
Citation: Heynen, J.P.; Paxman, E.J.;

Sanghavi, P.; McCreary, J.K.; Montina,

T.; Metz, G.A.S. Trans- and

Multigenerational Maternal Social

Isolation Stress Programs the Blood

Plasma Metabolome in the F3

Generation. Metabolites 2022, 12, 572.

https://doi.org/10.3390/

metabo12070572

Academic Editor: Guangju Zhai

Received: 3 May 2022

Accepted: 15 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Trans- and Multigenerational Maternal Social Isolation Stress
Programs the Blood Plasma Metabolome in the F3 Generation
Joshua P. Heynen 1,2,†, Eric J. Paxman 1,2,†, Prachi Sanghavi 1,2,3, J. Keiko McCreary 1, Tony Montina 2,3,*
and Gerlinde A. S. Metz 1,2,*

1 Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge,
Lethbridge, AB T1K 3M4, Canada; josh.heynen@uleth.ca (J.P.H.); epaxman@ualberta.ca (E.J.P.);
sanghavp@myumanitoba.com (P.S.); keiko.mccreary2@uleth.ca (J.K.M.)

2 Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
3 Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
* Correspondence: tony.montina@uleth.ca (T.M.); gerlinde.metz@uleth.ca (G.A.S.M.);

Tel.: +1-403-394-3927 (T.M.); +1-403-394-3992 (G.A.S.M.)
† Indicates co-first authors.

Abstract: Metabolic risk factors are among the most common causes of noncommunicable diseases,
and stress critically contributes to metabolic risk. In particular, social isolation during pregnancy
may represent a salient stressor that affects offspring metabolic health, with potentially adverse
consequences for future generations. Here, we used proton nuclear magnetic resonance (1H NMR)
spectroscopy to analyze the blood plasma metabolomes of the third filial (F3) generation of rats
born to lineages that experienced either transgenerational or multigenerational maternal social
isolation stress. We show that maternal social isolation induces distinct and robust metabolic profiles
in the blood plasma of adult F3 offspring, which are characterized by critical switches in energy
metabolism, such as upregulated formate and creatine phosphate metabolisms and downregulated
glucose metabolism. Both trans- and multigenerational stress altered plasma metabolomic profiles in
adult offspring when compared to controls. Social isolation stress increasingly affected pathways
involved in energy metabolism and protein biosynthesis, particularly in branched-chain amino
acid synthesis, the tricarboxylic acid cycle (lactate, citrate), muscle performance (alanine, creatine
phosphate), and immunoregulation (serine, threonine). Levels of creatine phosphate, leucine, and
isoleucine were associated with changes in anxiety-like behaviours in open field exploration. The
findings reveal the metabolic underpinnings of epigenetically heritable diseases and suggest that even
remote maternal social stress may become a risk factor for metabolic diseases, such as diabetes, and
adverse mental health outcomes. Metabolomic signatures of transgenerational stress may aid in the
risk prediction and early diagnosis of non-communicable diseases in precision medicine approaches.

Keywords: prenatal maternal stress (PNMS); social isolation stress; metabolomics; transgenerational
stress; multigenerational stress; 1H NMR spectroscopy; biomarkers; risk prediction; developmental
origins of health and disease (DOHaD); diabetes

1. Introduction

The global rates of metabolic diseases have increased sharply over the past few
decades [1]. Metabolic diseases in the mother influence the risk of adverse health out-
comes in her children, including abnormal brain development, contributing to the high
prevalence of impaired emotional and behavioural function and the risk of mental ill-
ness [2,3]. Mental illnesses, such as anxiety disorders or major depressive disorders, are the
leading causes of disability worldwide [4]. The prevalence of neurodevelopmental disor-
ders and mental illnesses is rapidly growing, increasing in parallel to the rise in metabolic
diseases. Currently, the causal relationship between metabolic state in mother, child, and
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comorbid mental health issues remains unclear [5,6]; however, both conditions are linked
to maternal stress and an adverse prenatal environment [7].

Maternal stress affects offspring physiology and neurodevelopment by programming
the fetal hypothalamic–pituitary–adrenal (HPA) axis [7–10]. Fetal HPA axis programming
can raise the lifetime risk for altered glucose and insulin metabolism, adiposity [11,12],
anxiety disorders, and depression [13]. In addition, maternal anxiety and prenatal stress
have been linked to low birth weight [14,15] and the development of metabolic syndromes
such as type 2 diabetes, cardiovascular disease, and obesity later in life [16]. Notably,
a lack of social support and social isolation represent significant stressors for pregnant
women [17]. During the COVID-19 pandemic, perceived social isolation had the largest
effects on the substantially elevated symptoms of anxiety (59%) and depression (37%)
experienced by pregnant women in Canada [18].

Prenatal stress has been linked to altered DNA methylation marks [19] and microRNA
signatures [20–22] in both blood and brain tissues. These epigenetic alterations enable the
inheritance of metabolic and behavioural phenotypes to subsequent generations [23,24].
Thus, epigenetic markers linked to experience-dependent insulin resistance and dia-
betes [25,26] and altered affective states [27–29] may propagate across generations in-
dependent of changes in DNA sequence and affect the aging phenotype [30–32]. In fact,
the transgenerational phenotype of high anxiety frequently coincides with altered glucose
metabolism and other metabolic variations [28–30,33–35]. Furthermore, work in human
cohorts of prenatal maternal stress caused by a natural disaster has shown metabolic
alterations that indicate a higher risk of metabolic and cardiovascular disease [36]. More-
over, metabolic risk factors are among the most common causes of noncommunicable
diseases [37], and stress critically contributes to metabolic risk [38,39]. Nevertheless, it has
been difficult to disentangle the link between stress and metabolic disease risk.

Because upstream epigenetic regulation driven by prenatal or remote ancestral stress
is reflected in downstream cellular metabolic functions, the metabolome, i.e., the sum of
all metabolites in an organism, arguably represents a direct result of transgenerational
programming [34,40,41] and provides insight into the metabolic underpinnings of epigenet-
ically heritable diseases. Here, we used high-resolution proton nuclear magnetic resonance
(1H NMR) spectroscopy and supervised and unsupervised machine learning approaches
to probe robust metabolic signatures in rat blood plasma generated by transgenerational
and multigenerational maternal stress in offspring from the third filial generation (F3).
The models allow differentiation between the metabolomic impact of transgenerational
epigenetic inheritance versus cumulative generational prenatal stress on adverse health
outcomes. Both stress models were previously linked to preterm birth and metabolic
disease [24], anxiety-like and depression-like symptoms [29,32,35], impaired neurodevel-
opmental trajectories [42,43], and accelerated biological aging [30,31]. This study reveals
clinically accessible peripheral markers that may provide insight into metabolic pathways
linked to the programming of adverse health outcomes and altered behaviour based on
trans- and multigenerational maternal stress in rats.

2. Results
2.1. Trans- and Multigenerational Stress Generate Unique Metabolic Profiles

PCA was utilized to identify patterns in a subset of metabolites that were deemed
significant using either a Mann–Whitney U test (p < 0.05) or VIAVC analysis. Metabo-
lite profiles of the transgenerational prenatal stress (TPS) and multigenerational prenatal
stress (MPS) groups were clearly separated from CONT (Figure 1A,B). Despite some
overlap between the TPS and MPS profiles compared to CONT, data in Figure 1C demon-
strate significant separation between the TPS and MPS groups and minimal confidence
interval overlap.



Metabolites 2022, 12, 572 3 of 17Metabolites 2022, 11, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 1. Principle component analysis (PCA) plots showing unsupervised separation between the 
groups: (A) transgenerationally stressed rats (TPS) vs. non-stressed controls (CONT); (B) 
multigenerationally stressed rats (MPS) vs. non-stressed controls (CONT); and (C) 
transgenerationally stressed rats (TPS) vs. multigenerationally stressed rats (MPS). Each PCA was 
carried out using only the bins that were determined to be significantly altered. Each point (triangle, 
cross, circle, or square) represents one individual based on the list of blood plasma metabolites 
found to be statistically significant via a Mann–Whitney U test and VIAVC analysis. Coloured 
ellipses represent 95% confidence intervals. X and Y axes show principal components 1 and 2, 
respectively, with brackets indicating the variance explained by each principal component. Note 
that the metabolomes of both TPS and MPS differed substantially from CONT and from each other. 

There were 144 total bins created. Of these bins, TPS vs. CONT, MPS vs. CONT, and 
TPS vs. MPS revealed eight, eight, and thirteen significantly altered bins, respectively. 
Compared to CONT, both the TPS and MPS groups exhibited upregulated formate and 
creatine phosphate, as well as downregulated glucose (Table 1). The TPS comparison with 
the CONT group showed that leucine, isoleucine, alanine, 2-oxoisocaproate, and 2-
hydroxyisovalerate were downregulated. Unique to the MPS group, 3-methylxanthine, 
threonine, and tyramine were upregulated compared to CONT, whereas betaine was 
downregulated (Table 1). Lastly, a comparison of TPS to MPS showed upregulation of 
succinate, creatine, and tyramine and downregulation of citrate, lactate, choline, alanine, 
and serine (Table 1). 

Table 1. p-values of blood plasma metabolites found to be significant in male Long-Evans rats in 
either a Mann–Whitney U test, the variable importance analysis based on random variable 
combination (VIAVC), or both. Rats were either non-stressed (CONT), transgenerationally-stressed 
(TPS), or multigenerationally-stressed (MPS). Up- or downregulation of the metabolites is also 
indicated. Metabolites with multiple peaks are represented as metabolite.1, metabolite.2… 
metabolite.n. 

Group Metabolite 
NMR Chemical Shift 
Range of Bin (ppm) 

Mann-Whitney 
U Test VIAVC 

VIP 
Score Regulation 

F3-TPS vs. 
F3-CONT 

Creatine phosphate 3.035641–3.028 1.62 × 10−2 4.40 × 10−9 1.51 Up 
Formate 8.5343705–8.442 2.83 × 10−2 2.09 × 10−6 1.51 Up 

Glucose.1 3.715–3.704 1.09 × 10−1 7.02 × 10−6 0.87 Down 
Leucine.1, isoleucine.1, 2-

hydroxyisovalerate.1 0.9586–0.9476 7.27 × 10−2 1.12 × 10−47 0.84 Down 

Alanine 1.498–1.4878 4.85 × 10−2 2.35 × 10−20 0.81 Down 
Glucose.2 3.526–3.514123 3.68 × 10−1 1.20 × 10−7 0.80 Down 

Leucine.2, isoleucine.2 0.9812075–0.9682 4.85 × 10−2 1.85 × 10−30 0.72 Down 
2-Hydroxyisovalerate.2, 2-

oxoisocaproate 
0.9476–0.9133615 5.70 × 10−1 6.83 × 10−22 0.40 Down 

Figure 1. Principle component analysis (PCA) plots showing unsupervised separation between the
groups: (A) transgenerationally stressed rats (TPS) vs. non-stressed controls (CONT); (B) multigener-
ationally stressed rats (MPS) vs. non-stressed controls (CONT); and (C) transgenerationally stressed
rats (TPS) vs. multigenerationally stressed rats (MPS). Each PCA was carried out using only the
bins that were determined to be significantly altered. Each point (triangle, cross, circle, or square)
represents one individual based on the list of blood plasma metabolites found to be statistically sig-
nificant via a Mann–Whitney U test and VIAVC analysis. Coloured ellipses represent 95% confidence
intervals. x and y axes show principal components 1 and 2, respectively, with brackets indicating the
variance explained by each principal component. Note that the metabolomes of both TPS and MPS
differed substantially from CONT and from each other.

There were 144 total bins created. Of these bins, TPS vs. CONT, MPS vs. CONT,
and TPS vs. MPS revealed eight, eight, and thirteen significantly altered bins, respectively.
Compared to CONT, both the TPS and MPS groups exhibited upregulated formate and
creatine phosphate, as well as downregulated glucose (Table 1). The TPS comparison
with the CONT group showed that leucine, isoleucine, alanine, 2-oxoisocaproate, and
2-hydroxyisovalerate were downregulated. Unique to the MPS group, 3-methylxanthine,
threonine, and tyramine were upregulated compared to CONT, whereas betaine was
downregulated (Table 1). Lastly, a comparison of TPS to MPS showed upregulation of
succinate, creatine, and tyramine and downregulation of citrate, lactate, choline, alanine,
and serine (Table 1).

Table 1. p-values of blood plasma metabolites found to be significant in male Long-Evans rats in either
a Mann–Whitney U test, the variable importance analysis based on random variable combination
(VIAVC), or both. Rats were either non-stressed (CONT), transgenerationally-stressed (TPS), or
multigenerationally-stressed (MPS). Up- or downregulation of the metabolites is also indicated.
Metabolites with multiple peaks are represented as metabolite.1, metabolite.2 . . . metabolite.n.

Group Metabolite NMR Chemical Shift
Range of Bin (ppm)

Mann-Whitney U
Test VIAVC VIP Score Regulation

F3-TPS vs.
F3-CONT

Creatine phosphate 3.035641–3.028 1.62 × 10−2 4.40 × 10−9 1.51 Up
Formate 8.5343705–8.442 2.83 × 10−2 2.09 × 10−6 1.51 Up

Glucose.1 3.715–3.704 1.09 × 10−1 7.02 × 10−6 0.87 Down
Leucine.1, isoleucine.1,
2-hydroxyisovalerate.1 0.9586–0.9476 7.27 × 10−2 1.12 × 10−47 0.84 Down

Alanine 1.498–1.4878 4.85 × 10−2 2.35 × 10−20 0.81 Down
Glucose.2 3.526–3.514123 3.68 × 10−1 1.20 × 10−7 0.80 Down

Leucine.2, isoleucine.2 0.9812075–0.9682 4.85 × 10−2 1.85 × 10−30 0.72 Down
2-Hydroxyisovalerate.2,

2-oxoisocaproate 0.9476–0.9133615 5.70 × 10−1 6.83 × 10−22 0.40 Down
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Table 1. Cont.

Group Metabolite NMR Chemical Shift
Range of Bin (ppm)

Mann-Whitney U
Test VIAVC VIP Score Regulation

F3-MPS vs.
F3-CONT

Singlet at 8.38 ppm 8.442–8.388584 1.09 × 10−1 3.46 × 10−37 1.54 Up
Formate 8.5343705–8.442 7.27 × 10−2 3.03 × 10−54 1.14 Up

Creatine phosphate 3.035641–3.028 2.83 × 10−2 2.39 × 10−2 1.09 Up
3-Methylxanthine 8.388584–8.0675875 3.68 × 10−1 4.02 × 10−31 1.02 Up

Threonine 3.5998105–3.59 4.85 × 10−2 1.66 × 10−20 0.94 Up
Tyramine.1 7.0614405–6.05 6.83 × 10−1 1.25 × 10−20 0.82 Up

Glucose, betaine 3.28–3.2684065 7.27 × 10−2 2.81 × 10−31 0.64 Down
Tyramine.2 7.2946365–7.0614405 9.33 × 10−1 3.90 × 10−27 0.35 Up

F3-TPS vs. F3-MPS

Citrate.1 2.68–2.6728 6.50 × 10−2 5.94 × 10−11 1.64 Down
Citrate.2 2.543–2.5269 8.30 × 10−2 3.34 × 10−12 1.40 Down
Citrate.3 2.5269135–2.511 1.05 × 10−1 7.66 × 10−11 1.31 Down
Citrate.4 2.6727785–2.62297 1.05 × 10−1 2.25 × 10−8 1.17 Down
Choline 3.22–3.203 2.07 × 10−2 1.75 × 10−13 0.91 Down
Lactate 4.137413–4.12681 3.79 × 10−2 - 0.91 Down

Succinate 2.412–2.402 1.95 × 10−1 1.01 × 10−10 0.89 Up
Alanine.1 1.487783–1.476 8.30 × 10−2 9.29 × 10−16 0.89 Down
Alanine.2 1.498–1.4878 2.34 × 10−1 3.88 × 10−10 0.83 Down

Serine.1, creatine 3.971–3.937 2.34 × 10−1 4.95 × 10−8 0.77 Up
Serine.2 3.8517095–3.849 4.99 × 10−2 5.3 × 10−3 0.65 Down

Alanine.3 3.8066745–3.798575 1.61 × 10−1 1.27 × 10−8 0.45 Down
Tyramine 7.2946365–7.0614405 2.34 × 10−1 2.99 × 10−8 0.36 Up

2.2. Trans- and Multigenerational Stress Differentially Program Amino Acid
Metabolism Pathways

Metabolite set enrichment analysis (MSEA) of the TPS compared to the CONT group
(Figure 2A) indicated significant differences in valine, leucine, and isoleucine (branch
chain amino acids) biosynthesis (p < 0.01) and degradation (p < 0.01). In addition, the
glucose-alanine cycle (p < 0.01) and alanine metabolism were altered in the MSEA. Pathway
topology supported the effects on branched-chain amino acid synthesis (p < 0.01) and
degradation (p < 0.01) pathways but did not reveal significant pathway hits in the glucose-
alanine cycle or alanine metabolic pathways (Figure 2B). The aminoacyl tRNA pathway
(p < 0.01), however, was also shown to be affected by TPS.

MSEA revealed a significant impact on glycine, serine, and threonine metabolism
(p = 0.013) in the MPS group when compared to CONT (Figure 3A). The pathway topology
analysis reflected this significance, showing changes to the glycine, serine, and threonine
metabolic pathway (p < 0.01; Figure 3B). No other pathways were found to be altered in
this group, although betaine metabolism was somewhat significant in the metabolite set
enrichment (p = 0.07).

When the impacts of trans- versus multigenerational stress were compared (Figure 4),
the metabolite set enrichment analysis found the tricarboxylic acid (TCA) cycle (p < 0.01),
methionine metabolism (p < 0.01), glycine, serine, threonine metabolism (p < 0.01), and
alanine metabolism (p = 0.05) to be significantly affected. The TPS versus MPS topology
analysis (Figure 4B) showed differential activation of the glycine, serine, and threonine
metabolic pathway (p < 0.01) to be most significantly affected, followed by the TCA cy-
cle (p < 0.01), the alanine, aspartate, and glutamate metabolic pathway (p < 0.01), the
cyanoamino acid pathway (p = 0.03), the methane metabolic pathway (p = 0.05), and the
aminoacyl tRNA pathway (p = 0.05).
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Figure 2. Pathway-associated metabolite set enrichment analysis (MSEA) for TPS vs. CONT. (A) 
Plot showing affected biological processes in transgenerationally stressed (TPS) compared to non-
stressed (CONT) rats based on metabolites identified as significantly altered between these groups. 
The p-value for each pathway is shown using the heatmap on the right of the figure and the fold 
enrichment shows how many times greater than chance the process is involved. (B) Metabolomic 
pathway analysis showing all matched pathways according to p-values from pathway enrichment 
analysis and pathway impact values from pathway topology analysis in TPS and non-stressed 
CONT rats. The y-axis shows the negative natural log of p, such that a higher value on the y-axis 
gives a lower p-value. The x-axis gives the pathway impact, which correlates to the number of 
metabolite hits in a particular pathway. Only metabolic pathways with p < 0.05 are labeled. TPS had 
the highest impact on valine, leucin, and isoleucine biosynthesis. 

Figure 2. Pathway-associated metabolite set enrichment analysis (MSEA) for TPS vs. CONT.
(A) Plot showing affected biological processes in transgenerationally stressed (TPS) compared to
non-stressed (CONT) rats based on metabolites identified as significantly altered between these
groups. The p-value for each pathway is shown using the heatmap on the right of the figure and the
fold enrichment shows how many times greater than chance the process is involved. (B) Metabolomic
pathway analysis showing all matched pathways according to p-values from pathway enrichment
analysis and pathway impact values from pathway topology analysis in TPS and non-stressed CONT
rats. The y-axis shows the negative natural log of p, such that a higher value on the y-axis gives a
lower p-value. The x-axis gives the pathway impact, which correlates to the number of metabolite
hits in a particular pathway. Only metabolic pathways with p < 0.05 are labeled. TPS had the highest
impact on valine, leucin, and isoleucine biosynthesis.
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non-stressed control (CONT) rats based on metabolites identified as significantly different between 
these groups. The p-value for each pathway is indicated in the gradient on the right side. The fold 
enrichment shows how many times greater than chance the pathway is involved. (B) Metabolomic 
pathway analysis showing all matched pathways according to p-values from pathway enrichment 
analysis and pathway impact values from pathway topology analysis in MPS and non-stressed 
CONT rats. The y-axis shows the negative natural log of p, such that a higher value on the y-axis 
gives a lower p-value. The x-axis indicates the pathway impact, which correlates to the number of 
metabolite hits in a particular pathway. Only metabolic pathways with p < 0.05 are labeled. MPS 
had the highest impact on the glycine, serine, and threonine metabolism. 

Figure 3. Pathway-associated metabolite set enrichment analysis (MSEA) for MPS vs. CONT.
(A) Plot displaying affected biological processes in multigenerationally stressed (MPS) compared to
non-stressed control (CONT) rats based on metabolites identified as significantly different between
these groups. The p-value for each pathway is indicated in the gradient on the right side. The fold
enrichment shows how many times greater than chance the pathway is involved. (B) Metabolomic
pathway analysis showing all matched pathways according to p-values from pathway enrichment
analysis and pathway impact values from pathway topology analysis in MPS and non-stressed CONT
rats. The y-axis shows the negative natural log of p, such that a higher value on the y-axis gives a
lower p-value. The x-axis indicates the pathway impact, which correlates to the number of metabolite
hits in a particular pathway. Only metabolic pathways with p < 0.05 are labeled. MPS had the highest
impact on the glycine, serine, and threonine metabolism.
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vs. MPS rats. The y-axis shows the negative natural log of p, such that a higher value on the y-axis 
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Figure 4. Pathway-associated metabolite set enrichment analysis (MSEA) for TPS vs. MPS. (A) Plot
showing affected biological processes in transgenerationally stressed (TPS) compared to multigenera-
tionally stressed (MPS) rats, based on metabolites identified as significantly altered between these
groups. The p-value for each pathway is shown using the heatmap on the right of the figure and the
fold enrichment shows how many times greater than chance the process is involved. (B) Metabolomic
pathway analysis showing all matched pathways according to p-values from pathway enrichment
analysis and pathway impact values from pathway topology analysis in TPS vs. MPS rats. The y-axis
shows the negative natural log of p, such that a higher value on the y-axis gives a lower p-value. The
x-axis indicates the pathway impact, which correlates to the number of metabolite hits in a particular
pathway. Only metabolic pathways with p < 0.05 are labeled. The largest difference in pathway
activity between TPS and MPS was observed in the glycine, serine, and threonine metabolism.
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2.3. Trans- and Multigenerational Stress-Induced Shifts in Energy Metabolism Are Associated with
Altered Exploratory Behaviours

Table 2 presents the Spearman’s rank correlations of creatine phosphate and leucine/
isoleucine to open field task metrics. Open field task scores can be found in the Sup-
plementary Materials (Table S1). These data revealed a significant relationship between
vertical exploratory time in the open field task and the concentration of creatine phosphate
in the blood plasma metabolome in both TPS (Rho = −0.730, p = 0.007) and MPS rats
(Rho = −0.691, p = 0.013). In the MPS group, creatine phosphate was also significantly
correlated with the total distance traveled (Rho = −0.712, p = 0.009), the number of verti-
cal moves such as rears (Rho = −0.636, p = 0.03), and the distance traveled in the center
(Rho = −0.635, p = 0.003) of the open field arena (Table 2). In general, less exploratory
behaviour was linked to higher creatine phosphate levels.

Table 2. Spearman’s rank correlations of blood plasma metabolite concentrations of creatine phos-
phate and leucine/isoleucine in relation to open field (OF) behavioural measurements. Correlation
coefficients were obtained utilizing metabolite concentrations from comparisons of non-stressed
(CONT) versus multigenerationally-stressed (MPS) Long-Evans rats and non-stressed (CONT) versus
transgenerationally-stressed (TPS) Long-Evans rats. *—indicates a correlation with a p-value less
than 0.05; **—indicates a correlation with a p-value less than 0.01.

Creatine Phosphate Leucine/Isoleucine

Test TPS vs. CONT MPS vs. CONT TPS vs. CONT MPS vs. CONT

Rho p-value Rho p-value Rho p-value Rho p-value
Total

Distance −0.712 ** 0.009 0.646 * 0.023

Number of
Vertical
Moves

−0.636 * 0.026

Vertical Time −0.730 ** 0.007 −0.691 * 0.013 0.660 * 0.02
Central

Distance −0.635 * 0.026 0.674 * 0.016 0.656 * 0.02

TPS, when compared to CONT, also displayed significant correlations between leucine/
isoleucine and total distance (Rho = 0.646, p = 0.02), vertical time (Rho = 0.66, p = 0.02), and
central distance (Rho = 0.596, p = 0.02) in the open field task (Table 2). MPS, when compared
to CONT, showed significant correlations between leucine/isoleucine in the blood plasma
and the distance traveled in the center of the open field task (Rho = 0.656, p = 0.02; Table 2).
In general, lower exploratory activity was linked to reduced leucine/isoleucine levels.

3. Discussion

Metabolic risk factors are among the most common causes of noncommunicable
diseases, and stress critically contributes to metabolic risk. This study shows that ancestral
maternal social isolation stress induces distinct and robust metabolic profiles in adulthood,
which are characterized by significant changes in energy metabolism, such as upregulated
formate and creatine phosphate, and downregulated glucose. The plasma metabolome
induced by transgenerational stress differs from recurrent maternal stress in terms of energy
and amino acid metabolisms, cellular signaling, and immunoregulation. The findings
indicate that maternal stress may lead to long-term metabolic adjustments and risks across
generations of offspring, leading to altered tissue function and potentially contributing to
an altered behavioural phenotype. The findings suggest that ancestral maternal stress may
be a risk factor in idiopathic insulin resistance, diabetes, obesity, and other chronic and
non-communicable diseases.

Substantial metabolic changes may explain the significant consequences of maternal
stress on neuroendocrine and cardiometabolic functions, brain development, and emotional
and cognitive impairments observed in the exposed offspring [10,22,44,45]. Moreover, it
was shown that paternal stress can result in transgenerational programming of a metabolic
phenotype in the F4 generation of the male lineage [34,41]. Here, we also show that trans-
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and multigenerational maternal stress causes distinct metabolic profiles in blood plasma,
providing potentially predictive signatures of adverse health outcomes in the offspring.

Both TPS and MPS altered 21 metabolites known to be present in blood plasma. Among
them, upregulation of creatine phosphate and formate represented a primary marker of
ancestral stress. Creatine phosphate plays a vital role in ATP regeneration in skeletal
muscle and is a rate-limiting pathway in muscle performance enabling brief, high-power
activity [46] or meeting higher energy demand in response to stress [47]. On the other
hand, elevated formate may trigger a metabolic switch from low to high adenine nucleotide
levels, increasing the rate of glycolysis and intracellular lactate levels [48]. The involvement
of these metabolites in both TPS and MPS suggests that ancestral stress may program a
permanently upregulated energy metabolism, which supports a link between programmed
stress vulnerability and documented low birth weights, lifetime diabetes and obesity risk,
and other metabolic abnormalities in offspring exposed to stress in utero [10,49,50].

Metabolic abnormalities at birth are also considered a risk factor for mental disor-
ders such as schizophrenia [51], depression [52], and attention deficit hyperactivity disor-
der [14,53]. Here we show that ancestral stress alters critical energy metabolism pathways,
such as branched-chain amino acid (BCAA) biosynthesis and the tricarboxylic acid cycle,
which mediate neurological and behavioural outcomes [54]. The proteinogenic BCCAs
leucine, isoleucine, and valine are essential amino acids involved in glucose metabolism,
neurotransmitter synthesis, and neuronal function. Thus, disruption in BCAA metabolism
has been linked to abnormal brain development [54] and lifetime risk of neurodegenerative
disorders, such as Alzheimer’s disease [55]. These mechanisms also implicate BCAAs in
the regulation of immune functions, as nutritional interventions of both supplemented
and reduced BCAA intake have been shown to affect metabolic and inflammatory func-
tions [56,57].

When interfering and non-significant metabolites were excluded, the unsupervised
PCA showed clear class separation between TPS and MPS, indicating metabolic profiles
unique to each stress lineage. Interestingly, citrate and lactate were found to be significantly
downregulated in the TPS group as opposed to MPS, but neither had a significantly altered
citrate level compared to non-stressed controls. Both citrate and lactate are involved in
energy generation, particularly in the production of ATP in the tricarboxylic acid (TCA)
cycle, and in muscular ATP regeneration. If lactate levels are low in TPS animals, then
metabolic acidosis and muscular fatigue may occur more quickly [58]. Similarly, low
citrate levels in MPS animals may indicate energy deficiency [59]. By contrast, a relative
increase in lactate in MPS animals, indicative of stress hyperlactataemia, is also secondary
to anaerobic glycolysis induced by tissue hypoperfusion or hypoxia [60]. While here it may
serve adaptive functions, in disease states stress hyperlactataemia is a reliable predictor of
mortality [61]. This reflects the phenotype of MPS animals, whose metabolic and mental
health impairments [24,31] and higher morbidity [30] exceed those of TPS animals.

TPS rats also revealed significantly downregulated choline and serine levels compared
to the MPS group. Choline and its metabolites are required for several physiological
functions, such as cell signaling and cholinergic transmission [62], and may be involved in
blood lipid regulation and the development of cardiovascular disease and cognitive decline
in aging [63]. Serine plays a central role in cellular proliferation and in nervous system
development and functioning [64]. Altered levels of serine in patients with psychiatric
disorders and neurological abnormalities underscore its importance in brain development
and function [65]. Abnormal levels of these metabolites may help to explain anxiety-like
behaviours in ancestrally stressed offspring, but it remains unclear why TPS is linked to
lower levels than MPS. It has been hypothesized that cumulative stress across generations
is mediated by an adaptive response to the constant presence of a stressor [66], which at
times may facilitate partial physiological adaptation and resilience to recurrent stress in
MPS animals [43,67].

Overall, ancestral stress had the largest impact on protein biosynthesis, energy gen-
eration, and immunity. Thus, the formation and breakdown of amino acids, as well as
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energy metabolism, are likely involved in the physiological and behavioural response to
both TPS and MPS. These results are reinforced by the correlational analysis demonstrating
associations between particular metabolites with anxiety-like behaviours. Previous studies
have associated reduced exploratory behaviour, such as vertical rearing, with higher levels
of anxiety [68]. Furthermore, trans- and multigenerationally stressed rats showed higher
stress sensitivity and precocious onset of motor hyperactivity and risk assessment be-
haviours [69]. Here, anxiety-like behaviours, including reduction in the amount of vertical
rearing and total and central distance traveled in the open field task, were associated with
higher circulating creatine phosphate levels in the MPS group. Notably, the association
between increased creatine phosphate and reduced rearing activity (vertical time), which is
a behaviour linked to increased anxiety and psychomotor inhibition [70], was observed
in both the MPS and TPS groups. However, many of the psychophysiological links to
anxiety-like behaviours in the open field task are tenuous [71]. Nevertheless, it remains
to be further determined if creatine phosphate concentrations may serve as a marker of
anxiety risk in populations directly exposed to or with a family history of prenatal stress.

BCAAs such as leucine and isoleucine provided further insight into the metabolic
underpinning of anxiety-like behaviours. More time spent rearing was linked to greater
leucine and isoleucine concentrations in rats from the TPS group. Greater levels of leucine
and isoleucine were associated with more distance travelled in the center of the open field
in the MPS group. This change was mirrored in the TPS lineage with greater levels of
leucine and isoleucine translating to greater total and central distance travelled in the
open field task, linking remote ancestral stress to altered cellular energy metabolism and
behavioural change. Thus, higher levels of leucine and isoleucine may be linked to higher
stress resilience, whereas lower levels of these BCAAs may serve as markers of anxiety-
like behaviours. Lower levels of BCAAs have also been linked to adverse metabolic and
inflammatory functions [56,57] in addition to poorer stroke recovery, increased risk of
renal disease, and type 2 diabetes [72–75]. Causal inferences of BCAA metabolism in brain
function and behaviour require further investigation.

The present downstream cellular metabolic changes may reflect differential underlying
epigenetic changes that are potentially heritable. The TPS generation of the maternal
lineage in particular excludes direct exposure effects and unambiguously suggests heritable
epigenetic transgenerational mechanisms for offspring three generations removed from
maternal stress [76,77] to regulate cellular metabolism. Epigenetics may mediate the
relationship between genotype and internal and external environments [33] and cellular
metabolic changes may directly reflect changes in these upstream regulatory pathways.
Furthermore, gestational stress may impact the developing child through the placenta
or through direct or indirect effects on the fetal brain, potentially contributing to the
differences observed between TPS and MPS cohorts. However, the current findings must be
interpreted carefully, as this study only involved males and only included a small number
of control animals.

The present study used a novel approach to quantify outcomes of ancestral stress and
HPA axis dysregulation by taking a metabolomic perspective and providing possible mech-
anisms for health outcomes in an animal model. The metabolomic biomarkers identified in
this study may provide potential biomarkers for the risk prediction and early diagnosis
of non-genetically heritable stress-related diseases. The identification of predictive and
diagnostic metabolic biomarkers that identify adverse health trajectories linked to maternal
stress is critical for precision medicine approaches, enabling the identification of the most
vulnerable individuals who are at the highest risk. Because the orchestrated regulation of
metabolic pathways is essential for stress regulation, development, and successful aging, its
failure may lead to cell and tissue dysfunction and result in chronic and non-communicable
diseases. On the other hand, metabolic profiles are often cell-type specific [78], thus provid-
ing an opportunity for the discovery of causal pathogenic mechanisms and early diagnosis
of a disease. Due to the potentially significant health impact of social isolation, under-
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standing the metabolic consequences of ancestral stress may provide new personalized
therapeutic strategies to mitigate stress-associated adverse health outcomes.

4. Materials and Methods
4.1. Experimental Design
4.1.1. Animal Model

The study involved 24 adult male Long-Evans rats obtained from the F3 generation of
three lineages: yoked controls (CONT, n = 8), transgenerational prenatal stress (TPS; n = 8),
and multigenerational prenatal stress (MPS; n = 8). Four samples from the control group
did not yield enough plasma for metabolomics analysis, resulting in a reduced control
group size (CONT, n = 4). TPS rats were the third filial (F3) generation of a lineage in
which only the first filial (F1) generation was stressed prenatally; subsequent generations
remained unstressed (Figure 5). MPS rats were the F3 generation of a lineage in which each
consecutive generation (F1, F2 and F3) was prenatally stressed.
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4.1.2. Gestational Stress

Pregnant dams were stressed by social isolation, which has been shown to result
in mild psychosocial stress in rats [79] and profound epigenetic and behavioural pheno-
types [69,80]. Rats were housed in pairs from weaning until postnatal (P) day 90. Then,
dams were separated and housed alone, one per cage, throughout pregnancy until weaning
of their offspring [69,80]. Pairing for mating began at P90 and the maximum time spent
in social isolation prior to conception was 30 days. Control rats remained housed in pairs,
except for the period from gestational day 21 to lactational day 21 (time of weaning), to
allow for undisturbed rearing of their offspring.

4.1.3. Breeding Colony

Animals were bred in-house for at least five generations prior to the beginning of the
experiment. Each generation F0-F4 was outcrossed to avoid inbreeding. Distinct lineages
were monitored through the JAX Colony Management System (JCMS; Jackson Laboratory,
Bar Harbour, ME, USA). One male offspring per litter was randomly selected for this
metabolomics study. Bystander effects of stress were avoided by using designated testing
and housing spaces. All housing, handling, testing, and tissue sampling conditions were
harmonized and carefully controlled across generations.

The rats were housed in polycarbonate shoebox cages on corn cob bedding under a
12 h light/dark cycle with lights on at 7:30 AM. The room temperature was maintained at
20 ◦C with relative humidity at 30%. All procedures were performed in accordance with
the guidelines of the Canadian Council on Animal Care and approved by the University of
Lethbridge Animal Welfare Committee.

4.2. Behavioural Testing

Anxiety-like behaviours towards a novel environment and risk taking were assessed in
an open field test at P90. Rats were individually placed into an Accuscan activity monitoring
box (Accuscan Instruments Inc., Columbus, OH, USA; 42 × 42 × 30 cm) and recorded
for 10 min. VersaMax™ software (Accuscan Instruments Inc., OH, USA) monitored the
animals’ horizontal and vertical activity to be analyzed using VersaDat™ software (Accuscan
Instruments Inc., Columbus, OH, USA; [29]). Vertical (rearing activity) and horizontal
(distance travelled) exploration were considered.

4.3. Sample Collection and Preparation

At the age of 140 days (P140), 600 µL of blood was collected from the lateral tail vein us-
ing a 23-gauge butterfly needle coated with lithium heparin, while rats were anaesthetized
using 4% isoflurane. All blood samples were collected at the same time of day, between
8:00 and 9:00 AM in the morning. EDTA and citrate collection tubes were avoided, as they
give additional spectral signals in 1H NMR spectroscopy [81]. Blood was transferred to
centrifuge tubes and plasma was obtained by centrifugation at 1600× g for 15 min at 4 ◦C.
Samples were stored at −80 ◦C until further processing.

Water soluble metabolites were extracted from plasma using a methanol precipitation
protocol [82]. Methanol was added in a 2:1 ratio (550 µL buffered plasma + 1.10 mL
methanol) in 2.0 mL Eppendorf tubes. These were vortexed for 5 s, incubated at −20 ◦C
for 20 min, and centrifuged at 12,000× g for 30 min at 4 ◦C. Supernatant was decanted to
fresh tubes and allowed to dry under a gentle stream of nitrogen gas until all liquid had
evaporated. Dried pellets were then re-suspended in 600 µL of phosphate buffer calibrated
to pH 7.4 and vortexed for 10 s, or until the pellets were completely dissolved. The
phosphate buffer was prepared as a 4:1 ratio of KH2PO4:K2HPO4 in a 4:1 H2O:D2O solution
to obtain a final concentration of 0.5 M. The D2O contained 0.03% w/v trimethylsilyl
propanoic acid (TSP) as a chemical shift reference for 1H NMR spectroscopy. To maintain
metabolite integrity, 0.03% w/v of sodium azide (NaN3) was also added to the buffer as
an antimicrobial agent. Finally, samples were centrifuged again at 12,000× g for 5 min
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at 4 ◦C and 550 µL of re-suspended supernatant was added to 5 mm NMR tubes for
data acquisition.

4.4. NMR Data Acquisition and Processing

NMR spectra were collected on a 700 MHz Bruker Avance III HD spectrometer (Bruker,
Milton, ON, Canada; Figure S1). The 1-D NOESY gradient water suppression pulse
sequence ‘noesygpr1d’ was used. Each sample was run for 512 scans to a total acquisition
size of 256 k. The spectra were zero filled to 512 k, automatically phased and baseline
corrected, and line-broadened by 0.3 Hz. The processed spectra were then exported to
MATLAB (The MathWorks, Natick, MA, USA) for statistical analysis. Spectra were binned
using Dynamic Adaptive Binning [83]. Each spectrum was normalized to the total unit
area of all spectral bins and the spectral region corresponding to water was removed from
data normalization. The data set was then Pareto scaled to reduce the influence of intense
peaks while emphasizing weaker ones and log transformed [84]. All peaks were referenced
to TSP (0.00δ).

4.5. Statistical Analysis

The overall structure of scaled spectra was visualized and compared across control
and experimental groups using principal component analysis (PCA). A Shapiro–Wilk
test for data normality was applied and all data were found to be non-parametric. A
Mann–Whitney U test was subsequently used to determine which spectral bins were
significantly altered in comparison groups [85]. Bonferroni–Holm correction was applied
to all univariate statistical tests to correct for multiple comparisons. Bins with p-values less
than or equal to 0.05 were deemed significant and considered as potential markers defining
substantial alterations in metabolite concentration between groups.

PCA and Mann–Whitney U tests were carried out using the web-based Metaboanalyst
software [86] and MATLAB® (MathWorks, Natick, MA, USA), respectively. The variable
importance analysis based on random variable combination (VIAVC) algorithm [87] was
utilized to determine which set of metabolite bins led to the best discrimination between
the comparison groups (referred to as the best subset). This machine learning, multivariate
statistical algorithm makes use of random data combinations and iteratively tests each
combination using both PLS-DA and the area under the curve of the receiver operator
characteristic curve (ROC) to determine the best subset of metabolites leading to class
separation [88]. PCA score plots (Figure 1) were generated using only those bins identified
as significant by Mann–Whitey U and VIAVC testing (Table 1). Pathway topology analysis
and metabolite set enrichment analysis were carried out using Metaboanalyst [89,90]. The
Rattus Norvegicus pathway library was utilized for both analyses, the hypergeometric test
was selected for the over-representation analysis, and relative-betweenness centrality was
chosen for the pathway topology analysis.

Spearman’s rank correlations were carried out using SPSS 26 for Windows (IBM Cor-
poration, Armonk, NY, USA) to determine the relationship between normalized metabolite
concentrations and behavioural data. This analysis concerned only metabolites deter-
mined to be significantly altered between groups, based on the multivariate and univariate
statistical tests outlined above. Samples with p-values equal to or less than 0.05 were
considered significant.

4.6. Metabolite Identification

A spectral database of pure metabolites was generated and used to identify most
metabolites found in the NMR spectra. The Human Metabolome Database [91–93] was
used to supplement and aid the creation of our spectral library, and to identify some
substances that were not obtained for the creation of this database. Furthermore, tools
of the Chenomx 8.2 NMR Suite (Chenomx Inc., Edmonton, AB, Canada) were used for
identifying and quantifying NMR metabolites which allowed for the spectral deconvolution
of biofluid samples into individual components.
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