The Kynurenine Pathway in Obese Middle-Aged Women with Normoglycemia and Type 2 Diabetes
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. The Relationship of Trp and Individual KP Metabolites with T2D
3.2. The Relationship between Tryptophan and KP Metabolites with the Cardiometabolic Risk Factors
4. Materials and Methods
4.1. Participants
4.2. Blood Sampling and Laboratory Analyses
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Research Council (US). Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances, 10th ed.; National Academies Press (US): Washington, DC, USA, 1989. [Google Scholar] [CrossRef]
- Badawy, A.A.B. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int. J. Tryptophan Res. 2017, 10, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiluk, M.; Lewkowicz, J.; Pawlak, D.; Tankiewicz-Kwedlo, A. Crosstalk between Tryptophan Metabolism via Kynurenine Pathway and Carbohydrate Metabolism in the Context of Cardio-Metabolic Risk—Review. J. Clin. Med. 2021, 10, 2484. [Google Scholar] [CrossRef] [PubMed]
- Okuda, S.; Nishiyama, N.; Saito, H.; Katsuki, H. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem. 1998, 70, 299–307. [Google Scholar] [CrossRef]
- Sadok, I.; Jędruchniewicz, K.; Rawicz-Pruszyński, K.; Staniszewska, M. UHPLC-ESI-MS/MS Quantification of Relevant Substrates and Metabolites of the Kynurenine Pathway Present in Serum and Peritoneal Fluid from Gastric Cancer Patients—Method Development and Validation. Int. J. Mol. Sci. 2021, 22, 6972. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A.B.; Dougherty, D.M. Assessment of the Human Kynurenine Pathway: Comparisons and Clinical Implications of Ethnic and Gender Differences in Plasma Tryptophan, Kynurenine Metabolites, and Enzyme Expressions at Baseline and after Acute Tryptophan Loading and Depletion. Int. J. Tryptophan Res. 2016, 9, 31–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berge, R.K.; Cacabelos, D.; Señarís, R.; Nordrehaug, J.E.; Nygård, O.; Skorve, J.; Bjørndal, B. Hepatic steatosis induced in C57BL/6 mice by a non-ß oxidizable fatty acid analogue is associated with reduced plasma kynurenine metabolites and a modified hepatic NAD+/NADH ratio. Lipids Health Dis. 2020, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, Y.; Benkowitz, P.; Lamina, C.; Köttgen, A.; Sekula, P. The relationship between blood metabolites of the tryptophan pathway and kidney function: A bidirectional Mendelian randomization analysis. Sci. Rep. 2020, 10, 12675. [Google Scholar] [CrossRef]
- Gęca, K.; Rawicz-Pruszyński, K.; Mlak, R.; Sadok, I.; Polkowski, W.P.; Staniszewska, M. Kynurenine and Anthranilic Acid in the Peritoneum Correlate With the Stage of Gastric Cancer Disease. Int. J. Tryptophan Res. 2022, 15, 11786469211065620. [Google Scholar] [CrossRef]
- Rebnord, E.W.; Strand, E.; Midttun, Ø.; Svingen, G.F.T.; Christensen, M.H.E.; Ueland, P.M.; Mellgren, G.; Njølstad, P.R.; Tell, G.S.; Nygård, O.K.; et al. The kynurenine: Tryptophan ratio as a predictor of incident type 2 diabetes mellitus in individuals with coronary artery disease. Diabetologia 2017, 60, 1712–1721. [Google Scholar] [CrossRef]
- Sulo, G.; Vollset, S.E.; Nygård, O.; Midttun, Ø.; Ueland, P.M.; Eussen, S.J.; Pedersen, E.R.; Tell, G.S. Neopterin and kynurenine-tryptophan ratio as predictors of coronary events in older adults, the Hordaland Health Study. Int. J. Cardiol. 2013, 168, 1435–1440. [Google Scholar] [CrossRef]
- Mangge, H.; Summers, K.L.; Meinitzer, A.; Zelzer, S.; Almer, G.; Prassl, R.; Schnedl, W.J.; Reininghaus, E.; Paulmichl, K.; Weghuber, D.; et al. Obesity-related dysregulation of the tryptophan-kynurenine metabolism: Role of age and parameters of the metabolic syndrome. Obesity (Silver Spring) 2014, 22, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Favennec, M.; Hennart, B.; Caiazzo, R.; Leloire, A.; Yengo, L.; Verbanck, M.; Arredouani, A.; Marre, M.; Pigeyre, M.; Bessede, A.; et al. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity (Silver Spring) 2015, 23, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Boulet, M.M.; Chevrier, G.; Grenier-Larouche, T.; Pelletier, M.; Nadeau, M.; Scarpa, J.; Prehn, C.; Marette, A.; Adamski, J.; Tchernof, A. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E736–E746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.R.; Stocker, R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep. 1999, 4, 199–220. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Zheng, X.; Ma, X.; Bao, Y.; Ni, Y.; Hu, C.; Rajani, C.; Huang, F.; Zhao, A.; Jia, W. Tryptophan Predicts the Risk for Future Type 2 Diabetes. PLoS ONE 2016, 11, e0162192. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, K.; Kato, K.; Takao, T.; Ogawa, M.; Ishii, Y.; Shimizu, F.; Masuda, J.; Takada, A. Concentrations of various tryptophan metabolites are higher in patients with diabetes mellitus than in healthy aged male adults. Diabetol. Int. 2016, 8, 69–75. [Google Scholar] [CrossRef]
- Oxenkrug, G.F. Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 Diabetes. Mol. Neurobiol. 2015, 52, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Munipally, P.K.; Agraharm, S.G.; Valavala, V.K.; Gundae, S.; Turlapati, N.R. Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients. Arch. Physiol. Biochem. 2011, 117, 254–258. [Google Scholar] [CrossRef]
- Li, M.; Kwok, M.K.; Fong, S.S.M.; Schooling, C.M. Indoleamine 2,3-dioxygenase and ischemic heart disease: A Mendelian Randomization study. Sci. Rep. 2019, 9, 8491. [Google Scholar] [CrossRef] [Green Version]
- Deac, O.M.; Mills, J.L.; Shane, B.; Midttun, Ø.; Ueland, P.M.; Brosnan, J.T.; Brosnan, M.E.; Laird, E.; Gibney, E.R.; Fan, R.; et al. Tryptophan Catabolism and Vitamin B-6 Status Are Affected by Gender and Lifestyle Factors in Healthy Young Adults. J. Nutr. 2015, 145, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Paschou, S.A.; Anagnostis, P.; Pavlou, D.I.; Vryonidou, A.; Goulis, D.G.; Lambrinoudaki, I. Diabetes in Menopause: Risks and Management. Curr. Vasc. Pharmacol. 2019, 17, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, E.R.; Tuseth, N.; Eussen, S.J.; Ueland, P.M.; Strand, E.; Svingen, G.F.; Midttun, Ø.; Meyer, K.; Mellgren, G.; Ulvik, A.; et al. Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bie, J.; Guest, J.; Guillemin, G.J.; Grant, R. Central kynurenine pathway shift with age in women. J. Neurochem. 2016, 136, 995–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, E.; Papandreou, C.; Ruiz-Canela, M.; Guasch-Ferre, M.; Clish, C.B.; Dennis, C.; Liang, L.; Corella, D.; Fitó, M.; Razquin, C.; et al. Association of Tryptophan Metabolites with Incident Type 2 Diabetes in the PREDIMED Trial: A Case-Cohort Study. Clin. Chem. 2018, 64, 1211–1220. [Google Scholar] [CrossRef]
- Ottosson, F.; Smith, E.; Fernandez, C.; Melander, O. Plasma Metabolites Associate with All-Cause Mortality in Individuals with Type 2 Diabetes. Metabolites 2020, 10, 315. [Google Scholar] [CrossRef]
- Marchetti, P.; Masiello, P.; Benzi, L.; Cecchetti, P.; Fierabracci, V.; Giannarelli, R.; Gregorio, F.; Brunetti, P.; Navalesi, R. Effects of metformin therapy on plasma amino acid pattern in patients with maturity-onset diabetes. Drugs Exp. Clin. Res. 1989, 15, 565–570. [Google Scholar]
- Do, M.T.; Kim, H.G.; Tran, T.T.; Khanal, T.; Choi, J.H.; Chung, Y.C.; Jeong, T.C.; Jeong, H.G. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression. Toxicol. Appl. Pharmacol. 2014, 280, 138–148. [Google Scholar] [CrossRef]
- Christensen, M.H.E.; Fadnes, D.J.; Røst, T.H.; Pedersen, E.R.; Andersen, J.R.; Våge, V.; Ulvik, A.; Midttun, Ø.; Ueland, P.M.; Nygård, O.K.; et al. Inflammatory markers, the tryptophan-kynurenine pathway, and vitamin B status after bariatric surgery. PLoS ONE 2018, 13, e0192169. [Google Scholar] [CrossRef] [Green Version]
- Wolowczuk, I.; Hennart, B.; Leloire, A.; Bessede, A.; Soichot, M.; Taront, S.; Caiazzo, R.; Raverdy, V.; Pigeyre, M.; ABOS Consortium; et al. Tryptophan metabolism activation by indoleamine 2,3-dioxygenase in adipose tissue of obese women: An attempt to maintain immune homeostasis and vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R135–R143. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.J.; Raynal, S.; Bailbe, D.; Gausseres, B.; Carbonne, C.; Autier, V.; Movassat, J.; Kergoat, M.; Portha, B. Expression of the kynurenine pathway enzymes in the pancreatic islet cells. Activation by cytokines and glucolipotoxicity. Biochim. Biophys. Acta 2015, 1852, 980–991. [Google Scholar] [CrossRef] [Green Version]
- Fears, R.; Murrell, E.A. Tryptophan and the control of triglyceride and carbohydrate metabolism in the rat. Br. J. Nutr. 1980, 43, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Autier, V.; Arbellot, A.; Audet, A.; Moinet, G.; Durbin, P.; Kergoat, M. Implication of Kynurenine Pathway in Glucose Metabolism and Insulin Secretion in Type II Diabetes. Diabetes 2005, 54, A34. [Google Scholar]
- Rojas, I.Y.; Moyer, B.J.; Ringelberg, C.S.; Wilkins, O.M.; Pooler, D.B.; Ness, D.B.; Coker, S.; Tosteson, T.D.; Lewis, L.D.; Chamberlin, M.D.; et al. Kynurenine-Induced Aryl Hydrocarbon Receptor Signaling in Mice Causes Body Mass Gain, Liver Steatosis, and Hyperglycemia. Obesity (Silver Spring) 2021, 29, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Mudry, J.M.; Alm, P.S.; Erhardt, S.; Goiny, M.; Fritz, T.; Caidahl, K.; Zierath, J.R.; Krook, A.; Wallberg-Henriksson, H. Direct effects of exercise on kynurenine metabolism in people with normal glucose tolerance or type 2 diabetes. Diabetes Metab. Res. Rev. 2016, 32, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Favennec, M.; Hennart, B.; Verbanck, M.; Pigeyre, M.; Caiazzo, R.; Raverdy, V.; Verkindt, H.; Leloire, A.; Guillemin, G.J.; Yengo, L.; et al. Post-Bariatric Surgery Changes in Quinolinic and Xanthurenic Acid Concentrations Are Associated with Glucose Homeostasis. PLoS ONE 2016, 11, e0158051. [Google Scholar] [CrossRef] [Green Version]
- Skouras, C.; Zheng, X.; Binnie, M.; Homer, N.Z.; Murray, T.B.; Robertson, D.; Briody, L.; Paterson, F.; Spence, H.; Derr, L.; et al. Increased levels of 3-hydroxykynurenine parallel disease severity in human acute pancreatitis. Sci. Rep. 2016, 6, 33951. [Google Scholar] [CrossRef] [Green Version]
- Mizdrak, J.; Hains, P.G.; Truscott, R.J.; Jamie, J.F.; Davies, M.J. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. Free Radic. Biol. Med. 2008, 44, 1108–1119. [Google Scholar] [CrossRef]
- Rogers, K.S.; Evangelista, S.J. 3-Hydroxykynurenine, 3-Hydroxyanthranilic Acid, and o-Aminophenol Inhibit Leucine-Stimulated Insulin Release from Rat Pancreatic Islets. Exp. Biol. Med. 1985, 178, 275–278. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013, 34, 137–143. [Google Scholar] [CrossRef] [Green Version]
- DiNatale, B.C.; Murray, I.A.; Schroeder, J.C.; Flaveny, C.A.; Lahoti, T.S.; Laurenzana, E.M.; Omiecinski, C.J.; Perdew, G.H. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol. Sci. 2010, 115, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Klein, C.; Patte-Mensah, C.; Taleb, O.; Bourguignon, J.J.; Schmitt, M.; Bihel, F.; Maitre, M.; Mensah-Nyagan, A.G. The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology 2013, 70, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Scholz, O.; Welters, A.; Lammert, E. Role of NMDA Receptors in Pancreatic Islets. NMDA Recept. 2017, 30, 121–134. [Google Scholar] [CrossRef]
- Noto, Y.; Okamoto, H. Inhibition by kynurenine metabolites of proinsulin synthesis in isolated pancreatic islets. Acta Diabetol. Lat. 1978, 15, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, L.Z.; Ferreira, D.M.S.; Cervenka, I.; Bryzgalova, G.; Dadvar, S.; Jannig, P.R.; Pettersson-Klein, A.T.; Lakshmikanth, T.; Sustarsic, E.G.; Porsmyr-Palmertz, M. Correia, J.C.; Izadi, M.; Martínez-Redondo, V.; Ueland, P.M.; Midttun, Ø.; Gerhart-Hines Z.; Brodin, P.; Pereira, T.; Berggren, P.O.; Ruas, J.L. Kynurenic Acid and Gpr35 Regulate Adipose Tissue Energy Homeostasis and Inflammation. Cell Metab. 2018, 27, 378–392.e5. [Google Scholar] [CrossRef] [Green Version]
- Frick, B.; Schroecksnadel, K.; Neurauter, G.; Leblhuber, F.; Fuchs, D. Increasing production of homocysteine and neopterin and degradation of tryptophan with older age. Clin. Biochem. 2004, 37, 684–687. [Google Scholar] [CrossRef]
- Dugué, P.A.; Hodge, A.M.; Ulvik, A.; Ueland, P.M.; Midttun, Ø.; Rinaldi, S.; MacInnis, R.J.; Li, S.X.; Meyer, K.; Navionis, A.S.; et al. Association of Markers of Inflammation, the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2022, 77, 826–836. [Google Scholar] [CrossRef]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J. STRAW + 10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. J. Clin. Endocrinol. Metab. 2012, 97, 1159–1168. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Kubacka, J.; Cembrowska, P.; Sypniewska, G.; Stefanska, A. The Association between Branched-Chain Amino Acids (BCAAs) and Cardiometabolic Risk Factors in Middle-Aged Caucasian Women Stratified According to Glycemic Status. Nutrients 2021, 13, 3307. [Google Scholar] [CrossRef]
- Radikova, Z.; Koska, J.; Huckova, M.; Ksinantova, L.; Imrich, R.; Vigas, M.; Trnovec, T.; Langer, P.; Sebokova, E.; Klimes, I. Insulin sensitivity indices: A proposal of cut-off points for simple identification of insulin-resistant subjects. Exp Clin Endocrinol Diabetes 2006, 114, 249–256. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. ESC Scientific Document Group, 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [Green Version]
Parameters | NG Women n = 65 | T2D Women n = 63 | p |
---|---|---|---|
Age (years) | 50.0 ± 5.0 | 53.2 ± 5.0 | <0.001 |
BMI (kg/m2) | 36.5 ± 6.2 | 36.6 ± 6.3 | 0.91 |
WC (cm) | 106.8 ± 16.4 | 107.7 ± 13.9 | 0.76 |
Glucose (mmol/L) | 5.2 (4.8–5.4) | 7.0 (5.9–8.1) | <0.0001 |
HDL-C (mmol/L) | 1.4 (1.2–1.7) | 1.2 (1.0–1.4) | 0.001 |
TG (mmol/L) | 1.3 (0.9–1.6) | 1.7 (1.3–2.2) | 0.0001 |
ALT (U/L) | 18.7 (14.2–23.8) | 22.7 (17.8–30.4) | 0.009 |
GGT (U/L) | 20.7 (14.6–25.8) | 25.2 (18.9–33.7) | 0.011 |
Creatinine (mg/dl) | 0.76 (0.72–0.88) | 0.81 (0.73–0.89) | 0.23 |
eGFR (mL/min/1.73 m2) | 91.9 (80.2–96.4) | 83.1 (71.7–92.4) | 0.04 |
CRP (mg/L) | 2.3 (1.0–3.9) | 3.3 (1.3–5.9) | 0.08 |
HbA1c (mmol/mol) | 37.0 (34.0–38.0) | 45.0 (42.0–58.0) | <0.0001 |
Insulin (µIU/mL) | 9.0 (6.7–12.1) | 10.5 (5.8–15.0) | 0.29 |
TSH (mIU/L) | 1.48 (1.14–2.10) | 1.34 (1.01–2.05) | 0.31 |
HOMA-IR | 2.0 (1.6–2.9) | 3.3 (1.9–5.5) | 0.0005 |
Neopterin (nmol/L) | 7.0 (5.0–8.9) | 7.3 (4.2–10.4) | 0.61 |
SBP (mmHg) | 130 (120–140) | 130 (120–140) | 0.69 |
DBP (mmHg) | 80 (80–90) | 80 (80–85) | 0.45 |
Lipid-lowering treatment (%) | 16 | 43 | 0.0008 |
Hypertension treatment (%) | 33 | 62 | 0.01 |
Metformin treatment (%) | 0 | 76 | <0.0001 |
Menopausal status (% postmenopausal) | 50 | 62 | 0.11 |
Physical activity (% never or sporadically) | 32 | 35 | 0.72 |
Alcohol consumption (% never or sporadically) | 94 | 95 | 0.80 |
Smoker (% current) | 12 | 19 | 0.27 |
Obesity categories 1/2/3 (%) | 54/18/28 | 45/31/24 | 0.67 |
Parameters | NG Women n = 65 | T2D Women n = 63 | p | p * |
---|---|---|---|---|
Trp (µmol/L) | 55.0 (50.0–58.5) | 59.2 (51.6–70.8) | 0.009 | 0.033 |
Kyn (µmol/L) | 1.39 (1.20–1.84) | 1.53 (1.17–1.86) | 0.76 | 0.76 |
Kyna (µmolL) | 0.097 (0.078–0.117) | 0.110 (0.093–0.128) | 0.01 | 0.033 |
3HKyn (µmol/L) | 0.30 (0.21–0.44) | 0.28 (0.18–0.41) | 0.04 | 0.08 |
QA (µmol/L) | 0.16 (0.10–0.37) | 0.15 (0.10–0.24) | 0.36 | 0.40 |
KTR | 24.9 (20.6–33.6) | 22.6 (18.8–35.2) | 0.30 | 0.38 |
KMO | 0.20 (0.13–0.32) | 0.20 (0.10–0.31) | 0.22 | 0.31 |
KAT | 0.060 (0.048–0.088) | 0.072 (0.052–0.097) | 0.11 | 0.18 |
Kyna/QA | 0.54 (0.29–0.87) | 0.72 (0.45–1.13) | 0.02 | 0.05 |
Kyna/3HKyn | 0.32 (0.14–0.48) | 0.47 (0.34–0.77) | 0.008 | 0.033 |
Parameter | Trp | Kyn | Kyna | 3HKyn | QA | KTR | KMO | KAT | Kyna/ QA | Kyna/ 3HKyn |
---|---|---|---|---|---|---|---|---|---|---|
Age | - | - | - | - | - | - | - | - | - | - |
BMI | 0.21 * | - | −0.18 * | 0.31 $@ | −0.34 $@ | - | 0.23 * | −0.20 * | 0.23 *@ | −0.26 #@ |
WC | - | - | −0.22 * | 0.22 * | −0.29 #@ | - | 0.10 * | −0.18 * | 0.18 * | −0.22 * |
Glucose | - | - | - | - | - | - | - | - | - | - |
HOMA-IR | 0.18 * | - | - | - | - | - | - | - | - | - |
HDL-C | - | - | - | - | - | - | - | - | - | - |
TG | 0.30 $@ | - | - | - | −0.28 #@ | −0.21 * | - | - | 0.28 #@ | - |
ALT | - | 0.27 #@ | - | - | - | - | - | −0.25 #@ | - | - |
GGT | 0.18 * | 0.24 # | −0.19 * | - | - | - | - | −0.31 $@ | - | - |
HbA1c | 0.18 * | - | 0.23 * | - | - | - | - | 0.20 * | 0.19 * | 0.22 * |
CRP | - | - | - | - | −0.19 * | - | - | - | - | - |
Neopterin | - | - | - | - | - | - | - | - | - | - |
Creatinine | 0.22 * | - | 0.20 * | - | −0.26 #@ | - | - | - | 0.33 $@ | - |
eGFR | −0.24 # | - | −0.18 * | - | 0.28 #@ | - | - | - | −0.35 $@ | 0.20 * |
Independent Variables | Odds Ratios (95% CI) per 1SD Increase in Value of Independent Variable | |||||
---|---|---|---|---|---|---|
Model Unadjusted | Model Adjusted for BMI | Model Adjusted for Age | Model Adjusted for eGFR | Model Adjusted for GGT | Model Adjusted for Hipertg& | |
Trp | 1.81 * (1.13–2.88) | 1.81 * (1.12–2.90) | 1.68 * (1.02–2.74) | 1.78 * (1.09–2.91) | 1.73 * (1.11–3.0) | 1.75 * (1.06–2.88) |
Kyna | 2.50 # (1.28–4.70) | 2.37 # (1.24–4.53) | 2.48 # (1.27–4.84) | 1.99 * (1.07–3.71) | 2.51 # (1.29–4.92) | 2.27 * (1.89–4.33) |
Kyna/ 3HKyn | 1.92 # (1.21–2.70) | 1.83 # (1.19–2.80) | 1.90 # (1.23–2.92) | 1.75 # (1.15–2.65) | 1.91 # (1.25–2.98) | 1.66 * (1.10–2.51) |
Kyna/QA | 1.81 * (1.08–3.04) | 1.82 * (1.08–3.08) | 1.69 (0.98–2.91) | 1.62 (0.94–2.79) | 1.81 * (1.07–2.99) | 1.69 (0.99–2.87) |
Parameter | NG Correlation Coefficients/T2D Correlation Coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trp | Kyn | Kyna | 3HKyn | QA | KTR | KMO | KAT | Kyna/ QA | Kyna/ 3HKyn | |
BMI | 0.29/- | -/- | −0.43 @/- | 0.66 @/- | −0.60 @/- | −0.34 @/- | 0.60 @/- | −0.29/- | 0.41 @/- | −0.63 @/- |
WC | 0.24/- | -/- | −0.40 @/- | 0.46 @/- | −0.50 @/- | −0.36 @/- | 0.48 @/- | −0.34 @/- | 0.32 @/- | −0.48 @/- |
Glucose | -/- | -/- | −0.26/- | -/- | -/- | -/- | -/- | -/- | -/- | |
HOMA-IR | -/- | -/- | -/- | -/0.30 | -/- | -/- | -/- | -/- | -/- | -/−0.28 |
HDL-C | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | |
TG | -/0.29 | -/- | −0.24/- | 0.31 @/- | −033 @/- | -/−0.27 | 0.26/- | -/- | −0.29/- | |
ALT | -/- | 0.27/ 0.28 | -/- | -/- | -/- | -/- | -/- | −0.33/ −0.26 | -/- | -/- |
GGT | -/- | 0.25/ 0.30 | -/−0.32 | -/- | -/- | -/- | -/- | −0.35 @/ −0.40 | -/- | -/- |
HbA1c | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- |
CRP | -/- | -/- | −0.34 @/- | 0.35 @/- | −0.30/- | -/- | 0.34 @/- | -/- | -/- | −0.37 @/- |
Neopterin | -/- | -/- | -/- | -/0.32 | -/- | -/- | -/- | -/- | -/0.32 | -/−0.26 |
Creatinine | 0.29/- | -/- | -/- | -/- | −0.27/- | -/- | -/- | -/- | 0.33 @/0.29 | -/- |
eGFR | −0.26/- | -/- | -/- | -/- | 0.29/- | -/- | -/- | -/- | −0.32 @/ −0.28 | -/- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubacka, J.; Staniszewska, M.; Sadok, I.; Sypniewska, G.; Stefanska, A. The Kynurenine Pathway in Obese Middle-Aged Women with Normoglycemia and Type 2 Diabetes. Metabolites 2022, 12, 492. https://doi.org/10.3390/metabo12060492
Kubacka J, Staniszewska M, Sadok I, Sypniewska G, Stefanska A. The Kynurenine Pathway in Obese Middle-Aged Women with Normoglycemia and Type 2 Diabetes. Metabolites. 2022; 12(6):492. https://doi.org/10.3390/metabo12060492
Chicago/Turabian StyleKubacka, Justyna, Magdalena Staniszewska, Ilona Sadok, Grazyna Sypniewska, and Anna Stefanska. 2022. "The Kynurenine Pathway in Obese Middle-Aged Women with Normoglycemia and Type 2 Diabetes" Metabolites 12, no. 6: 492. https://doi.org/10.3390/metabo12060492
APA StyleKubacka, J., Staniszewska, M., Sadok, I., Sypniewska, G., & Stefanska, A. (2022). The Kynurenine Pathway in Obese Middle-Aged Women with Normoglycemia and Type 2 Diabetes. Metabolites, 12(6), 492. https://doi.org/10.3390/metabo12060492