Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice
Abstract
:1. Introduction
2. Results
2.1. Body Weight and F Intake
2.2. Exercise Training
2.3. Fluoride Analyses in Plasma, Liver and Femur
2.4. Analysis of Plasma Glucose and Insulin and Calculation of the HOMA2-IR
2.5. Liver and Gastrocnemius Muscle Proteomic Analysis
3. Discussion
4. Materials and Methods
4.1. Animals, Treatment and Samples Collection
4.2. Exercise Protocol and Treadmill Training Experiment
4.3. Fluoride Analyses in Plasma, Liver and Femur
4.4. Analysis of Plasma Glucose and Insulin and Calculation of the HOMA2-IR
4.5. Liver and Gastrocnemius Muscle Preparation for Proteomic Analysis
4.6. nLC-ESI-MS/MS and Bioinformatics Analyses
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bratthall, D.; Hansel-Petersson, G.; Sundberg, H. Reasons for the caries decline: What do the experts believe? Eur. J. Oral Sci. 1996, 104, 416–422; discussion 423–425, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Buzalaf, M.A.R. Review of Fluoride Intake and Appropriateness of Current Guidelines. Adv. Dent. Res. 2018, 29, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Araujo, T.T.; Pereira, H.A.B.S.; Dionizio, A.; Sanchez, C.C.; Carvalho, T.S.; Fernandes, M.S.; Buzalaf, M.A.R. Changes in energy metabolism induced by fluoride: Insights from inside the mitochondria. Chemosphere 2019, 236, 124357. [Google Scholar] [CrossRef] [PubMed]
- Barbier, O.; Arreola-Mendoza, L.; Del Razo, L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010, 188, 319–333. [Google Scholar] [CrossRef]
- Pereira, H.; Dionizio, A.S.; Araujo, T.T.; Fernandes, M.D.S.; Iano, F.G.; Buzalaf, M.A.R. Proposed mechanism for understanding the dose- and time-dependency of the effects of fluoride in the liver. Toxicol. Appl. Pharmacol. 2018, 358, 68–75. [Google Scholar] [CrossRef]
- Dabrowska, E.; Letko, R.; Balunowska, M. Effect of sodium fluoride on the morphological picture of the rat liver exposed to NaF in drinking water. Adv. Med. Sci. 2006, 51 (Suppl. 1), 91–95. [Google Scholar]
- Khan, Z.N.; Sabino, I.T.; de Souza Melo, C.G.; Martini, T.; da Silva Pereira, H.A.B.; Buzalaf, M.A.R. Liver Proteome of Mice with Distinct Genetic Susceptibilities to Fluorosis Treated with Different Concentrations of F in the Drinking Water. Biol. Trace Elem. Res. 2018. [Google Scholar] [CrossRef]
- Everett, E.T. Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics. J. Dent. Res. 2011, 90, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Everett, E.T.; McHenry, M.A.K.; Reynolds, N.; Eggertsson, H.; Sullivan, J.; Kantmann, C.; Martinez-Mier, E.A.; Warrick, J.M.; Stookey, G.K. Dental fluorosis: Variability among different inbred mouse strains. J. Dent. Res. 2002, 81, 794–798. [Google Scholar] [CrossRef]
- Carvalho, J.G.; Leite, A.L.; Yan, D.; Everett, E.T.; Whitford, G.M.; Buzalaf, M.A. Influence of genetic background on fluoride metabolism in mice. J. Dent. Res. 2009, 88, 1054–1058. [Google Scholar] [CrossRef]
- Buzalaf, M.A.; Whitford, G.M. Fluoride metabolism. Monogr. Oral Sci. 2011, 22, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, M.; Azevedo, L.B.; Maguire, A.; Buzalaf, M.; Zohoori, F.V. Pharmacokinetics of fluoride in human adults: The effect of exercise. Chemosphere 2021, 262, 127796. [Google Scholar] [CrossRef] [PubMed]
- Lombarte, M.; Fina, B.L.; Lupo, M.; Buzalaf, M.A.; Rigalli, A. Physical exercise ameliorates the toxic effect of fluoride on the insulin-glucose system. J. Endocrinol. 2013, 218, 99–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitford, G.M. The metabolism and toxicity of fluoride. Monogr. Oral Sci. 1996, 16 Rev 2, 1–153. [Google Scholar]
- Amaral, S.L.; Azevedo, L.B.; Buzalaf, M.A.R.; Fabricio, M.F.; Fernandes, M.S.; Valentine, R.A.; Maguire, A.; Zohoori, F.V. Effect of chronic exercise on fluoride metabolism in fluorosis-susceptible mice exposed to high fluoride. Sci. Rep. 2018, 8, 3211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barres, R.; Zierath, J.R. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat. Rev. Endocrinol. 2016, 12, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Liu, H.; Ma, C.L.; Chen, Y.F.; Wang, J.J.; Yang, Y. Exosomes are the novel players involved in the beneficial effects of exercise on type 2 diabetes. J. Cell Physiol. 2019, 234, 14896–14905. [Google Scholar] [CrossRef]
- Lima Leite, A.; Gualiume Vaz Madureira Lobo, J.; Barbosa da Silva Pereira, H.A.; Silva Fernandes, M.; Martini, T.; Zucki, F.; Sumida, D.H.; Rigalli, A.; Buzalaf, M.A. Proteomic analysis of gastrocnemius muscle in rats with streptozotocin-induced diabetes and chronically exposed to fluoride. PLoS ONE 2014, 9, e106646. [Google Scholar] [CrossRef] [Green Version]
- Lobo, J.G.; Leite, A.L.; Pereira, H.A.; Fernandes, M.S.; Peres-Buzalaf, C.; Sumida, D.H.; Rigalli, A.; Buzalaf, M.A. Low-Level Fluoride Exposure Increases Insulin Sensitivity in Experimental Diabetes. J. Dent. Res. 2015, 94, 990–997. [Google Scholar] [CrossRef]
- Malvezzi, M.; Pereira, H.; Dionizio, A.; Araujo, T.T.; Buzalaf, N.R.; Sabino-Arias, I.T.; Fernandes, M.S.; Grizzo, L.T.; Magalhaes, A.C.; Buzalaf, M.A.R. Low-level fluoride exposure reduces glycemia in NOD mice. Ecotoxicol. Environ. Saf. 2019, 168, 198–204. [Google Scholar] [CrossRef]
- Trevizol, J.S.; Buzalaf, N.R.; Dionizio, A.; Delgado, A.Q.; Cestari, T.M.; Bosqueiro, J.R.; Magalhaes, A.C.; Buzalaf, M.A.R. Effects of low-level fluoride exposure on glucose homeostasis in female NOD mice. Chemosphere 2020, 254, 126602. [Google Scholar] [CrossRef]
- Chiba, F.Y.; Colombo, N.H.; Shirakashi, D.J.; da Silva, V.C.; Moimaz, S.A.S.; Garbin, C.A.S.; Antoniali, C.; Sumida, D.H. NaF treatment increases TNF-alpha and resistin concentrations and reduces insulin signal in rats. J. Fluorine Chem. 2012, 136, 3–7. [Google Scholar] [CrossRef]
- Chiba, F.Y.; Colombo, N.H.; Shirakashi, D.J.; Gomes, W.D.S.; Moimaz, S.A.; Garbin, C.A.; Silva, C.A.; Sumida, D.H. Insulin Signal Decrease in Muscle but Not in the Liver of Castrated Male Rats from Chronic Exposure to Fluoride. Fluoride 2010, 43, 25–30. [Google Scholar]
- Fluegge, K. Community water fluoridation predicts increase in age-adjusted incidence and prevalence of diabetes in 22 states from 2005 and 2010. J. Water Health 2016, 14, 864–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, J.G.; Leite Ade, L.; Peres-Buzalaf, C.; Salvato, F.; Labate, C.A.; Everett, E.T.; Whitford, G.M.; Buzalaf, M.A. Renal proteome in mice with different susceptibilities to fluorosis. PLoS ONE 2013, 8, e53261. [Google Scholar] [CrossRef] [Green Version]
- Charone, S.; De Lima Leite, A.; Peres-Buzalaf, C.; Silva Fernandes, M.; Ferreira de Almeida, L.; Zardin Graeff, M.S.; Cardoso de Oliveira, R.; Campanelli, A.P.; Groisman, S.; Whitford, G.M.; et al. Proteomics of Secretory-Stage and Maturation-Stage Enamel of Genetically Distinct Mice. Caries Res. 2016, 50, 24–31. [Google Scholar] [CrossRef]
- Kobayashi, C.A.; Leite, A.L.; Peres-Buzalaf, C.; Carvalho, J.G.; Whitford, G.M.; Everett, E.T.; Siqueira, W.L.; Buzalaf, M.A. Bone response to fluoride exposure is influenced by genetics. PLoS ONE 2014, 9, e114343. [Google Scholar] [CrossRef]
- Bouchard, C.; Daw, E.W.; Rice, T.; Perusse, L.; Gagnon, J.; Province, M.A.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H. Familial resemblance for VO2max in the sedentary state: The HERITAGE family study. Med. Sci. Sports Exerc. 1998, 30, 252–258. [Google Scholar] [CrossRef]
- Kilikevicius, A.; Venckunas, T.; Zelniene, R.; Carroll, A.M.; Lionikaite, S.; Ratkevicius, A.; Lionikas, A. Divergent physiological characteristics and responses to endurance training among inbred mouse strains. Scand. J. Med. Sci. Sports 2013, 23, 657–668. [Google Scholar] [CrossRef]
- Kvedaras, M.; Minderis, P.; Fokin, A.; Ratkevicius, A.; Venckunas, T.; Lionikas, A. Forced Running Endurance Is Influenced by Gene(s) on Mouse Chromosome 10. Front. Physiol. 2017, 8, 9. [Google Scholar] [CrossRef]
- Courtney, S.M.; Massett, M.P. Identification of exercise capacity QTL using association mapping in inbred mice. Physiol. Genom. 2012, 44, 948–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.N.; Leite, A.L.; Charone, S.; Sabino, I.T.; Martini, T.; Pereira, H.A.B.S.; Oliveiraa, R.C.; Buzalaf, M.A.R. Liver proteome of mice with different genetic susceptibilities to the effects of fluoride. J. Appl. Oral Sci. 2016, 24, 250–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UniProt, C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Sherer, T.R.; Suttie, J.W. Effect of fluoride on glycolytic and citric acid cycle metabolites in rat liver. J. Nutr. 1970, 100, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, A.S., Jr. Series introduction: The transcription factor NF-kappaB and human disease. J. Clin. Investig. 2001, 107, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, A.; Xia, T.; He, P. Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons. Toxicol. Lett. 2008, 179, 1–5. [Google Scholar] [CrossRef]
- Oyagbemi, A.A.; Omobowale, T.O.; Asenuga, E.R.; Adejumobi, A.O.; Ajibade, T.O.; Ige, T.M.; Ogunpolu, B.S.; Adedapo, A.A.; Yakubu, M.A. Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta. Environ. Toxicol. 2017, 32, 1089–1101. [Google Scholar] [CrossRef]
- Wang, J.; Yue, B.; Zhang, X.; Guo, X.; Sun, Z.; Niu, R. Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice. Sci. Total Environ. 2021, 760, 143376. [Google Scholar] [CrossRef]
- Million, D.; Zillner, P.; Baumann, R. Oxygen pressure-dependent control of carbonic anhydrase synthesis in chick embryonic erythrocytes. Am. J. Physiol. 1991, 261, R1188–R1196. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.E.; Chong, D.L.; Bartlett, J.D.; Margolis, H.C. Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: Implications to extracellular acid loading as apatite crystals mature. J. Bone Miner. Res. 2005, 20, 240–249. [Google Scholar] [CrossRef]
- Dunipace, A.J.; Brizendine, E.J.; Zhang, W.; Wilson, M.E.; Miller, L.L.; Katz, B.P.; Warrick, J.M.; Stookey, G.K. Effect of aging on animal response to chronic fluoride exposure. J. Dent. Res. 1995, 74, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Toti, L.; Bartalucci, A.; Ferrucci, M.; Fulceri, F.; Lazzeri, G.; Lenzi, P.; Soldani, P.; Gobbi, P.; La Torre, A.; Gesi, M. High-intensity exercise training induces morphological and biochemical changes in skeletal muscles. Biol. Sport 2013, 30, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartalucci, A.; Ferrucci, M.; Fulceri, F.; Lazzeri, G.; Lenzi, P.; Toti, L.; Serpiello, F.R.; La Torre, A.; Gesi, M. High-intensity exercise training produces morphological and biochemical changes in adrenal gland of mice. Histol. Histopathol. 2012, 27, 753–769. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Rolim, N.P.; Bartholomeu, J.B.; Gobatto, C.A.; Kokubun, E.; Brum, P.C. Maximal lactate steady state in running mice: Effect of exercise training. Clin. Exp. Pharmacol. Physiol. 2007, 34, 760–765. [Google Scholar] [CrossRef]
- Djawdan, M.; Garland, T., Jr. Maximal Running Speeds of Bipedal and Quadrupedal Rodents. J. Mammal. 1988, 69, 765–772. [Google Scholar] [CrossRef]
- Pereira, H.A.; Leite Ade, L.; Charone, S.; Lobo, J.G.; Cestari, T.M.; Peres-Buzalaf, C.; Buzalaf, M.A. Proteomic analysis of liver in rats chronically exposed to fluoride. PLoS ONE 2013, 8, e75343. [Google Scholar] [CrossRef]
- Taves, D.R. Separation of fluoride by rapid diffusion using hexamethyldisiloxane. Talanta 1968, 15, 969–974. [Google Scholar] [CrossRef]
- Levy, J.C.; Matthews, D.R.; Hermans, M.P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bauer-Mehren, A. Integration of genomic information with biological networks using Cytoscape. Methods Mol. Biol. 2013, 1021, 37–61. [Google Scholar] [CrossRef]
- Millan, P.P. Visualization and analysis of biological networks. Methods Mol. Biol. 2013, 1021, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Orchard, S. Molecular interaction databases. Proteomics 2012, 12, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Dionizio, A.S.; Melo, C.G.S.; Sabino-Arias, I.T.; Ventura, T.M.S.; Leite, A.L.; Souza, S.R.G.; Santos, E.X.; Heubel, A.D.; Souza, J.G.; Perles, J.; et al. Chronic treatment with fluoride affects the jejunum: Insights from proteomics and enteric innervation analysis. Sci. Rep. 2018, 8, 3180. [Google Scholar] [CrossRef] [PubMed]
F Intake * | Treatment | ||
---|---|---|---|
Control (I) | Sedentary + F (II) | Trained + F (III) | |
Water (µg) | |||
A/J (S) | 0.00 ± 0.0 | 1188.9 ± 153.8 | 858.9 ± 70.8 |
129P3/J (R) | 0.00 ± 0.0 | 1150.4 ± 139.3 | 1186.9 ± 167.4 |
Diet (µg) | |||
A/J (S) | 42.6 ± 3.8 | 45.6 ± 2.7 | 46.1 ± 3.1 |
129P3/J (R) | 38.8 ± 4.5 | 47.7 ± 2.6 | 46.7 ± 3.9 |
Total (µg) | |||
A/J (S) | 42.6 ± 3.8 | 1234.6 ± 115.0 | 905.0 ± 73.1 |
129P3/J (R) | 38.8 ± 4.5 | 1198.1 ± 140.7 | 1233.7 ± 168.0 |
Strain | Group | n | Mean (SD) Maximum Running Speed (m/min) | Change * | |
---|---|---|---|---|---|
Baseline | End of Experiment | Mean (SEM) | |||
SI (Control) | 15 | 19.8 (6.0) | 18.0 (5.4) | −1.8 (3.0) a | |
A/J A | SII (50 ppm F, no-exercise) | 16 | 19.3 (6.6) | 17.2 (5.7) | −2.0 (2.1) a |
SIII (50 ppm F, exercise) | 14 | 20.8 (5.5) | 22.5 (4.5) | +1.7 (5.4) b | |
RI (Control) | 15 | 24.8 (4.0) | 21.8 (4.6) | −3.0 (3.2) a | |
129P3/J A | RII (50 ppm F, no-exercise) | 15 | 24.2 (3.7) | 22.0 (3.9) | −2.2 (3.3) a |
RIII (50 ppm F, exercise) | 15 | 25.0 (4.0) | 26.6 (4.8) | +1.6 (4.4) b |
Treatments | |||
---|---|---|---|
Analysis | Control (I) | Sedentary + F (II) | Trained + F (III) |
[F] plasma (µg/mL) | |||
A/J (S) | 0.014 ± 0.004Aa | 0.053 ± 0.030Bb | 0.044 ± 0.015Bb |
129P3/J (R) | 0.017 ± 0.004Aa | 0.086 ± 0.037Ab | 0.089 ± 0.062Ab |
[F] Femur (µg/Kg) | |||
A/J (S) | 216.7 ± 60.1Aa | 2024.0 ± 735.7Bb | 2559.5 ± 1226.6Bb |
129P3/J (R) | 273.9 ± 172.9Aa | 2914.7 ± 697.1Ab | 3708.6 ± 1371.3Ac |
[F] Liver (µg/g) | |||
A/J (S) | 0.009 ± 0.001Aa | 0.025 ± 0.004Ab | 0.045 ± 0.008Bc |
129P3/J (R) | 0.009 ± 0.002Aa | 0.023 ± 0.006Ab | 0.103 ± 0.020Ac |
Glucose (mg/dL) | |||
A/J (S) | 176.7 ± 28.6A | 174.2 ± 20.3A | 168.1 ± 32.3A |
129P3/J (R) | 148.9 ± 28.3A | 135.3 ± 32.2B * | 145.5 ± 24.2A |
Insulin (pmol/L) | |||
A/J (S) | 65.8 ± 9.5 | 59.7 ± 6.7 | 65.8 ± 9.8 |
129P3/J (R) | 58.7 ± 7.9 | 64.4 ± 12.5 | 60.9 ± 8.0 |
HOMA2-IR Index | |||
A/J (S) | 1.41 ± 0.22 | 1.28 ± 0.16 | 1.30 ± 0.25 |
129P3/J (R) | 1.22 ± 0.21 | 1.30 ± 0.27 | 1.25 ± 0.14 |
%B | |||
A/J (S) | 32.7 ± 15.0A | 29.4 ± 6.8A | 33.2 ± 10.3A |
129P3/J (R) | 41.3 ± 15.3A | 55.5 ± 25.9B ** | 48.2 ± 28.5A |
%S | |||
A/J (S) | 72.3 ± 9.9 | 79.3 ± 9.3 | 79.4 ± 14.1 |
129P3/J (R) | 84.2 ± 14.1 | 79.8 ± 16.2 | 80.7 ± 9.7 |
Comparison | Total Number of Proteins Up or Down-Regulated * | Total Number of Unique Proteins in Each Group |
---|---|---|
SI vs. RI | 83 up, 7 down | 99 SI, 7 RI |
SII vs. RII | 52 up, 1 down | 32 SII, 8 RII |
SIII vs. RIII | 26 up, 96 down | 1 SIII, 90 RIII |
SI vs. RI | SII vs. RII | SIII vs. RIII |
---|---|---|
SI—↑ protein synthesis, energy flux and antioxidant enzymes. | SII—↑ protein synthesis, energy flux and antioxidant enzymes. | SIII—↓ protein synthesis, energy metabolism and detoxification; ↑ antioxidant enzymes. |
Comparison | Total Number of Proteins up or Down-Regulated * | Total Number of Unique Proteins in Each Group |
---|---|---|
SI vs. RI | 5 up, 111 down | 135 SI, 180 RI |
SII vs. RII | 99 up, 8 down | 187 SII, 138 RII |
SIII vs. RIII | 85 up, 6 down | 131 SIII, 99 RIII |
SI vs. RI | SII vs. RII | SIII vs. RIII |
---|---|---|
SI—↓ or absence proteins involved in muscle contraction and proteins related to the protein synthesis. | SII—↑ proteins related to muscle contraction/relaxation and proteins related to energy flux. | SIII—↑ or exclusivity proteins related to energy flux; ↑ proteins related to muscle contraction/relaxation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, M.S.; Sabino-Arias, I.T.; Dionizio, A.; Fabricio, M.F.; Trevizol, J.S.; Martini, T.; Azevedo, L.B.; Valentine, R.A.; Maguire, A.; Zohoori, F.V.; et al. Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice. Metabolites 2022, 12, 117. https://doi.org/10.3390/metabo12020117
Fernandes MS, Sabino-Arias IT, Dionizio A, Fabricio MF, Trevizol JS, Martini T, Azevedo LB, Valentine RA, Maguire A, Zohoori FV, et al. Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice. Metabolites. 2022; 12(2):117. https://doi.org/10.3390/metabo12020117
Chicago/Turabian StyleFernandes, Mileni S., Isabela T. Sabino-Arias, Aline Dionizio, Mayara F. Fabricio, Juliana S. Trevizol, Tatiana Martini, Liane B. Azevedo, Ruth A. Valentine, Anne Maguire, Fatemeh V. Zohoori, and et al. 2022. "Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice" Metabolites 12, no. 2: 117. https://doi.org/10.3390/metabo12020117
APA StyleFernandes, M. S., Sabino-Arias, I. T., Dionizio, A., Fabricio, M. F., Trevizol, J. S., Martini, T., Azevedo, L. B., Valentine, R. A., Maguire, A., Zohoori, F. V., L. Amaral, S., & Buzalaf, M. A. R. (2022). Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice. Metabolites, 12(2), 117. https://doi.org/10.3390/metabo12020117