10−20 | 0.81 | Down | |
Glucose.2 | 3.526–3.514123 | 3.68 × 10−1 | 1.20 × 10−7 | 0.80 | Down | |
Leucine.2, isoleucine.2 | 0.9812075–0.9682 | 4.85 × 10−2 | 1.85 × 10−30 | 0.72 | Down | |
2-Hydroxyisovalerate.2, 2-oxoisocaproate | 0.9476–0.9133615 | 5.70 × 10−1 | 6.83 × 10−22 | 0.40 | Down | |
F3-MPS vs. F3-CONT | Singlet at 8.38 ppm | 8.442–8.388584 | 1.09 × 10−1 | 3.46 × 10−37 | 1.54 | Up |
Formate | 8.5343705–8.442 | 7.27 × 10−2 | 3.03 × 10−54 | 1.14 | Up | |
Creatine phosphate | 3.035641–3.028 | 2.83 × 10−2 | 2.39 × 10−2 | 1.09 | Up | |
3-Methylxanthine | 8.388584–8.0675875 | 3.68 × 10−1 | 4.02 × 10−31 | 1.02 | Up | |
Threonine | 3.5998105–3.59 | 4.85 × 10−2 | 1.66 × 10−20 | 0.94 | Up | |
Tyramine.1 | 7.0614405–6.05 | 6.83 × 10−1 | 1.25 × 10−20 | 0.82 | Up | |
Glucose, betaine | 3.28–3.2684065 | 7.27 × 10−2 | 2.81 × 10−31 | 0.64 | Down | |
Tyramine.2 | 7.2946365–7.0614405 | 9.33 × 10−1 | 3.90 × 10−27 | 0.35 | Up | |
F3-TPS vs. F3-MPS | Citrate.1 | 2.68–2.6728 | 6.50 × 10−2 | 5.94 × 10−11 | 1.64 | Down |
Citrate.2 | 2.543–2.5269 | 8.30 × 10−2 | 3.34 × 10−12 | 1.40 | Down | |
Citrate.3 | 2.5269135–2.511 | 1.05 × 10−1 | 7.66 × 10−11 | 1.31 | Down | |
Citrate.4 | 2.6727785–2.62297 | 1.05 × 10−1 | 2.25 × 10−8 | 1.17 | Down | |
Choline | 3.22–3.203 | 2.07 × 10−2 | 1.75 × 10−13 | 0.91 | Down | |
Lactate | 4.137413–4.12681 | 3.79 × 10−2 | - | 0.91 | Down | |
Succinate | 2.412–2.402 | 1.95 × 10−1 | 1.01 × 10−10 | 0.89 | Up | |
Alanine.1 | 1.487783–1.476 | 8.30 × 10−2 | 9.29 × 10−16 | 0.89 | Down | |
Alanine.2 | 1.498–1.4878 | 2.34 × 10−1 | 3.88 × 10−10 | 0.83 | Down | |
Serine.1, creatine | 3.971–3.937 | 2.34 × 10−1 | 4.95 × 10−8 | 0.77 | Up | |
Serine.2 | 3.8517095–3.849 | 4.99 × 10−2 | 5.3 × 10−3 | 0.65 | Down | |
Alanine.3 | 3.8066745–3.798575 | 1.61 × 10−1 | 1.27 × 10−8 | 0.45 | Down | |
Tyramine | 7.2946365–7.0614405 | 2.34 × 10−1 | 2.99 × 10−8 | 0.36 | Up |
Creatine Phosphate | Leucine/Isoleucine | |||||||
---|---|---|---|---|---|---|---|---|
Test | TPS vs. CONT | MPS vs. CONT | TPS vs. CONT | MPS vs. CONT | ||||
Rho | p-value | Rho | p-value | Rho | p-value | Rho | p-value | |
Total Distance | −0.712 ** | 0.009 | 0.646 * | 0.023 | ||||
Number of Vertical Moves | −0.636 * | 0.026 | ||||||
Vertical Time | −0.730 ** | 0.007 | −0.691 * | 0.013 | 0.660 * | 0.02 | ||
Central Distance | −0.635 * | 0.026 | 0.674 * | 0.016 | 0.656 * | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heynen, J.P.; Paxman, E.J.; Sanghavi, P.; McCreary, J.K.; Montina, T.; Metz, G.A.S. Trans- and Multigenerational Maternal Social Isolation Stress Programs the Blood Plasma Metabolome in the F3 Generation. Metabolites 2022, 12, 572. https://doi.org/10.3390/metabo12070572
Heynen JP, Paxman EJ, Sanghavi P, McCreary JK, Montina T, Metz GAS. Trans- and Multigenerational Maternal Social Isolation Stress Programs the Blood Plasma Metabolome in the F3 Generation. Metabolites. 2022; 12(7):572. https://doi.org/10.3390/metabo12070572
Chicago/Turabian StyleHeynen, Joshua P., Eric J. Paxman, Prachi Sanghavi, J. Keiko McCreary, Tony Montina, and Gerlinde A. S. Metz. 2022. "Trans- and Multigenerational Maternal Social Isolation Stress Programs the Blood Plasma Metabolome in the F3 Generation" Metabolites 12, no. 7: 572. https://doi.org/10.3390/metabo12070572
APA StyleHeynen, J. P., Paxman, E. J., Sanghavi, P., McCreary, J. K., Montina, T., & Metz, G. A. S. (2022). Trans- and Multigenerational Maternal Social Isolation Stress Programs the Blood Plasma Metabolome in the F3 Generation. Metabolites, 12(7), 572. https://doi.org/10.3390/metabo12070572