Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Treatments
2.2. Extraction of Volatile Compounds
2.3. Identification and Quantification of Aroma Compounds in Lingtou Dancong Oolong Tea
2.4. GC-O Analysis
2.5. Calculation of Odor Activity Value
2.6. Extraction of Linalool from Fresh Leaves
2.7. Extraction of Geranyl Diphosphate from Fresh Leaves
2.8. Analysis of Gene Transcript Levels
2.9. Statistical Analysis
3. Results
3.1. Differences in Aroma Composition of Lingtou Dancong Oolong Tea among Different Altitudes
3.2. GC-O/MS Analysis to Determine Contribution of Odorants to Aroma of Lingtou Dancong Oolong Tea Made from Plants Grown at Different Altitudes
3.3. Contents of Linalool and Its Precursor GPP in Fresh Leaves from Tea Plants Grown at Different Altitudes
4. Discussion
4.1. Differences in Aroma Composition of Lingtou Dancong Oolong Tea among Plants Grown at Different Altitudes
4.2. Aroma Characteristics of Lingtou Dancong Oolong Tea
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, L.T.; Zhou, X.C.; Su, X.G.; Yang, Z.Y. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends Food Sci. Tech. 2020, 106, 242–253. [Google Scholar] [CrossRef]
- Chen, W.; Hu, D.; Miao, A.Q.; Qiu, G.J.; Qiao, X.Y.; Xia, H.L.; Ma, C.Y. Understanding the aroma diversity of Dancong tea (Camellia sinensis) from the floral and honey odors: Relationship between volatile compounds and sensory characteristics by chemometrics. Food Control 2022, 140, 109103. [Google Scholar] [CrossRef]
- Zhou, C.J.; Zhuang, D.H.; Guo, S.J.; Zhu, H.; Ma, R.J.; Wu, Q.H. Classification and identification of different aromatics in tea made from different cultivar of Fenghuang dancing. J. Tea Sci. 2014, 34, 609–616. (In Chinese) [Google Scholar]
- Tang, H.; Tang, J.C.; Cao, J.X.; Zhou, B.; Li, J.L.; Cai, J. Analysis of quality differences among Fenghuang dancong tea in different altitude ranges. Chin. Agric. Sci. Bull. 2015, 31, 143–151. (In Chinese) [Google Scholar]
- Zhai, X.T.; Zhang, L.; Granvogl, M.; Ho, Q.T.; Wan, X.C. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3867–3909. [Google Scholar] [CrossRef]
- Wang, M.Q.; Ma, W.J.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H.P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, H.; Zhang, Z.F.; Zeng, J.M.; Zhang, Y.; Wang, M.Q.; Peng, Q.H.; Lv, H.P.; Lin, Z. Assessment of the contribution of chiral odorants to aroma property of baked green teas using an efficient sequential stir bar sorptive extraction approach. Food Chem. 2021, 365, 130615. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Shao, C.Y.; Lv, H.P.; Zhang, Y.; Dai, W.D.; Guo, L.; Tan, J.F.; Peng, Q.H.; Lin, Z. Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis). J. Chromatogr. A 2017, 1490, 177–190. [Google Scholar] [CrossRef]
- Lv, H.P.; Zhong, Q.S.; Lin, Z.; Wang, L.; Tan, J.F.; Guo, L. Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC-olfactometry. Food Chem. 2012, 130, 1074–1081. [Google Scholar] [CrossRef]
- Jian, G.T.; Jia, Y.X.; Li, J.L.; Zhou, X.C.; Liao, Y.Y.; Dai, G.Y.; Zhou, Y.; Tang, J.C.; Zeng, L.T. Elucidation of the regular emission mechanism of volatile beta-ocimene with anti-insect function from tea plants (Camellia sinensis) exposed to herbivore attack. J. Agric. Food Chem. 2021, 69, 11204–11215. [Google Scholar] [CrossRef]
- Chen, X.H.; Sun, H.Y.; Qu, D.; Yan, F.; Jin, W.G.; Jiang, H.; Chen, C.; Zhang, Y.F.; Li, C.Y.; Xu, Z.M. Identification and characterization of key aroma compounds in Chinese high altitude and northernmost black tea (Camellia sinensis) using distillation extraction and sensory analysis methods. Flavour Frag. J. 2020, 35, 666–673. [Google Scholar] [CrossRef]
- Flaig, M.; Qi, S.; Wei, G.D.; Yang, X.G.; Schieberle, P. Characterization of the key odorants in a high-grade Chinese green tea beverage (Camellia sinensis; jingshan cha) by means of the sensomics approach and elucidation of odorant changes in tea leaves caused by the tea manufacturing process. J. Agric. Food Chem. 2020, 68, 5168–5179. [Google Scholar] [CrossRef] [PubMed]
- Flaig, M.; Qi, S.C.; Wei, G.D.; Yang, X.G.; Schieberle, P. Characterisation of the key aroma compounds in a Longjing green tea infusion (Camellia sinensis) by the sensomics approach and their quantitative changes during processing of the tea leaves. Eur. Food Res. Technol. 2020, 246, 2411–2425. [Google Scholar] [CrossRef]
- Zeng, L.T.; Watanabe, N.; Yang, Z.Y. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Crit. Rev. Food Sci. 2019, 59, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- Burdock, G.A. Fenarolis Handbook of Flavor Ingredients, 6th ed.; CRC Press: New York, NY, USA, 2010. [Google Scholar]
- Ho, C.T.; Zheng, X.; Li, S.M. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Ni, H.; Wu, L.; Weng, S.Y.; Li, L.J.; Chen, F. Analysis of aroma-active volatiles in an SDE extract of white tea. Food Sci. Nutr. 2021, 9, 605–615. [Google Scholar] [CrossRef]
- Zeng, L.T.; Zhou, Y.; Gui, J.D.; Fu, X.M.; Mei, X.; Zhen, Y.P.; Ye, T.X.; Du, B.; Dong, F.; Watanabe, N.; et al. Formation of volatile tea constituent indole during the oolong tea manufacturing process. J. Agric. Food Chem. 2016, 64, 5011–5019. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Wang, L.; Wang, J.M.; Jin, J.Y.; Zhang, N.; Lei, L.; Gao, T.; Jing, T.T.; Zhang, S.R.; Wu, Y.; et al. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. J. Integr. Plant Biol. 2020, 62, 1461–1468. [Google Scholar] [CrossRef]
- Niu, Y.W.; Ma, Y.W.; Xiao, Z.B.; Zhu, J.C.; Xiong, W.; Chen, F. Characterization of the key aroma compounds of three kinds of chinese representative black tea and elucidation of the perceptual interactions of methyl salicylate and floral odorants. Molecules 2022, 27, 1631. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, W.W.; Chen, Y.; Zhang, X.; Wang, X.; Wang, F.H.; Qian, Y.Z.; Qiu, J. Identification of markers for tea authenticity assessment: Non-targeted metabolomics of highly similar oolong tea cultivars (Camellia sinensis var. sinensis). Food Control 2022, 142, 109223. [Google Scholar] [CrossRef]
- Ma, C.Y.; Li, J.X.; Chen, W.; Wang, W.W.; Qi, D.D.; Pang, S.; Miao, A.Q. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics. Food Res. Int. 2018, 108, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Schwab, W.; Ho, C.T.; Song, C.K.; Wan, X.C. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chem. 2021, 376, 131933. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Xu, Y.J.; Wen, J.; An, K.J.; Wu, J.J.; Yu, Y.S.; Zou, B.; Guo, M.H. A comparative study of aromatic characterization of Yingde black tea infusions in different steeping temperatures. LWT-Food Sci. Technol. 2021, 143, 110860. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Wu, X.J.; Zhang, Y.; He, Z.G.; Zhang, Y.; Zhang, X.M.; Li, Q.; Huang, J.A.; Liu, Z.H. Pu-erh tea unique aroma: Volatile components, evaluation methods and metabolic mechanism of key odor-active compounds. Trends Food Sci. Tech. 2022, 124, 25–37. [Google Scholar] [CrossRef]
- Ogura, M.; Terada, I.; Shirai, F.; Tokoro, K.; Chen, K.R.; Chen, C.L.; Lin, M.L.; Shimizu, B.; Kinoshita, T.; Sakata, K. Tracing aroma characteristics changes during processing of the famous Formosa oolong tea “Oriental Beauty”. In Proceedings of the 2004 International Conference on O-Cha (tea) Culture and Science, Shizuoka, Japan, 4–6 November 2005; pp. 240–242. [Google Scholar]
- Jerkovic, I.; Kus, P.M. Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Adv. 2014, 4, 31710–31728. [Google Scholar] [CrossRef]
- Tsitsishvili, V.; Ramishvili, T.; Ivanova, I.; Kokiashvili, N.; Bukia, T.; Kurtsikidze, G. Linalool oxidation reaction with air under ultrasound and microwave irradiations. Bull. Georg. Natl. Acad. Sci. 2019, 13, 40–45. [Google Scholar]
- Yang, P.; Yu, M.G.; Song, H.L.; Xu, Y.Q.; Lin, Y.P.; Granvogl, M. Characterization of key aroma-active compounds in Rough and moderate fire rougui wuyi rock tea (Camellia sinensis) by sensory-directed flavor analysis and elucidation of the influences of roasting on aroma. J. Agric. Food Chem. 2022, 70, 267–278. [Google Scholar] [CrossRef]
- Liu, Z.B.; Chen, F.C.; Sun, J.Y.; Ni, L. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui). Food Chem. 2022, 367, 130624. [Google Scholar] [CrossRef]
- Zhu, J.C.; Chen, F.; Wang, L.Y.; Niu, Y.W.; Yu, D.; Shu, C.; Chen, X.H. Comparison of aroma-active volatiles in oolong tea infusions using GC-Olfactometry, GC-FPD, and GC-MS. J. Agric. Food Chem. 2015, 63, 7499–7510. [Google Scholar] [CrossRef]
- Chen, X.H.; Chen, D.J.; Hai, J.; Sun, H.Y.; Chen, Z.; Hua, Z.; Li, X.S.; Fei, Y.; Chen, C. Aroma characterization of Hanzhong black tea (Camellia sinensis) using solid phase extraction coupled with gas chromatography–mass spectrometry and olfactometry and sensory analysis. Food Chem. 2019, 274, 130–136. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chang, Y.; Liu, B.; Chen, H.T.; Sun, B.G.; Zhang, N. Characterization of the key aroma-active compounds in Yongchuan Douchi (fermented soybean) by application of the sensomics approach. Molecules 2021, 26, 3048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Li, J.; Wang, J.; Sun, B.G.; Liu, Y.P.; Huang, M.Q. Characterization of aroma-active compounds in Jasminum sambac concrete by aroma extract dilution analysis and odour activity value. Flavour Fragr. J. 2021, 36, 197–206. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P.W.; Grosch, W. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Deutsche Forschungsanstalt fur Lebensmittelchemie and Institut fur Lebensmittelchemie der Technischen Universitat Munchen: Garching, Germany, 1998. [Google Scholar]
- Qiu, S.; Chen, K.; Liu, C.; Wang, Y.X.; Chen, T.; Yan, G.L.; Li, J.M. Non-saccharomyces yeasts highly contribute to characterisation of flavour profiles in greengage fermentation. Food Res. Int. 2022, 157, 111391. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; Gao, M.M.; Zhang, L.Q.; Qiao, L.; Li, J.X.; Du, L.P.; Zhang, H.L.; Wang, H. Characterization of the key aroma-active compounds in high-grade Dianhong tea using GC-MS and GC-O combined with sensory-directed flavor analysis. Food Chem. 2022, 378, 132058. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Palomo, E.; Trujillo, M.; Ruiz, A.G.; González Viñas, M.A. Aroma profile of malbec red wines from la mancha region: Chemical and sensory characterization. Food Res. Int. 2017, 100, 201–208. [Google Scholar] [CrossRef]
- Du, X.F.; Finn, C.E.; Qian, M.C. Volatile composition and odour-activity value of thornless ‘Black diamond’ and ‘Marion’ blackberries. Food Chem. 2010, 119, 1127–1134. [Google Scholar] [CrossRef]
- Pang, X.L.; Yu, W.S.; Cao, C.D.; Yuan, X.X.; Qiu, J.; Kong, F.Y.; Wu, J.H. Comparison of potent odorants in raw and ripened Pu-Erh tea infusions based on odor activity value calculation and multivariate analysis: Understanding the role of pile fermentation. J. Agric. Food Chem. 2019, 67, 13139–13149. [Google Scholar] [CrossRef]
- Wang, B.; Meng, Q.; Xiao, L.; Li, R.L.; Peng, C.H.; Liao, X.L.; Yan, J.N.; Liu, H.L.; Xie, G.H.; Ho, Q.T.; et al. Characterization of aroma compounds of pu-erh ripen tea using solvent assisted flavor evaporation coupled with gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Sci. Hum. Well. 2022, 11, 618–626. [Google Scholar] [CrossRef]
NO | Odorants | RI a (CAL) | RI b (NIST) | Concentration (μg/kg, D.W.) c | Category | Identification Method d | ||
---|---|---|---|---|---|---|---|---|
High | Medium | Low | ||||||
1 | Butanal, 2-methyl- | 704 | 662 | 1052 ± 302.9 a | 1441 ± 339.2 b | 803.4 ± 160.0 a | Aldehydes | RI, MS, O, STD |
2 | Hexanal | 790 | 800 | 470.5 ± 59.74 a | 624.9 ± 114.1 a | 284.1 ± 20.73 a | Aldehydes | RI, MS, O, STD |
3 | Ethyl 2-methyl butyrate | 838 | 849 | 14.64 ± 2.25 a | 20.60 ± 2.94 b | 25.18 ± 2.38 c | Esters | RI, MS, O, (E)-Methyl geranate (1189-09-9) |
4 | 2-Heptanone | 884 | 891 | 34.11 ± 6.06 a | 47.67 ± 10.25 a | 40.13 ± 2.80 a | Ketones | RI, MS, O, 2-Undecanone (112-12-9) |
5 | Heptanal | 894 | 901 | 6.93 ± 1.52 a | 51.19 ± 16.83 b | 18.94 ± 2.68 a | Aldehydes | RI, MS, O, STD |
6 | (Z)-4-Heptenal | 894 | 901 | 7.23 ± 0.98 a | 29.16 ± 6.56 b | 10.42 ± 1.15 a | Aldehydes | RI, MS, O, (E)-2-Nonenal (18829-56-6) |
7 | 2,5-Dimethyl pyrazine | 913 | 921 | 338.6 ± 41.19 a | 402.0 ± 47.95 b | 353.5 ± 37.25 ab | Nitrogen heterocyclic | RI, MS, O, Pyrazine, 2,6-diethyl- (13067-27-1) |
8 | Diethyl disulfide | 914 | 927 | 14.66 ± 3.14 a | 18.12 ± 3.46 b | 25.04 ± 1.33 c | Sulfur-containing | RI, MS, O, Dimethyl trisulfide (3658-80-8) |
9 | Dimethyl trisulfide | 967 | 970 | 8.27 ± 1.53 a | 10.64 ± 1.38 a | 14.38 ± 0.83 b | Sulfur-containing | RI, MS, O, STD |
10 | 1-Octen-3-ol | 976 | 980 | 12.26 ± 2.70 a | 24.27 ± 2.65 b | 12.60 ± 1.01 a | Alcohols | RI, MS, O, STD |
11 | Methyl heptenone | 981 | 986 | 57.54 ± 10.18 b | 57.66 ± 8.32 b | 45.15 ± 3.79 a | Ketones | RI, MS, O, STD |
12 | β-Myrcene | 985 | 991 | 117.57 ± 17.65 b | 128.0 ± 22.72 b | 86.17 ± 6.00 a | Terpenes | RI, MS, O, STD |
13 | 2-Pentyl furan | 986 | 993 | 62.04 ± 29.74 a | 122.4 ± 60.65 a | 89.84 ± 41.92 a | Others | RI, MS, O, STD |
14 | α-Phellandrene | 1000 | 1005 | 22.90 ± 4.75 b | 19.68 ± 3.02 b | 12.82 ± 1.36 a | Terpenes | RI, MS, O,γ-Terpinene (99-85-4) |
15 | (Z)-β-Ocimene | 1043 | 1038 | 100.13 ± 18.53 b | 91.37 ± 13.79 b | 65.66 ± 12.30 a | Terpenes | RI, MS, O, STD |
16 | 1-Ethyl-1H-pyrrole-2-carbaldehyde | 1048 | 1046 | 165.48 ± 40.37 a | 143.67 ± 19.11 a | 205.60 ± 21.76 b | Nitrogen heterocyclic | RI, MS, O, Pyrazine, 2,6-diethyl- (13067-27-1) |
17 | (E)-2-Octenal | 1055 | 1060 | 26.07 ± 5.06 a | 48.58 ± 20.03 b | 36.83 ± 9.49 ab | Aldehydes | RI, MS, O, (E)-2-Nonenal (18829-56-6) |
18 | γ-Terpinene | 1055 | 1060 | 17.99 ± 3.28 b | 15.14 ± 2.40 ab | 12.80 ± 0.61 a | Terpenes | RI, MS, O, STD |
19 | 3-Ethyl-2,5-dimethylpyrazine | 1076 | 1082 | 15.36 ± 2.12 ab | 18.37 ± 2.39 b | 13.44 ± 1.67 a | Nitrogen heterocyclic | RI, MS, O, Pyrazine, 2,6-diethyl- (13067-27-1) |
20 | Pyrazine, 2,6-diethyl- | 1085 | 1084 | trace | trace | trace | Nitrogen heterocyclic | RI, MS, O, STD |
21 | Linalool | 1097 | 1099 | 701.3 ± 118.4 b | 636.8 ± 81.2 b | 421.8 ± 41.83 a | Alcohols | RI, MS, O, STD, m/z = 121 |
22 | Nonanal | 1100 | 1104 | 128.6 ± 26.82 a | 210.1 ± 35.17 c | 173.6 ± 25.65 b | Aldehydes | RI, MS, O, STD |
23 | Hotrienol | 1109 | 1107 | 2664 ± 357.6 c | 1825 ± 188.7 b | 1100 ± 85.6 a | Alcohols | RI, MS, O, Linalool (78-70-6) |
24 | 2,6-Dimethyl-1,3,5,7-octatetraene, E, E- | 1129 | 1131 | 145.5 ± 25.26 a | 110.1 ± 16.83 b | 60.21 ± 4.88 c | Terpenes | RI, MS, O, (Z)-β-Ocimene (3338-55-4) |
25 | 5-Ethyl-6-methyl-3E-hepten-2-one | 1143 | 1144 | 43.59 ± 5.86 a | 82.26 ± 11.41 b | 50.49 ± 3.46 a | Ketones | RI, MS, O, Methyl heptenone (110-93-0) |
26 | Nerol oxide | 1152 | 1153 | 251.0 ± 39.29 c | 154.1 ± 19.87 b | 104.4 ± 8.22 a | Oxides | RI, MS, O, trans-Linalool oxide (pyranoid) (39028-58-5) |
27 | trans-Linalool oxide (pyranoid) | 1174 | 1173 | 217.18 ± 41.10 b | 119.6 ± 23.09 a | 106.2 ± 29.70 a | Oxides | RI, MS, O, STD |
28 | Terpinen-4-ol | 1177 | 1177 | 11.52 ± 1.94 b | 9.45 ± 2.11 ab | 5.96 ± 0.52 a | Alcohols | RI, MS, O, STD |
29 | α-Terpineol | 1192 | 1189 | 78.87 ± 11.95 a | 63.14 ± 8.69 b | 50.19 ± 6.84 c | Alcohols | RI, MS, O, Terpinen-4-ol (562-74-3) |
30 | Methyl salicylate | 1195 | 1192 | 137.1 ± 22.00 b | 129.7 ± 17.04 b | 95.20 ± 8.14 a | Esters | RI, MS, O, STD |
31 | (E,E)-2,4-Nonadienal | 1212 | 1216 | 42.26 ± 8.54 a | 42.80 ± 7.81 a | 27.21 ± 5.36 a | Aldehydes | RI, MS, O, (E)-2-Nonenal (18829-56-6) |
32 | Nerol | 1227 | 1228 | 13.84 ± 2.29 b | 12.79 ± 2.60 b | 6.92 ± 1.13 a | Alcohols | RI, MS, O, Geraniol (106-24-1) |
33 | cis-Citral | 1238 | 1240 | 39.18 ± 6.11 b | 40.22 ± 5.13 b | 20.86 ± 1.55 a | Aldehydes | RI, MS, O, STD |
34 | Geraniol | 1253 | 1255 | 910.7 ± 139.5 b | 868.4 ± 119.7 ab | 733.4 ± 66.2 a | Alcohols | RI, MS, O, STD |
35 | γ-Octanolactone | 1259 | 1261 | 22.49 ± 3.38 b | 18.26 ± 4.04 ab | 13.45 ± 1.18 a | Esters | RI, MS, O, γ-Nonanolactone (104-61-0) |
36 | 2-Phenyl-2-butenal | 1273 | 1279 | 78.45 ± 11.85 a | 83.28 ± 11.48 a | 76.50 ± 6.85 a | Aldehydes | RI, MS, O, α-Hexyl cinnamaldehyde (101-86-0) |
37 | 2,4-Decadienal | 1290 | 1295 | 102.58 ± 27.29 a | 103.44 ± 18.68 a | 79.33 ± 8.94 a | Aldehydes | RI, MS, O, (E)-2-Nonenal (18829-56-6) |
38 | Indole | 1303 | 1295 | 3882 ± 687.2 b | 873.4 ± 164.6 a | 3814 ± 320.5 b | Nitrogen heterocyclic compounds | RI, MS, O, STD |
39 | Theaspirane B | 1315 | 1311 | 7.73 ± 1.22 b | 5.73 ± 0.82 a | 6.84 ± 0.60 ab | Others | RI, MS, O, STD |
40 | (E)-Methyl geranate | 1319 | 1324 | 15.82 ± 2.70 b | 14.56 ± 1.94 b | 7.30 ± 0.69 a | Ketones | RI, MS, O, STD |
41 | 1,2-Dihydro-1,1,6-trimethylnaphthalene | 1353 | 1354 | 173.6 ± 31.81 a | 186.6 ± 30.53 a | 244.4 ± 22.43 b | Others | RI, MS, O, α-Cadinol (481-34-5) |
42 | γ-Nonanolactone | 1363 | 1363 | 91.50 ± 12.62 b | 98.08 ± 18.98 b | 72.04 ± 6.23 a | Ketones | RI, MS, O, STD |
43 | (E)-β-Damascenone | 1382 | 1386 | 15.80 ± 2.21 a | 17.87 ± 1.71 a | 15.80 ± 1.71 a | Ketones | RI, MS, O, α-Ionone (127-41-3) |
44 | (Z)-Jasmone | 1400 | 1394 | 1139.3 ± 97.84 b | 392.9 ± 29.20 a | 476.0 ± 29.20 a | Ketones | RI, MS, O, STD |
45 | Dehydrodihydroionone | 1418 | 1424 | 11.95 ± 2.21 a | 14.96 ± 2.21 a | 14.77 ± 2.21 a | Ketones | RI, MS, O, α-Ionone (127-41-3) |
46 | α-Ionone | 1425 | 1426 | 151.12 ± 22.22 c | 110.7 ± 13.49 b | 85.77 ± 6.86 a | Ketones | RI, MS, O, STD |
47 | Isoeugenol | 1454 | 1454 | 155.5 ± 27.03 a | 218.3 ± 34.96 b | 382.3 ± 54.81 c | Others | RI, MS, O, (Z)-Jasmone (488-10-8) |
48 | γ-Decanolactone | 1468 | 1470 | 14.85 ± 2.11 b | 9.36 ± 1.73 a | 14.44 ± 1.69 b | Ketones | RI, MS, O, STD |
49 | trans-β-Ionone | 1490 | 1486 | 221.6 ± 31.15 a | 288.1 ± 33.53 b | 230.1 ± 9.51 a | Ketones | RI, MS, O, STD |
50 | cis-Jasmine lactone | 1496 | 1518 | 7539 ± 501.6 b | 1974 ± 165.5 a | 8196 ± 450.5 b | Esters | RI, MS, O, STD |
51 | δ-Dodecalactone | 1498 | 1496 | 3410 ± 248.9 b | 2437 ± 200.4 a | 2952 ± 156.7 ab | Esters | RI, MS, O, STD |
52 | Dihydroactinidioide | 1538 | 1538 | 455.6 ± 52.40 a | 813.8 ± 104.62 b | 782.0 ± 88.58 b | Esters | RI, MS, O, STD |
53 | (E)-Nerolidol | 1563 | 1564 | 587.0 ± 97.27 b | 160.8 ± 22.32 a | 620.8 ± 21.22 b | Alcohols | RI, MS, O, Geraniol (106-24-1) |
54 | Hexyl benzoate | 1576 | 1580 | 2.15 ± 0.44 b | 0.46 ± 0.08 a | 0.02 ± 0.00 a | Esters | RI, MS, O, Benzyl Benzoate (120-51-4) |
55 | Caryophyllene oxide | 1593 | 1581 | 2.17 ± 0.40 b | 2.08 ± 0.24 b | 1.84 ± 0.19 a | Oxides | RI, MS, O, Theaspirane B (36431-72-8) |
56 | Methyl jasmonate | 1646 | 1638 | 83.84 ± 10.05 b | 26.00 ± 3.96 a | 137.03 ± 12.05 c | Esters | RI, MS, O, STD |
57 | α-Cadinol | 1657 | 1653 | 76.23 ± 11.72 a | 49.33 ± 5.71 b | 49.08 ± 5.11 b | Alcohols | RI, MS, O,δ-Cadinene (483-76-1) |
58 | Bisabolol oxide B | 1656 | 1655 | 55.59 ± 6.06 b | 36.51 ± 4.73 a | 42.75 ± 3.45 a | Oxides | RI, MS, O, trans-Linalool oxide (furanoid) (34995-77-2) |
59 | cis-3-Hexenyl salicylate | 1681 | 1670 | 2.64 ± 0.60 a | 3.54 ± 0.74 ab | 4.05 ± 0.29 b | Esters | RI, MS, O, Methyl salicylate (119-36-8) |
NO | Odorants | OT a (μg/kg) | OAV b | FD c | Olfactive Family | ||||
---|---|---|---|---|---|---|---|---|---|
High | Medium | Low | High | Medium | Low | ||||
1 | Butanal, 2-methyl- | 1 | 1052.00 | 1441.00 | 803.42 | >64 | >64 | >64 | Green, grassy, fresh |
2 | Hexanal | 4.5 | 104.44 | 138.87 | 63.13 | >32 | >32 | >32 | Green, grassy, fresh |
3 | Ethyl 2-methyl butyrate | n.f. | - | - | - | <16 | <16 | <16 | Fruity |
4 | 2-Heptanone | 140 | 0.24 | 0.34 | 0.29 | <16 | <16 | <16 | Green, grassy, fresh |
5 | Heptanal | 550 | 0.01 | 0.09 | 0.03 | >64 | >64 | >32 | Fatty, oil |
6 | (Z)-4-Heptenal | 10 | 0.72 | 2.92 | 1.04 | >16 | >64 | >32 | Fatty, oil |
7 | 2,5-Dimethyl pyrazine | n.f. | - | - | - | >16 | >32 | >32 | Roasted |
8 | Diethyl disulfide | 30 | 0.49 | 0.60 | 0.83 | >32 | >32 | >32 | Sulfurous |
9 | Dimethyl trisulfide | 0.01 | 827.00 | 1064.00 | 1438.00 | >16 | >16 | >32 | Sulfurous |
10 | 1-Octen-3-ol | 1.5 | 8.17 | 16.18 | 8.40 | >64 | >128 | >64 | Green, grassy, fresh |
11 | Methyl heptenone | 100 | 0.58 | 0.58 | 0.45 | >64 | >64 | >32 | Green, grassy, fresh |
12 | β-Myrcene | 14 | 8.40 | 9.14 | 6.16 | >64 | >128 | >64 | Green, grassy, fresh |
13 | 2-Pentyl furan | 5.9 | 10.52 | 20.75 | 15.23 | >64 | >256 | >128 | Green, grassy, fresh |
14 | α-Phellandrene | n.f. | - | - | - | >32 | >32 | <16 | Green, grassy, fresh |
15 | (Z)-β-Ocimene | 34 | 2.95 | 2.69 | 1.93 | >32 | >16 | >16 | Floral |
16 | 1-Ethyl-1H-pyrrole-2-carbaldehyde | 37 | 4.47 | 3.88 | 5.56 | >32 | >32 | >32 | Woody, herbal |
17 | (E)-2-Octenal | 3 | 8.69 | 16.19 | 12.28 | >32 | >32 | >32 | Green, grassy, fresh |
18 | γ-Terpinene | 55 | 0.33 | 0.28 | 0.23 | >32 | <16 | <16 | Woody, herbal |
19 | 3-Ethyl-2,5-dimethylpyrazine | 8.6 | 1.79 | 2.14 | 1.56 | >32 | >64 | >16 | Roasted |
20 | Pyrazine, 2,6-diethyl- | n.f. | - | - | - | >128 | >128 | >64 | Roasted |
21 | Linalool | 0.22 | 3187.73 | 2894.55 | 1917.27 | >256 | >256 | >128 | Floral |
22 | Nonanal | 40 | 3.22 | 5.25 | 4.34 | >128 | >128 | >128 | Green, grassy, fresh |
23 | Hotrienol | 110 | 24.22 | 16.59 | 10.00 | >512 | >512 | >512 | Honey, balsamic, creamy |
24 | 2,6-Dimethyl-1,3,5,7-octatetraene, E, E- | n.f. | - | - | - | >32 | >32 | >32 | Woody, herbal |
25 | 5-Ethyl-6-methyl-3E-hepten-2-one | n.f. | - | - | - | >64 | >64 | >32 | Green, grassy, fresh |
26 | Nerol oxide | n.f. | - | - | - | >256 | >256 | >128 | Green, grassy, fresh |
27 | trans-Linalool oxide (pyranoid) | 320 | 0.68 | 0.37 | 0.33 | >32 | >16 | >16 | Woody, herbal |
28 | Terpinen-4-ol | 4370 | 0.00 | 0.00 | 0.00 | >32 | >32 | >32 | Woody, herbal |
29 | α-Terpineol | 330 | 0.24 | 0.19 | 0.15 | >64 | >64 | >32 | Woody, herbal |
30 | Methyl salicylate | 40 | 3.43 | 3.24 | 2.38 | >32 | >32 | >16 | Green, grassy, fresh |
31 | (E, E)-2,4-Nonadienal | 0.06 | 704.33 | 713.33 | 453.50 | >64 | >64 | >64 | Green, grassy, fresh |
32 | Nerol | 300 | 0.05 | 0.04 | 0.02 | >16 | >16 | >16 | Green, grassy, fresh |
33 | cis-Citral | 30 | 7.84 | 8.04 | 4.17 | >512 | >512 | >512 | Honey, balsamic, creamy |
34 | Geraniol | 40 | 22.77 | 21.71 | 18.34 | >256 | >128 | >128 | Floral |
35 | γ-Octanolactone | n.f. | - | - | - | >128 | >64 | >32 | Honey, balsamic, creamy |
36 | 2-Phenyl-2-butenal | 500 | 0.16 | 0.17 | 0.15 | >128 | >128 | >128 | Green, grassy, fresh |
37 | 2,4-Decadienal | n.f. | - | - | - | >32 | >32 | >16 | Honey, balsamic, creamy |
38 | Indole | 100 | 38.82 | 8.73 | 38.14 | >128 | >64 | >128 | Floral |
39 | Theaspirane B | n.f. | - | - | - | >32 | >32 | >32 | Woody, herbal |
40 | (E)-Methyl geranate | n.f. | - | - | - | >64 | >64 | >64 | Woody, herbal |
41 | 1,2-Dihydro-1,1,6-trimethylnaphthalene | n.f. | - | - | - | >32 | >32 | >64 | Floral |
42 | γ-Nonanolactone | 27 | 7.25 | 7.77 | 5.71 | >64 | >128 | >64 | Honey, balsamic, creamy |
43 | (E)-β-Damascenone | 0.05 | 316.00 | 357.40 | 316.00 | >512 | >512 | >512 | Honey, balsamic, creamy |
44 | (Z)-Jasmone | 21,600 | 0.05 | 0.02 | 0.02 | >64 | >32 | >32 | Floral |
45 | Dehydrodihydroionone | n.f. | - | - | - | >32 | >32 | >32 | Floral |
46 | α-Ionone | 76 | 1.99 | 1.46 | 1.13 | >256 | >256 | >256 | Woody, herbal |
47 | Isoeugenol | n.f. | - | - | - | >32 | >32 | >64 | Floral |
48 | γ-Decanolactone | n.f. | - | - | - | >128 | >64 | >128 | Honey, balsamic, creamy |
49 | trans-β-Ionone | 7 | 31.66 | 41.16 | 32.87 | >512 | >512 | >512 | Floral |
50 | cis-Jasmine lactone | 7 | 1077.00 | 282.00 | 1170.86 | >128 | >64 | >128 | Honey, balsamic, creamy |
51 | δ-Dodecalactone | n.f. | - | - | - | >128 | >128 | >128 | Honey, balsamic, creamy |
52 | Dihydroactinidioide | 500 | 0.91 | 1.63 | 1.56 | >16 | >16 | >16 | Woody, herbal |
53 | (E)-Nerolidol | 10 | 58.70 | 16.08 | 62.08 | >64 | >32 | >32 | Floral |
54 | Hexyl benzoate | 73 | 0.03 | 0.01 | 0.00 | >16 | <16 | <16 | Green, grassy, fresh |
55 | Caryophyllene oxide | n.f. | - | - | - | <16 | <16 | <16 | Floral |
56 | Methyl jasmonate | 3 | 27.95 | 8.67 | 45.68 | >16 | <16 | >32 | Floral |
57 | α-Cadinol | n.f. | - | - | - | >64 | >32 | >32 | Woody, herbal |
58 | Bisabolol oxide B | n.f. | - | - | - | >64 | >32 | >32 | Woody, herbal |
59 | cis-3-Hexenyl salicylate | 115 | 0.01 | 0.03 | 0.04 | >32 | >64 | >64 | Floral |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, J.; Liu, X.; Liu, C.; Qian, J.; Yang, J.; Zhou, X.; Jia, Y.; Tang, J.; Zeng, L. Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes. Metabolites 2022, 12, 1063. https://doi.org/10.3390/metabo12111063
Wang M, Li J, Liu X, Liu C, Qian J, Yang J, Zhou X, Jia Y, Tang J, Zeng L. Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes. Metabolites. 2022; 12(11):1063. https://doi.org/10.3390/metabo12111063
Chicago/Turabian StyleWang, Miao, Jianlong Li, Xiaohui Liu, Chengshun Liu, Jiajia Qian, Jie Yang, Xiaochen Zhou, Yongxia Jia, Jinchi Tang, and Lanting Zeng. 2022. "Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes" Metabolites 12, no. 11: 1063. https://doi.org/10.3390/metabo12111063
APA StyleWang, M., Li, J., Liu, X., Liu, C., Qian, J., Yang, J., Zhou, X., Jia, Y., Tang, J., & Zeng, L. (2022). Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes. Metabolites, 12(11), 1063. https://doi.org/10.3390/metabo12111063