Impaired Carbohydrate Metabolism and Excess of Lipid Accumulation in Offspring of Hyperandrogenic Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Hormonal Assay Test
2.3. Morphological Analysis and Ovarian Follicle Counting
2.4. Oil Red O Staining
2.5. Glucose Tolerance Test
2.6. Insulin and Pyruvate Tolerance Test
2.7. Triacylglycerols and Cholesterol Measurement
2.8. Ovarian RNA Extraction
2.9. Quantitative Real-Time PCR
2.10. Statistical Analysis
3. Results
3.1. DHEA-Induced PCOS-like Model
3.2. DHEA Induces Adverse Pregnancy Outcomes in PCOS-like Model
3.3. Maternal Hyperandrogenism Decreases Insulin Sensitivity and Induces Hepatic Gluconeogenesis and Lipid Accumulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duthie, L.; Reynolds, R. Changes in the Maternal Hypothalamic-Pituitary-Adrenal Axis in Pregnancy and Postpartum: Influences on Maternal and Fetal Outcomes. Neuroendocrinology 2013, 98, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Olmedo-Requena, R.; Amezcua-Prieto, C.; Luna-Del-Castillo, J.; Lewis-Mikhael, A.; Mozas-Moreno, J.; Bueno-Cavanillas, A.; Jiménez-Moleón, J. Association Between Low Dairy Intake During Pregnancy and Risk of Small-for-Gestational-Age Infants. Matern. Child Health J. 2016, 20, 1296–1304. [Google Scholar] [CrossRef]
- Pedersen, J. Weight and length at birth of infants of diabetic mothers. Acta Endocrinol. 1954, 16, 330–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farquhar, J. Maternal Hyperglycaemia and Hyperinsulinism in Diabetic Pregnancy. Postgrad. Med. J. 1962, 38, 612–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osler, M.; Pedersen, J. The body composition of newborn infants of diabetic mothers. Pediatrics 1960, 26, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.; Barker, D. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 1992, 35, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Barker, D. Adult Consequences of Fetal Growth Restriction. Clin. Obstet. Gynecol. 2006, 49, 270–283. [Google Scholar] [CrossRef]
- Balen, A.; Conway, G.; Kaltsas, G.; Techatraisak, K.; Manning, P.; West, C.; Jacobs, H. Andrology: Polycystic ovary syndrome: The spectrum of the disorder in 1741 patients. Hum. Reprod. 1995, 10, 2107–2111. [Google Scholar] [CrossRef]
- Horejsi, R.; Möller, R.; Rackl, S.; Giuliani, A.; Freytag, U.; Crailsheim, K.; Sudi, K.; Tafeit, E. Android subcutaneous adipose tissue topography in lean and obese women suffering from PCOS: Comparison with type 2 diabetic women. Am. J. Phys. Anthropol. 2003, 124, 275–281. [Google Scholar] [CrossRef]
- Morin-Papunen, L.; Vauhkonen, I.; Koivunen, R.; Ruokonen, A.; Tapanainen, J. Insulin sensitivity, insulin secretion, and metabolic and hormonal parameters in healthy women and women with polycystic ovarian syndrome. Hum. Reprod. 2000, 15, 1266–1274. [Google Scholar] [CrossRef]
- Xita, N.; Tsatsoulis, A. Fetal Programming of Polycystic Ovary Syndrome by Androgen Excess: Evidence from Experimental, Clinical, and Genetic Association Studies. J. Clinl. Endocrinol. Metab. 2006, 91, 1660–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sir-Petermann, T.; Maliqueo, M.; Angel, B.; Lara, H.E.; Pérez-Bravo, F.; Recabarren, S.E. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: Possible implications in prenatal androgenization. Hum. Reprod. 2002, 17, 2573–2579. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, S.; Grace, C.; Mattei, A.; Siemienowicz, K.; Brownlee, W.; MacCallum, J.; McNeilly, A.S.; Duncan, W.C.; Rae, M.T. Developmental programming of polycystic ovary syndrome (PCOS): Prenatal androgens establish pancreatic islet α/β cell ratio and subsequent insulin secretion. Sci. Rep. 2016, 6, 27408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Koivuaho, E.; Piltonen, T.; Gissler, M.; Lavebratt, C. Association of maternal polycystic ovary syndrome or anovulatory infertility with obesity and diabetes in offspring: A population-based cohort study. Hum. Reprod. 2021, 36, 2345–2357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ying, L.; Zhang, Q.; Wang, F.; Qu, F. Association between maternal polycystic ovary syndrome and early childhood growth: A continuous observation from 3 months to 6 years of age. J. Assist. Reprod. Genet. 2022, 39, 461–471. [Google Scholar] [CrossRef]
- Baillargeon, J.; Carpentier, A. Brothers of women with polycystic ovary syndrome are characterised by impaired glucose tolerance, reduced insulin sensitivity and related metabolic defects. Diabetologia 2007, 50, 2424–2432. [Google Scholar] [CrossRef] [Green Version]
- Recabarren, S.; Sir-Petermann, T.; Rios, R.; Maliqueo, M.; Echiburú, B.; Smith, R.; Rojas-García, P.; Recabarren, M.; Rey, R.A. Pituitary and Testicular Function in Sons of Women with Polycystic Ovary Syndrome from Infancy to Adulthood. J. Clin. Endocrinol. Metab. 2008, 93, 3318–3324. [Google Scholar] [CrossRef] [Green Version]
- Recabarren, S.; Smith, R.; Rios, R.; Maliqueo, M.; Echiburú, B.; Codner, E.; Cassorla, F.; Rojas, P.; Sir-Peterman, T. Metabolic Profile in Sons of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 1820–1826. [Google Scholar] [CrossRef]
- Lambertini, L.; Saul, S.; Copperman, A.; Hammerstad, S.; Yi, Z.; Zhang, W.; Tomer, Y.; Kase, N. Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis. Front. Endocrinol. 2017, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Tarumi, W.; Tsukamoto, S.; Okutsu, Y.; Takahashi, N.; Horiuchi, T.; Itoh, M.; Ishizuka, B. Androstenedione induces abnormalities in morphology and function of developing oocytes, which impairs oocyte meiotic competence. Fertil. Steril. 2012, 97, 469–476. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Feng, Y.; Liu, C.; Ma, J.; Li, Y.; Xiang, H.; Ji, Y.; Cao, Y.; Tong, X.; et al. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients. Sci. Rep. 2016, 6, 39638. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.; Dumesic, D.; Abbott, D.; Strauss, J. Molecular Abnormalities in Oocytes from Women with Polycystic Ovary Syndrome Revealed by Microarray Analysis. J. Clin. Endocrinol. Metab. 2006, 92, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Fowler, R.; EdwardsS, R. Induction of superovulation and pregnancy in mature mice by gonadotrophins. J. Endocrinol. 1957, 15, 374–384. [Google Scholar] [CrossRef]
- Benedé-Ubieto, R.; Estévez-Vázquez, O.; Ramadori, P.; Cubero, F.; Nevzorova, Y. Guidelines and Considerations for Metabolic Tolerance Tests in Mice. Diabetes Metab. Syndr. Obes. 2020, 13, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Garrido, M.; Tena-Sempere, M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol. Metab. 2020, 35, 100937. [Google Scholar] [CrossRef]
- Bellver, J.; Rodríguez-Tabernero, L.; Robles, A.; Muñoz, E.; Martínez, F.; Landeras, J.; García-Velasco, J.; Fontes, J.; Álvarez, M.; Álvarez, C.; et al. Polycystic ovary syndrome throughout a woman’s life. J. Assist. Reprod. Genet. 2017, 35, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Dozortsev, D.; Pellicer, A.; Diamond, M. Premature progesterone rise as a trigger of polycystic ovarian syndrome. Fertil. Steril. 2020, 114, 943–944. [Google Scholar] [CrossRef]
- Dewailly, D.; Robin, G.; Peigne, M.; Decanter, C.; Pigny, P.; Catteau-Jonard, S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum. Reprod. Update 2016, 22, 709–724. [Google Scholar] [CrossRef] [Green Version]
- Risal, S.; Pei, Y.; Lu, H.; Manti, M.; Fornes, R.; Pui, H.; Zhao, Z.; Massart, J.; Ohlsson, C.; Lindgren, E.; et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat. Med. 2019, 25, 1894–1904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Q.; Wang, Y.; Wang, F.; Hardiman, P.; Qu, F. Intergenerational Influences between Maternal Polycystic Ovary Syndrome and Offspring: An Updated Overview. J. Pediatr. 2021, 232, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Kamalanathan, S.; Sahoo, J.; Sathyapalan, T. Pregnancy in polycystic ovary syndrome. Indian J. Endocrinol. Metab. 2013, 17, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Song, Z.; Song, M.; Qin, J.; Zhao, M.; Yang, Z. Impaired receptivity and decidualization in DHEA-induced PCOS mice. Sci. Rep. 2016, 6, 38134. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Bousbaa, H. BUB3, beyond the Simple Role of Partner. Pharmaceutics 2022, 14, 1084. [Google Scholar] [CrossRef] [PubMed]
- Greaney, J.; Wei, Z.; Homer, H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum. Reprod. Update 2017, 24, 135–161. [Google Scholar] [CrossRef]
- Peres de Oliveira, A.; Kazuo Issayama, L.; Betim Pavan, I.; Riback Silva, F.; Diniz Melo-Hanchuk, T.; Moreira Simabuco, F.; Kobarg, J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020, 25, 1778. [Google Scholar] [CrossRef]
- Cooke, M.; Evans, M.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef] [Green Version]
- Brem, R.; Hall, J. XRCC1 is required for DNA single-strand break repair in human cells. Nucleic Acids Res. 2005, 33, 2512–2520. [Google Scholar] [CrossRef] [Green Version]
- Dutta, A.; Eckelmann, B.; Adhikari, S.; Ahmed, K.; Sengupta, S.; Pandey, A.; Hedge, P.M.; Tsai, M.; Tainer, J.A.; Weinfeld, M.; et al. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res. 2016, 45, 2585–2599. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.; Eriksson, J.; Forsén, T.; Osmond, C. Fetal origins of adult disease: Strength of effects and biological basis. Int. J. Epidemiol. 2002, 31, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wang, F.; Shi, Q. The effect of maternal high fat diet mediated oxidative stress on ovarian function in mice offspring. Exp. Med. 2020, 20, 135. [Google Scholar] [CrossRef]
- Barker, D. The Developmental Origins of Adult Disease. J. Am. Coll. Nutr. 2004, 23, 588S–595S. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Forsén, T.; Tuomilehto, J.; Jaddoe, V.; Osmond, C.; Barker, D. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia 2002, 45, 342–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Aroner, S.A.; Bay, C.P.; Gilman, S.E.; Ghassabian, A.; Loucks, E.B.; Buka, S.L.; Handa, R.J.; Lasley, B.L.; Bhasin, S.; et al. Sex-dependent associations of maternal androgen levels with offspring BMI and weight trajectory from birth to early childhood. J. Endocrinol. Investig. 2020, 44, 851–863. [Google Scholar] [CrossRef]
- Manikkam, M.; Crespi, E.; Doop, D.; Herkimer, C.; Lee, J.; Yu, S.; Brown, M.; Foster, D.; Padmanabhan, V. Fetal Programming: Prenatal Testosterone Excess Leads to Fetal Growth Retardation and Postnatal Catch-Up Growth in Sheep. Endocrinology 2004, 145, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Sir-Petermann, T.; Hitchsfeld, C.; Maliqueo, M.; Codner, E.; Echiburú, B.; Gazitúa, R.; Recabarren, S.; Cassorla, F. Birth weight in offspring of mothers with polycystic ovarian syndrome. Hum. Reprod. 2005, 20, 2122–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibáñez, L.; Potau, N.; Francois, I.; de Zegher, F. Precocious Pubarche, Hyperinsulinism, and Ovarian Hyperandrogenism in Girls: Relation to Reduced Fetal Growth. J. Clin. Endocrinol. Metab. 1998, 83, 3558–3562. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Forsen, T.; Tuomilehto, J.; Winter, P.; Osmond, C.; Barker, D. Catch-up growth in childhood and death from coronary heart disease: Longitudinal study. BMJ 1999, 318, 427–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, J.; Forsén, T.; Tuomilehto, J.; Osmond, C.; Barker, D. Early Growth, Adult Income, and Risk of Stroke. Stroke 2000, 31, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Kelishadi, R.; Haghdoost, A.; Jamshidi, F.; Aliramezany, M.; Moosazadeh, M. Low birthweight or rapid catch-up growth: Which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis. Paediatr. Int. Child Health 2014, 35, 110–123. [Google Scholar] [CrossRef]
- Ong, K.K.; Ahmed, M.L.; Emmett, P.M.; Preece, M.A.; Dunger, D.B. Association between postnatal catch-up growth and obesity in childhood: Prospective cohort study. BMJ 2000, 320, 967–971, Erratum in BMJ 2000, 320, 1244. [Google Scholar] [CrossRef]
- Sir-Petermann, T.; Maliqueo, M.; Codner, E.; Echiburú, B.; Crisosto, N.; Pérez, V.; Cassorla, F. Early Metabolic Derangements in Daughters of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 4637–4642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sir-Petermann, T.; Codner, E.; Pérez, V.; Echiburú, B.; Maliqueo, M.; Ladrón de Guevara, A.; Preisler, J.; Crisosto, N.; Sánchez, F.; Cassorla, F.; et al. Metabolic and Reproductive Features before and during Puberty in Daughters of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 1923–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, A.; Nunemaker, C.; Keller, S.; Moenter, S. Prenatal androgen exposure programs metabolic dysfunction in female mice. J. Endocrinol. 2010, 207, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, R.; Veiga-Lopez, A.; Moeller, J.; Beckett, E.; Pease, A.; Keller, E.; Madrigal, V.; Chazenbalk, G.; Dumesic, D.; Padmanabhan, V. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep. Endocrinology 2015, 157, 522–535. [Google Scholar] [CrossRef]
- Carrasco, A.; Recabarren, M.; Rojas-García, P.; Gutiérrez, M.; Morales, K.; Sir-Petermann, T.; Recabarren, S. Prenatal Testosterone Exposure Disrupts Insulin Secretion And Promotes Insulin Resistance. Sci. Rep. 2020, 10, 404. [Google Scholar] [CrossRef] [Green Version]
- Noroozzadeh, M.; Rahmati, M.; Behboudi-Gandevani, S.; Ramezani Tehrani, F. Maternal hyperandrogenism is associated with a higher risk of type 2 diabetes mellitus and overweight in adolescent and adult female offspring: A long-term population-based follow-up study. J. Endocrinol. Investig. 2022, 45, 963–972. [Google Scholar] [CrossRef]
- Zhai, H.; Wu, H.; Xu, H.; Weng, P.; Xia, F.; Chen, Y.; Lu, Y. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats. Reprod. Biol. Endocrinol. 2012, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Andrisse, S.; Childress, S.; Ma, Y.; Billings, K.; Chen, Y.; Xue, P.; Stewart, A.; Sonko, M.L.; Wolfe, A.; Wu, S. Low-Dose Dihydrotestosterone Drives Metabolic Dysfunction via Cytosolic and Nuclear Hepatic Androgen Receptor Mechanisms. Endocrinology 2016, 158, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Andrisse, S.; Feng, M.; Wang, Z.; Awe, O.; Yu, L.; Zhang, H.; Bi, S.; Wang, H.; Li, L.; Joseph, S.; et al. Androgen-induced insulin resistance is ameliorated by deletion of hepatic androgen receptor in females. FASEB J. 2021, 35, e21921. [Google Scholar] [CrossRef]
- Petta, S.; Ciresi, A.; Bianco, J.; Geraci, V.; Boemi, R.; Galvano, L.; Magliozzo, F.; Merlino, G.; Craxì, A.; Giordano, C. Insulin resistance and hyperandrogenism drive steatosis and fibrosis risk in young females with PCOS. PLoS ONE 2017, 12, e0186136. [Google Scholar] [CrossRef]
- Siemienowicz, K.; Filis, P.; Shaw, S.; Douglas, A.; Thomas, J.; Mulroy, S.; Howie, F.; Fowler, P.; Duncan, W.; Rae, M. Fetal androgen exposure is a determinant of adult male metabolic health. Sci. Rep. 2019, 9, 20195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Gao, J.; Zhang, C.; Zhao, H.; Zhao, Y.; Li, R.; Yu, Y.; Qiao, J. Assessment of growth and metabolism characteristics in offspring of dehydroepiandrosterone-induced polycystic ovary syndrome adults. Reproduction 2016, 152, 705–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, M.; Derse, A.; Ferey, J.; Reid, M.; Xie, Y.; Christ, M.; Chatterjee, D.; Nguyen, C.; Harasymowicz, N.; Guilak, F.; et al. Transgenerational impact of maternal obesogenic diet on offspring bile acid homeostasis and nonalcoholic fatty liver disease. Am. J. Physiol.-Endocrinol. Metab. 2019, 316, E674–E686. [Google Scholar] [CrossRef] [PubMed]
- Thorn, S.; Baquero, K.; Newsom, S.; El Kasmi, K.; Bergman, B.; Shulman, G.; Grove, K.; Friedman, J. Early Life Exposure to Maternal Insulin Resistance Has Persistent Effects on Hepatic NAFLD in Juvenile Nonhuman Primates. Diabetes 2014, 63, 2702–2713. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, D.; Orime, K.; Kaminska, D.; Kimura, T.; Basile, G.; Wang, C.; Haertle, L.; Riemens, R.; Brown, N.; Hu, J.; et al. Parental metabolic syndrome epigenetically reprograms offspring hepatic lipid metabolism in mice. J. Clin. Investig. 2020, 130, 2391–2407. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aburto-Hernández, C.; Barrera, D.; Ortiz-Hernández, R.; Espinoza-Simón, E.; Parra-Gámez, L.; González, J.; Escobar, M.L.; Vázquez-Nin, G.H.; Echeverría-Martínez, O.; Torres-Ramírez, N. Impaired Carbohydrate Metabolism and Excess of Lipid Accumulation in Offspring of Hyperandrogenic Mice. Metabolites 2022, 12, 1182. https://doi.org/10.3390/metabo12121182
Aburto-Hernández C, Barrera D, Ortiz-Hernández R, Espinoza-Simón E, Parra-Gámez L, González J, Escobar ML, Vázquez-Nin GH, Echeverría-Martínez O, Torres-Ramírez N. Impaired Carbohydrate Metabolism and Excess of Lipid Accumulation in Offspring of Hyperandrogenic Mice. Metabolites. 2022; 12(12):1182. https://doi.org/10.3390/metabo12121182
Chicago/Turabian StyleAburto-Hernández, Cynthia, David Barrera, Rosario Ortiz-Hernández, Emilio Espinoza-Simón, Leticia Parra-Gámez, James González, M Luisa Escobar, Gerardo H Vázquez-Nin, Olga Echeverría-Martínez, and Nayeli Torres-Ramírez. 2022. "Impaired Carbohydrate Metabolism and Excess of Lipid Accumulation in Offspring of Hyperandrogenic Mice" Metabolites 12, no. 12: 1182. https://doi.org/10.3390/metabo12121182
APA StyleAburto-Hernández, C., Barrera, D., Ortiz-Hernández, R., Espinoza-Simón, E., Parra-Gámez, L., González, J., Escobar, M. L., Vázquez-Nin, G. H., Echeverría-Martínez, O., & Torres-Ramírez, N. (2022). Impaired Carbohydrate Metabolism and Excess of Lipid Accumulation in Offspring of Hyperandrogenic Mice. Metabolites, 12(12), 1182. https://doi.org/10.3390/metabo12121182