Plasma Metabolomic Profiles Associated with Three-Year Progression of Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Results
2.1. Metabolomic Profiles and AMD Progression Based on Color Fundus Photographs
2.2. Metabolomic Profile and Changes in Dark Adaptation
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Study Protocol
4.3. Dark Adaptation Testing
4.4. AMD Staging and Definition of Progression
4.5. Metabolomic Profiling and Data Processing
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [Green Version]
- Ung, C.; Lains, I.; Miller, J.W.; Kim, I.K. Current Management of Age-Related Macular Degeneration. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2021; pp. 295–314. [Google Scholar]
- Handa, J.T.; Rickman, C.B.; Dick, A.D.; Gorin, M.B.; Miller, J.W.; Toth, C.A.; Ueffing, M.; Zarbin, M.; Farrer, L.A. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Seddon, J.M.; Reynolds, R.; Yu, Y.; Rosner, B. Validation of a Prediction Algorithm for Progression to Advanced Macular Degeneration Subtypes. JAMA Ophthalmol. 2013, 131, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heesterbeek, T.J.; Lorés-Motta, L.; Hoyng, C.B.; Lechanteur, Y.T.E.; den Hollander, A.I. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol. Opt. 2020, 40, 140–170. [Google Scholar] [CrossRef] [Green Version]
- Laíns, I.; Gantner, M.; Murinello, S.; Lasky-Su, J.A.; Miller, J.W.; Friedlander, M.; Husain, D. Metabolomics in the study of retinal health and disease. Prog. Retin. Eye Res. 2019, 69, 57–79. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.M.; Darzi, A.W.; Takats, Z.; Lindon, J.C. Metabolic phenotyping in clinical and surgical environments. Nature 2012, 491, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Lains, I.; Duarte, D.; Barros, A.; Martins, A.S.; Gil, J.; Miller, J.B.; Marques, M.; Mesquita, T.; Kim, I.; Cachulo, M.L.; et al. Human plasma metabolomics in age-related macular degeneration (AMD) using nuclear magnetic resonance spectroscopy. PLoS ONE 2017, 12, e0177749. [Google Scholar] [CrossRef] [Green Version]
- Lains, I.; Kelly, R.S.; Miller, J.B.; Silva, R.; Vavvas, D.; Kim, I.; Murta, J.; Lasky-Su, J.; Miller, J.W.; Husain, D. Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers. Ophthalmology 2018, 125, 245–254. [Google Scholar] [CrossRef]
- Laíns, I.; Chung, W.; Kelly, R.S.; Gil, J.; Marques, M.; Barreto, P.; Murta, J.N.; Kim, I.K.; Vavvas, D.G.; Miller, J.B.; et al. Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts. Metabolites 2019, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Acar, I.E.; Lores-Motta, L.; Colijn, J.M.; Meester-Smoor, M.A.; Verzijden, T.; Cougnard-Gregoire, A.; Ajana, S.; Merle, B.M.; de Breuk, A.; Heesterbeek, T.J.; et al. Integrating Metabolomics, Genomics, and Disease Pathways in Age-Related Macular Degeneration: The EYE-RISK Consortium. Ophthalmology 2020, 127, 1693–1709. [Google Scholar] [CrossRef]
- Owsley, C.; McGwin, G.; Clark, M.E.; Jackson, G.R.; Callahan, M.A.; Kline, L.B.; Witherspoon, C.; Curcio, C.A. Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration. Ophthalmology 2016, 123, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Lains, I.; Miller, J.B.; Park, D.H.; Tsikata, E.; Davoudi, S.; Rahmani, S.; Pierce, J.; Silva, R.; Chen, T.C.; Kim, I.; et al. Structural Changes Associated with Delayed Dark Adaptation in Age-Related Macular Degeneration. Ophthalmology 2017, 124, 1340–1352. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Qiao, L.; Feng, R.; Xu, Q.; Zhang, Y.; Fang, Z.; Shen, J.; Li, S. IL-6-induced acetylation of E2F1 aggravates oxidative damage of retinal pigment epithelial cell line. Exp. Eye Res. 2020, 200, 108219. [Google Scholar] [CrossRef]
- Datta, S.; Cano, M.; Ebrahimi, K.; Wang, L.; Handa, J.T. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog. Retin. Eye Res. 2017, 60, 201–218. [Google Scholar] [CrossRef]
- Jarrett, S.; Lin, H.; Godley, B.F.; Boulton, M.E. Mitochondrial DNA damage and its potential role in retinal degeneration. Prog. Retin. Eye Res. 2008, 27, 596–607. [Google Scholar] [CrossRef]
- Tokarz, P.; Kaarniranta, K.; Blasiak, J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013, 14, 461–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azcoitia, I.; Arevalo, M.-A.; de Nicola, A.F.; Garcia-Segura, L.M. Neuroprotective actions of estradiol revisited. Trends Endocrinol. Metab. 2011, 22, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Nuzzi, R.; Scalabrin, S.; Becco, A.; Panzica, G. Gonadal Hormones and Retinal Disorders: A Review. Front. Endocrinol. 2018, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascio, C.; Deidda, I.; Russo, D.; Guarneri, P. The estrogenic retina: The potential contribution to healthy aging and age-related neurodegenerative diseases of the retina. Steroids 2015, 103, 31–41. [Google Scholar] [CrossRef]
- Mo, M.-S.; Li, H.-B.; Wang, B.-Y.; Wang, S.-L.; Zhu, Z.-L.; Yu, X.-R. PI3K/Akt and NF-κB activation following intravitreal administration of 17β-estradiol: Neuroprotection of the rat retina from light-induced apoptosis. Neuroscience 2013, 228, 1–12. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Machalińska, A.; Veréb, Z.; Salminen, A.; Petrovski, G.; Kauppinen, A. Estrogen signalling in the pathogenesis of age-related macular degeneration. Curr. Eye Res. 2015, 40, 226–233. [Google Scholar] [CrossRef]
- Schmidl, D.; Schmetterer, L.; Garhöfer, G.; Popa-Cherecheanu, A. Gender Differences in Ocular Blood Flow. Curr. Eye Res. 2015, 40, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Haan, M.N.; Klein, R.; Klein, B.E.; Deng, Y.; Blythe, L.K.; Seddon, J.M.; Musch, D.; Kuller, L.H.; Hyman, L.G.; Wallace, R.B. Hormone Therapy and Age-Related Macular Degeneration: The women’s health initiative sight exam study. Arch. Ophthalmol. 2006, 124, 988–992. [Google Scholar] [CrossRef] [Green Version]
- Chakravarthy, U.; Wong, T.Y.; Fletcher, A.; Piault, E.; Evans, C.; Zlateva, G.; Buggage, R.; Pleil, A.; Mitchell, P. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol. 2010, 10, 31. [Google Scholar] [CrossRef]
- Jackson, G.R.; Scott, I.U.; Kim, I.K.; Quillen, D.A.; Iannaccone, A.; Edwards, J.G. Diagnostic Sensitivity and Specificity of Dark Adaptometry for Detection of Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2014, 55, 1427–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.G.; Alvarez, J.A.; Yazdanie, M.; Papudesu, C.; Wong, W.T.; Wiley, H.E.; Keenan, T.D.; Chew, E.Y.; Ferris, F.L.; Cukras, C.A. Longitudinal Study of Dark Adaptation as a Functional Outcome Measure for Age-Related Macular Degeneration. Ophthalmology 2019, 126, 856–865. [Google Scholar] [CrossRef]
- Lains, I.; Pundlik, S.J.; Nigalye, A.; Katz, R.; Luo, G.; Kim, I.K.; Vavvas, D.G.; Miller, J.W.; Miller, J.B.; Husain, D. Baseline Predictors Associated with Three-Year Changes in Dark Adaptation in Age-related Macular Degeneration. Retina 2021, 41, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Mendez, K.M.; Kim, J.; Laíns, I.; Nigalye, A.; Katz, R.; Pundik, S.; Kim, I.; Liang, L.; Vavvas, D.; Miller, J.; et al. Association of Human Plasma Metabolomics with Delayed Dark Adaptation in Age-Related Macular Degeneration. Metabolites 2021, 11, 183. [Google Scholar] [CrossRef] [PubMed]
- Kersten, E.; Dammeier, S.; Ajana, S.; Groenewoud, J.M.M.; Codrea, M.; Klose, F.; Lechanteur, Y.T.; Fauser, S.; Ueffing, M.; Delcourt, C.; et al. Metabolomics in serum of patients with non-advanced age-related macular degeneration reveals aberrations in the glutamine pathway. PLoS ONE 2019, 14, e0218457. [Google Scholar] [CrossRef] [Green Version]
- Cruzat, V.; Rogero, M.M.; Keane, K.N.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [Green Version]
- Curi, R.; Lagranha, C.J.; Doi, S.Q.; Sellitti, D.F.; Procopio, J.; Pithon-Curi, T.C.; Corless, M.; Newsholme, P. Molecular mechanisms of glutamine action. J. Cell. Physiol. 2005, 204, 392–401. [Google Scholar] [CrossRef]
- Ishikawa, M. Abnormalities in Glutamate Metabolism and Excitotoxicity in the Retinal Diseases. Scientifica 2013, 2013, 528940. [Google Scholar] [CrossRef] [Green Version]
- Coyle, J.T.; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262, 689–695. [Google Scholar] [CrossRef]
- Han, G.; Wei, P.; He, M.; Teng, H. Glucose Metabolic Characterization of Human Aqueous Humor in Relation to Wet Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2020, 61, 49. [Google Scholar] [CrossRef] [Green Version]
- Pundlik, S.; Nigalye, A.; Laíns, I.; Mendez, K.M.; Katz, R.; Kim, J.; Kim, I.K.; Miller, J.B.; Vavvas, D.; Miller, J.W.; et al. Area under the dark adaptation curve as a reliable alternate measure of dark adaptation response. Br. J. Ophthalmol. 2021, 318806. [Google Scholar] [CrossRef]
- Chiou, W.L. Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve. J. Pharmacokinet. Biopharm. 1978, 6, 539–546. [Google Scholar] [CrossRef]
- Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: Spanish Fork, UT, USA, 2006. [Google Scholar]
- Tsikata, E.; Laíns, I.; Gil, J.; Marques, M.; Brown, K.; Mesquita, T.; Melo, P.; Cachulo, M.D.L.; Kim, I.; Vavvas, D.; et al. Automated Brightness and Contrast Adjustment of Color Fundus Photographs for the Grading of Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2017, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Danis, R.P.; Domalpally, A.; Chew, E.Y.; Clemons, T.E.; Armstrong, J.; SanGiovanni, J.P.; Ferris, F. Methods and Reproducibility of Grading Optimized Digital Color Fundus Photographs in the Age-Related Eye Disease Study 2 (AREDS2 Report Number 2). Investig. Opthalmology Vis. Sci. 2013, 54, 4548–4554. [Google Scholar] [CrossRef]
- The Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: The Age-Related Eye Disease Study Report Number 6. Am. J. Ophthalmol. 2001, 132, 668–681. [Google Scholar] [CrossRef]
- Wulff, J.E.; Mitchell, M.W. A Comparison of Various Normalization Methods for LC/MS Metabolomics Data. Adv. Biosci. Biotechnol. 2018, 09, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Zeleznik, O.A.; Eliassen, A.H.; Kraft, P.; Poole, E.M.; Rosner, B.A.; Jeanfavre, S.; Deik, A.A.; Bullock, K.; Hitchcock, D.S.; Avila-Pacheco, J.; et al. A Prospective Analysis of Circulating Plasma Metabolites Associated with Ovarian Cancer Risk. Cancer Res. 2020, 80, 1357–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Burton, P.; Gurrin, L.; Sly, P. Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modelling. Stat. Med. 1998, 17, 1261–1291. [Google Scholar] [CrossRef]
- Li, M.-X.; Yeung, J.M.Y.; Cherny, S.S.; Sham, P.C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 2011, 131, 747–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyholt, D.R. A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in Linkage Disequilibrium with Each Other. Am. J. Hum. Genet. 2004, 74, 765–769. [Google Scholar] [CrossRef] [Green Version]
- Fitzmaurice, G.M.; Laird, N.M.; Ware, J.H. Linear Mixed Effect Models. In Applied Longitudinal Analysis, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 2011; pp. 189–240. [Google Scholar]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 9, 57. [Google Scholar] [CrossRef]
AMD Progression | No AMD Progression | Total | |
---|---|---|---|
Eyes, n (%) | 26 (17) | 127 (83) | 153 (100) |
Baseline AMD stage, n (%) Control Early AMD Intermediate AMD | 9 (34.6) 8 (30.8) 9 (34.6) | 36 (28.3) 15 (11.8) 76 (59.9) | 45 (29.4) 23 (15.0) 85 (55.6) |
Age, mean ± SD | 71.35 ± 5.75 | 69.30 ± 6.88 | 69.61 ± 6.73 |
Female, n (%) | 19 (73.1) | 95 (74.8) | 114 (74.5) |
BMI, mean ± SD | 24.66 ± 3.21 | 27.23 ± 4.67 | 26.80 ± 4.55 |
Smoking, n (%) Ex-smoker Non-smoker Smoker | 17 (65.4) 7 (26.9) 2 (7.7) | 62 (48.9) 61 (48.0) 4 (3.1) | 79 (51.6) 68 (44.4) 6 (3.9) |
Race, n (%) White Black Hispanic | 24 (92.3) 2 (7.7) 0 (0) | 122 (96.1) 2 (1.6) 3 (2.4) | 146 (95.4) 4 (2.6) 3 (2.0) |
Metabolite | Super Pathway | Sub Pathway | ß Coefficient | p Value |
---|---|---|---|---|
N6,N6,N6-trimethyllysine | Amino Acid | Lysine Metabolism | 4.929 | 0.0083 |
Phenylalanine | Amino Acid | Phenylalanine Metabolism | −3.02 × 1015 | 0.0052 |
Methylsuccinate | Amino Acid | Leucine, Isoleucine and Valine Metabolism | 4.938 | 0.0088 |
N-methylhydroxyproline * | Amino Acid | Urea cycle; Arginine and Proline Metabolism | −2.108 | 0.0068 |
Ribitol | Carbohydrate | Pentose Metabolism | −7.755 | 0.0002 a |
N-palmitoyl-sphingosine (d18:1/16:0) | Lipid | Ceramides | −9.442 | 0.0052 |
Pregnenediol disulfate (C21H34O8S2) ** | Lipid | Pregnenolone Steroids | −1.82 × 1015 | 0.0014 a |
1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) * | Lipid | Phosphatidylcholine (PC) | −3.476 | 0.0046 |
Metabolite | Super Pathway | Sub Pathway | ß Coefficient | p-Value |
---|---|---|---|---|
Methylsuccinate | Amino Acid | Leucine, Isoleucine and Valine Metabolism | −2.665 | 0.0088 |
Ribonate | Carbohydrate | Pentose Metabolism | −3.652 | 0.0026 |
Ascorbic acid 2-sulfate | Cofactors and Vitamins | Ascorbate and Aldarate Metabolism | 4.584 | 0.0016 a |
5alpha-androstan-3alpha,17beta-diol monosulfate (1) | Lipid | Androgenic Steroids | 8.381 | 0.0025 |
5alpha-androstan-3beta,17beta-diol monosulfate (2) | Lipid | Androgenic Steroids | 9.206 | 0.0099 |
Androstenediol (3beta,17beta) monosulfate (1) | Lipid | Androgenic Steroids | 13.480 | 0.0068 |
Pregnenetriol disulfate ** | Lipid | Pregnenolone Steroids | 1.82 × 1015 | 0.0026 |
AMD Progression | No AMD Progression | Total | |
---|---|---|---|
Eyes, n (%) | 9 (24) | 29 (76) | 38 (100) |
Baseline AMD stage Control Early AMD Intermediate AMD | 6 (66.7) 1 (11.1) 2 (22.2) | 7 (24.1) 1 (3.5) 21 (72.4) | 13 (34.2) 2 (5.3) 23 (60.5) |
Age | 67.6 ± 3.4 | 67.8 ±7.0 | 67.7 ± 6.3 |
Female, n(%) | 7 (77.8) | 17 (58.6) | 24 (63.2) |
BMI | 24.1 ± 3.0 | 26.6 ± 3.5 | 26.0 ± 3.5 |
Smoking Ex-smoker Non-smoker Smoker | 5 (55.6) 3 (33.3) 1 (11.1) | 16 (55.2) 13 (44.8) 0 (0) | 21 (55.3) 16 (42.1) 1 (2.6) |
Race White Black Hispanic | 7 (77.8) 2 (22.2) 0 (0) | 27 (93.1) 0 (0) 2 (6.9) | 34 (89.5) 2 (5.3) 2 (5.3) |
Metabolite | Super Pathway | Sub Pathway | ß Coefficient | p-Value |
---|---|---|---|---|
glutamine | Amino Acid | Glutamate Metabolism | −0.1789 | 0.0012 a |
3-methyl-2-oxobutyrate | Amino Acid | Leucine, Isoleucine and Valine Metabolism | −0.2154 | 0.0052 |
isovalerylcarnitine (C5) | Amino Acid | Leucine, Isoleucine and Valine Metabolism | −0.1303 | 0.0093 |
cysteine sulfinic acid | Amino Acid | Methionine, Cysteine, SAM and Taurine Metabolism | 0.1499 | 0.0046 |
P-cresol glucuronide * | Amino Acid | Tyrosine Metabolism | −0.0799 | 0.0068 |
3-amino-2-piperidone | Amino Acid | Urea cycle; Arginine and Proline Metabolism | 0.1404 | 0.0025 |
pyruvate | Carbohydrate | Glycolysis, Gluconeogenesis, and Pyruvate Metabolism | −0.2190 | 0.0066 |
N-acetylneuraminate | Carbohydrate | Aminosugar Metabolism | 0.1221 | 0.0053 |
N-acetylglucosamine/N-acetylgalactosamine | Carbohydrate | Aminosugar Metabolism | 0.0922 | 0.0080 |
Gulonate * | Cofactors and Vitamins | Ascorbate and Aldarate Metabolism | 0.1844 | 0.0030 |
citrate | Energy | TCA Cycle | −0.2426 | 0.0033 |
5alpha-pregnan-3beta,20alpha-diol disulfate | Lipid | Progestin Steroids | −0.2872 | 0.0044 |
taurocholenate sulfate * | Lipid | Secondary Bile Acid Metabolism | 0.1879 | 0.0012 a |
5alpha-pregnan-3beta,20beta-diol monosulfate (1) | Lipid | Progestin Steroids | −0.2761 | 0.0020 |
palmitoylcholine | Lipid | Fatty Acid Metabolism (Acyl Choline) | −0.0827 | 0.0031 |
Linoleoylcholine * | Lipid | Fatty Acid Metabolism (Acyl Choline) | −0.0854 | 0.0029 |
gamma-glutamylglutamine | Peptide | Gamma-glutamyl Amino Acid | −0.1125 | 0.0048 |
gamma-glutamylhistidine | Peptide | Gamma-glutamyl Amino Acid | −0.1711 | 0.0082 |
prolylglycine | Peptide | Dipeptide | −0.1284 | 0.0092 |
Metabolite | Super Pathway | Sub Pathway | ß Coefficient | p-Value |
---|---|---|---|---|
glutamine | Amino Acid | Glutamate Metabolism | 0.1748 | 0.0013 a |
asparagine | Amino Acid | Alanine and Aspartate Metabolism | 0.1443 | 0.0079 |
4-methyl-2-oxopentanoate | Amino Acid | Leucine, Isoleucine and Valine Metabolism | 0.2286 | 0.0089 |
3-methyl-2-oxobutyrate | Amino Acid | Leucine, Isoleucine and Valine Metabolism | 0.1861 | 0.0032 |
hydantoin-5-propionate | Amino Acid | Histidine Metabolism | 0.1868 | 0.0019 |
3-amino-2-piperidone | Amino Acid | Urea cycle; Arginine and Proline Metabolism | −0.1144 | 0.0088 |
N-acetylglucosamine/N-acetylgalactosamine | Carbohydrate | Aminosugar Metabolism | −0.0953 | 0.0043 |
biliverdin | Cofactors and Vitamins | Hemoglobin and Porphyrin Metabolism | −0.1158 | 0.0070 |
alpha-tocopherol | Cofactors and Vitamins | Tocopherol Metabolism | 0.2110 | 0.0094 |
sphingomyelin (d18:2/14:0, d18:1/14:1) * | Lipid | Sphingomyelins | 0.1138 | 0.0076 |
palmitoylcholine | Lipid | Fatty Acid Metabolism (Acyl Choline) | 0.0703 | 0.0047 |
lactosyl-N-nervonoyl-sphingosine (d18:1/24:1) * | Lipid | Lactosylceramides (LCER) | 0.1897 | 0.0057 |
glycosyl ceramide (d18:2/24:1, d18:1/24:2) * | Lipid | Hexosylceramides (HCER) | 0.2083 | 0.0060 |
Linoleoylcholine * | Lipid | Fatty Acid Metabolism (Acyl Choline) | 0.0709 | 0.0020 |
glycosyl ceramide (d18:1/20:0, d16:1/22:0) * | Lipid | Hexosylceramides (HCER) | 0.1065 | 0.0088 |
gamma-glutamylglutamine | Peptide | Gamma-glutamyl Amino Acid | 0.1106 | 0.0094 |
gamma-glutamylglycine | Peptide | Gamma-glutamyl Amino Acid | 0.1482 | 0.0052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lains, I.; Mendez, K.; Nigalye, A.; Katz, R.; Douglas, V.P.; Kelly, R.S.; Kim, I.K.; Miller, J.B.; Vavvas, D.G.; Liang, L.; et al. Plasma Metabolomic Profiles Associated with Three-Year Progression of Age-Related Macular Degeneration. Metabolites 2022, 12, 32. https://doi.org/10.3390/metabo12010032
Lains I, Mendez K, Nigalye A, Katz R, Douglas VP, Kelly RS, Kim IK, Miller JB, Vavvas DG, Liang L, et al. Plasma Metabolomic Profiles Associated with Three-Year Progression of Age-Related Macular Degeneration. Metabolites. 2022; 12(1):32. https://doi.org/10.3390/metabo12010032
Chicago/Turabian StyleLains, Ines, Kevin Mendez, Archana Nigalye, Raviv Katz, Vivian Paraskevi Douglas, Rachel S. Kelly, Ivana K. Kim, John B. Miller, Demetrios G. Vavvas, Liming Liang, and et al. 2022. "Plasma Metabolomic Profiles Associated with Three-Year Progression of Age-Related Macular Degeneration" Metabolites 12, no. 1: 32. https://doi.org/10.3390/metabo12010032
APA StyleLains, I., Mendez, K., Nigalye, A., Katz, R., Douglas, V. P., Kelly, R. S., Kim, I. K., Miller, J. B., Vavvas, D. G., Liang, L., Lasky-Su, J., Miller, J. W., & Husain, D. (2022). Plasma Metabolomic Profiles Associated with Three-Year Progression of Age-Related Macular Degeneration. Metabolites, 12(1), 32. https://doi.org/10.3390/metabo12010032