The Correlation between Extracellular Heat Shock Protein 70 and Lipid Metabolism in a Ruminant Model
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Blood Sampling and Laboratory Analysis
4.3. Lipid Based Indexes of Functionality
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
eHsp70 | Extracellular heat shock protein 70 |
NEFA | Non-esterified fatty acids |
BHB | Beta-hydroxybutyrate |
LDL | Low density lipoproteins |
HDL | High density lipoproteins |
VLDL | Very low-density lipoproteins |
RQUICKI-BHB | Revised quantitative insulin sensitivity check index |
LFI | Liver functionality index |
TNF-α | Tumor necrosis factor-alpha |
References
- Zhao, H.; Raines, L.N.; Huang, S.C.-C. Molecular chaperones: Molecular assembly line brings metabolism and immunity in shape. Metabolites 2020, 10, 394. [Google Scholar] [CrossRef] [PubMed]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Hipp, M.S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F.U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 2013, 82, 323–355. [Google Scholar] [CrossRef]
- Vabulas, R.M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol. 2010, 2, a004390. [Google Scholar] [CrossRef]
- Fernández-Fernández, M.R.; Valpuesta, J.M. Hsp70 chaperone: A master player in protein homeostasis. F1000Research 2018, 7, 1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahat, D.B.; Salamanca, H.H.; Duarte, F.M.; Danko, C.G.; Lis, J.T. Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol. Cell. 2016, 62, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, M.; Nakai, A. The heat shock factor family and adaptation to proteotoxic stress. FEBS J. 2010, 277, 4112–4125. [Google Scholar] [CrossRef]
- Buzzard, K.A.; Giaccia, A.J.; Killender, M.; Anderson, R.L. Heat shock protein 72 modulates pathways of stress-induced apoptosis. J. Biol. Chem. 1998, 273, 17147–17153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravagnan, L.; Gurbuxani, S.; Susin, S.A.; Maisse, C.; Daugas, E.; Zamzami, N.; Mak, T.; Jaattela, M.; Penninger, J.M.; Garrido, C.; et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol. 2001, 3, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, S.; Ambade, A.; Fulham, M.A.; Deshpande, J.; Catalano, D.; Mandrekar, P. Moderate alcohol induces stress proteins HSF1 and hsp70 and inhibits proinflammatory cytokines resulting in endotoxin tolerance. J. Immunol. 2014, 193, 1975–1987. [Google Scholar] [CrossRef] [Green Version]
- Jaattela, M.; Wissing, D.; Kokholm, K.; Kallunki, T.; Egeblad, M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 1998, 17, 6124–6134. [Google Scholar] [CrossRef] [Green Version]
- Borges, T.J.; Wieten, L.; van Herwijnen, M.J.; Broere, F.; van der Zee, R.; Bonorino, C.; van Eden, W. The anti-inflammatory mechanisms of Hsp70. Front. Immunol. 2012, 3, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.-S.; Ghassemi Nejad, J.; Roh, S.-G.; Lee, H.-G. Heat-shock proteins gene expression in peripheral blood mononuclear cells as an indicator of heat stress in beef calves. Animals 2020, 10, 895. [Google Scholar] [CrossRef] [PubMed]
- Dangi, S.S.; Dangi, S.K.; Chouhan, V.S.; Verma, M.R.; Kumar, P.; Singh, G.; Sarkar, M. Modulatory effect of betaine on expression dynamics of HSPs during heat stress acclimation in goat (Capra hircus). Gene 2016, 575, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.A.; Aggarwal, A.; Indu, B.; Aarif, O. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows. Theriogenology 2017, 95, 75–82. [Google Scholar] [CrossRef]
- Bautista-Carbajal, P.; Duarte-Molina, P.; Contla-Martínez, I.I.; García-León, M.L.; Angel-Ambrocio, A.H.; Baltazar-López, N.; Wong-Chew, R.M. Extracellular heat shock protein 70 is a mortality predictor in patients with septic shock and is associated with the APACHE II and SOFA scores, and the pro-inflammatory immune response. World Acad. Sci. J. 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Merchant, S.; Korbelik, M. Heat shock protein 70 is acute phase reactant: Response elicited by tumor treatment with photodynamic therapy. Cell Stress Chaperones 2011, 16, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Cooper, Z.A.; Tulapurkar, M.E.; Potla, R.; Maity, T.; Hasday, J.D.; Singh, I.S. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J. Biol. Chem. 2013, 288, 2756–2766. [Google Scholar] [CrossRef] [Green Version]
- Asea, A. Chaperokine-induced signal transduction pathways. Exerc. Immunol. Rev. 2003, 9, 25–33. [Google Scholar]
- Krause, M.; Heck, T.G.; Bittencourt, A.; Scomazzon, S.P.; Newsholme, P.; Curi, R.; Homem de Bittencourt, P.I., Jr. The chaperone balance hypothesis: The importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediat. Inflamm. 2015, 2015, 249205. [Google Scholar] [CrossRef]
- Pascottini, O.B.; Leroy, J.L.; Opsomer, G. Metabolic stress in the transition period of dairy cows: Focusing on the prepartum period. Animals 2020, 10, 1419. [Google Scholar] [CrossRef]
- Belić, B.; Cincović, M.; Lakić, I.; Đoković, R.; Petrović, M.; Ježek, J.; Starič, J. Metabolic status of dairy cows grouped by anabolic and catabolic indicators of metabolic stress in early lactation. Acta Sci. Vet. 2018, 46, 9. [Google Scholar] [CrossRef]
- McFadden, J. Review: Lipid biology in the periparturient dairy cow: Contemporary perspectives. Animal 2020, 14, S165–S175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cincović, M.; Kirovski, D.; Vujanac, I.; Belić, B.; Djoković, R. Relationship between the indexes of insulin resistance and metabolic status in dairy cows during early lactation. Acta Vet. 2017, 67, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Sordillo, L.M.; Raphael, W. Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet. Clin. Food Anim. 2013, 29, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Ametaj, B.N.; Bradford, B.J.; Bobe, G.; Nafikov, R.A.; Lu, Y.; Young, J.W.; Beitz, D.C. Strong relationships between mediators of the acute phase response and fatty liver in dairy cows. Can. J. Anim. Sci. 2005, 85, 165–175. [Google Scholar] [CrossRef]
- Contreras, G.A.; Sordillo, L.M. Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, M.L.; Contrera, G.A.; Aitken, S.L. Metabolic factors affecting the inflammatory response of periparturient dairy cows. Anim. Health Res. Rev. 2009, 10, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Catalani, E.; Amadori, M.; Vitali, A.; Bernabucci, U.; Nardone, A.; Lacetera, N. The Hsp72 response in peri-parturient dairy cows: Relationships with metabolic and immunological parameters. Cell Stress Chaperones 2010, 15, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Lamy, E.; Jurkovich, V.; Rodrigues, L.; Geraldo, A.; Cachucho, L.; Silva, F.; Matos, C.; Capelae Silva, F.; Pinheiro, C.; Könyves, L.; et al. Detection of 70 kDa heat shock protein in the saliva of dairy cows. J. Dairy Res. 2017, 84, 280–282. [Google Scholar] [CrossRef]
- Kristensen, T.N.; Løvendahl, P.; Berg, P.; Loeschcke, V. Hsp72 is present in plasma from Holstein-Friesian dairy cattle, and the concentration level is repeatable across days and age classes. Cell Stress Chaperones 2004, 9, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, A.E.; Rogers, R.S.; von Schulze, A.T.; Wheatley, J.L.; Morris, E.M.; McCoin, C.S.; Thyfault, J.P.; Geiger, P.C. Heat shock protein 72 regulates hepatic lipid accumulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R696–R707. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Yao, R.; Lian, S.; Liu, P.; Liu, Y.; Yang, Y.Y.; Yang, H.; Li, S. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress 2019, 22, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Z.; Hu, L.; Fang, H.; Sammad, A.; Kang, L.; Brito, L.F.; Xu, Q.; Wang, Y. Association analysis of polymorphisms in the 5′ flanking region of the HSP70 gene with blood biochemical parameters of lactating Holstein cows under heat and cold stress. Animals 2020, 10, 2016. [Google Scholar] [CrossRef]
- Cincović, M.R.; Majkić, M.; Belić, B.; Plavša, N.; Lakić, I.; Radinović, M. Thermal comfort of cows and temperature humidity index in period of 2005–2016 in Vojvodina region (Serbia). Acta Agric. Serb. 2017, 22, 133–145. [Google Scholar] [CrossRef]
- Rizzo, M.; Macario, A.J.L.; Conway de Macario, E.; Gouni-Berthold, I.; Berthold, H.K.; Battista Rini, G.; Zummo, G.; Cappello, F. Heat shock protein-60 and risk for cardiovascular disease. Curr. Pharm. Des. 2011, 17, 3662–3668. [Google Scholar] [CrossRef] [Green Version]
- Tukaj, S. Heat shock protein 70 as a double agent acting inside and outside the cell: Insights into autoimmunity. Int. J. Mol. Sci. 2020, 21, 5298. [Google Scholar] [CrossRef]
- Balogi, Z.; Multhoff, G.; Jensen, T.K.; Lloyd-Evans, E.; Yamashima, T.; Jäättelä, M.; Harwood, J.L.; Vígh, L. Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog. Lipid Res. 2019, 74, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Gao, W.; Dong, Z.; Su, Y.; Ji, Y.; Liao, J.; Ma, Y.; Dai, Y.; Yao, K.; Ge, J. Plasma heat shock protein 70 is associated with the onset of acute myocardial infarction and total occlusion in target vessels. Front. Cardiovas. Med. 2021, 1153. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Cappello, F.; Marfil, R.; Nibali, L.; Gammazza, A.M.; Rappa, F.; Boventura, G.; Galindo-Moreno, P.; O’Valle, F.; Zummo, G.; et al. Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: A pilot study. Cell Stress Chaperones 2012, 17, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Kuan, Y.C.; Hashidume, T.; Shibata, T.; Uchida, K.; Shimizu, M.; Inoue, J.; Sato, R. Heat shock protein 90 modulates lipid homeostasis by regulating the stability and function of sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein. J. Biol. Chem. 2017, 292, 3016–3028. [Google Scholar] [CrossRef] [Green Version]
- Kessler, E.C.; Gross, J.J.; Bruckmaier, R.M.; Albrecht, C. Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. J. Dairy Sci. 2014, 97, 5481–5490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J.J.; Kessler, E.C.; Albrecht, C.; Bruckmaier, R.M. Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage. PLoS ONE 2015, 10, e0121956. [Google Scholar] [CrossRef] [Green Version]
- Mostafavi, M.; Seifi, H.A.; Mohri, M.; Jamshidi, A. Optimal thresholds of metabolic indicators of hepatic lipidosis in dairy cows. Rev. Med. Vet. 2013, 164, 564–571. [Google Scholar]
- Petrović, K.; Cincović, M.R.; Belić, B.; Đoković, R.; Lakić, I.; Stojanović, D. Influence of niacin application on inflammatory parameters, non-esterified fatty acids and functional status of liver in cows during early lactation. Large Anim. Rev. 2021, 27, 17–21. [Google Scholar]
- Vernon, R.G. Lipid metabolism during lactation: A review of adipose tissue-liver interactions and the development of fatty liver. J. Dairy Res. 2005, 72, 460–469. [Google Scholar] [CrossRef]
- Adewuyi, A.A.; Gruys, E.; van Eerdenburg, F.J.C.M. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 2005, 27, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Sevinç, M.; Başoğlu, A.; Güzelbektaş, H.; Boydak, M. Lipid and lipoprotein levels in dairy cows with fatty liver. Turk. J. Vet. Anim. Sci. 2003, 27, 295–299. [Google Scholar]
- Gross, J.J.; Schwinn, A.C.; Müller, E.; Münger, A.; Dohme-Meier, F.; Bruckmaier, R.M. Plasma cholesterol levels and short-term adaptations of metabolism and milk production during feed restriction in early lactating dairy cows on pasture. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.W. Lipid metabolism in the liver and selected tissues and in the whole body of ruminant animal. Prog. Lipid Res. 1980, 18, 177–179. [Google Scholar]
- Vernon, R.G. Lipid Metabolism in the Adipose Tissue of Ruminant Animals. In Lipid Metabolism in Ruminant Animals; Christie, W.W., Ed.; Pergamon Press: Oxford, UK, 1981; p. 279. [Google Scholar]
- Bergman, E.N. Disordes of Carbonhydrate and Fat Metabolism. In Duke’s Physiology of Domestic Animals, 9th ed.; Swenson, M.J., Ed.; Cornel University Press: London, UK, 1977; pp. 357–367. [Google Scholar]
- Palmquist, D.L. A kinetic concept of lipid transport in ruminants. A review. J. Dairy Sci. 1976, 59, 355–363. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, N.; Peng, Y. Heat shock protein 70 promotes lipogenesis in HepG2 cells. Lipids Health Dis. 2018, 17, 73. [Google Scholar] [CrossRef] [Green Version]
- Tharwat, M.; Endoh, D.; Oikawa, S. Hepatocyte apoptosis in dairy cows with fatty infiltration of the liver. Res. Vet. Sci. 2012, 93, 1281–1286. [Google Scholar] [CrossRef]
- Du, X.; Chen, L.; Huang, D.; Peng, Z.; Zhao, C.; Zhang, Y.; Zhu, Y.; Wang, Z.; Li, X.; Liu, G. Elevated apoptosis in the liver of dairy cows with ketosis. Cell. Physiol. Biochem. 2017, 43, 568–578. [Google Scholar] [CrossRef]
- Ohtsuka, H.; Koiwa, M.; Hatsugaya, A.; Kudo, K.; Hoshi, F.; Itoh, N.; Yokota, H.; Okada, H.; Kawamura, S. Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver. J. Vet. Med. Sci. 2001, 63, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Bradford, B.J.; Mamedova, L.K.; Minton, J.E.; Drouillard, J.S.; Johnson, B.J. Daily injection of tumor necrosis factor-α increases hepatic triglycerides and alters transcript abundance of metabolic genes in lactating dairy cattle. J. Nutr. 2009, 139, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; He, J.; Pu, S.; Tang, C.; Xu, G. Heat shock protein 70 is translocated to lipid droplets in rat adipocytes upon heat stimulation. Biochim. Biophys. Acta 2007, 1771, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Bersuker, K.; Peterson, C.W.H.; To, M.; Sahl, S.J.; Savikhin, V.; Grossman, E.A.; Nomura, D.K.; Olzmann, J.A. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev. Cell. 2018, 44, 97–112.e7. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Cuervo, A.M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 2015, 17, 759–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, S.; Cuervo, A.M. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 2016, 12, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Contreras, G.A.; Strieder-Barboza, C.; Raphael, W. Adipose tissue lipolysis and remodeling during the transition period of dairy cows. J. Anim. Sci. Biotechnol. 2017, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Liu, G.; Xu, C.; Liu, L.; Zhang, Q.; Xu, Q.; Jia, H.; Li, X.; Li, X. Perilipin 1 mediates lipid metabolism homeostasis and inhibits inflammatory cytokine synthesis in bovine adipocytes. Front. Immunol. 2018, 9, 467. [Google Scholar] [CrossRef] [Green Version]
- Djoković, R.; Dosković, V.; Cincović, M.; Belić, B.; Fratrić, N.; Jašović, B.; Lalović, M. Estimation of insulin resistance in healthy and ketotic cows during an intravenous glucose tolerance test. Pak. Vet. J. 2017, 37, 4. [Google Scholar]
- Marinković, M.D.; Belić, B.; Cincović, M.R.; Đoković, R.; Lakić, I.; Stojanac, N.; Stevančević, O.; Devečerski, G. Relationship between insulin, glucose, non-esterified fatty acid and indices of insulin resistance in obese cows during the dry period and early lactation. Acta Vet. Brno 2019, 88, 143–155. [Google Scholar] [CrossRef]
- Cincović, M.R.; Đoković, R.; Belić, B.; Lakić, I.; Stojanac, N.; Stevančević, O.; Staničkov, N. Insulin resistance in cows during the periparturient period. Acta Agric. Serb. 2018, 23, 233–245. [Google Scholar] [CrossRef]
- Lakić, I.; Belić, B.; Cincović, M.; Potkonjak, A.; Trailović, D.; Kovačević, Z. Relationship of circulating tumor necrosis factor alpha (TNF-α) and insulin secretion and resistance in euglycaemic dogs. Acta Sci. Vet. 2020, 48. [Google Scholar] [CrossRef]
- Cincović, R.M.; Belić, B.; Radojičić, B.; Hristov, S.; Đoković, R. Influence of lipolysis and ketogenesis to metabolic and hematological parameters in dairy cows during periparturient period. Acta Vet. 2012, 62, 429–444. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle: 2001; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Trevisi, E.; Minuti, A. Assessment of the innate immune response in the periparturient cow. Res. Vet. Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef]
- Balogh, O.; Szepes, O.; Kovacs, K.; Kulcsar, M.; Reiczigel, J.; Alcazar, J.A.; Keresztes, M.; Febel, H.; Bartyik, J.; Fekete, S.G.; et al. Interrelationships of growth hormone AluI polymorphism, insulin resistance, milk production and reproductive performance in Holstein-Friesian cows. Vet. Med. 2008, 53, 604–616. [Google Scholar] [CrossRef] [Green Version]
- Hashemzadeh-Cigari, F.; Ghorbani, G.R.; Khorvash, M.; Riasi, A.; Taghizadeh, A.; Zebeli, Q. Supplementation of herbal plants differently modulated metabolic profile, insulin sensitivity, and oxidative stress in transition dairy cows fed various extruded oil seeds. Prev. Vet. Med. 2015, 118, 45–55. [Google Scholar] [CrossRef] [PubMed]
Blood Parameters | Value of Whole Group | Value of Group with Energy Balance in Lower Quartile | Value of Group with Energy Balance in Upper Quartile | Coefficient of Correlation with eHsp70 | p (Coefficient of Correlation) | p (Difference between Group of Energy Balance) |
---|---|---|---|---|---|---|
eHsp70 (ng/mL) | 3.25 ± 1.43 | 4.45 ± 1.02 | 1.77 ± 0.62 | −0.093 | NS | <0.05 |
Cholesterol (mmol/L) | 3.89 ± 1.68 | 2.32 ± 0.42 | 5.09 ± 1.31 | −0.39 | <0.01 | <0.05 |
Triglycerides (mmol/L) | 0.22 ± 0.098 | 0.12 ± 0.07 | 0.23 ± 0.08 | −0.408 | <0.005 | NS |
NEFA (mmol/L) | 0.51 ± 0.23 | 0.71 ± 0.11 | 0.35 ± 0.12 | 0.587 | <0.001 | <0.05 |
BHB (mmol/L) | 0.7 ± 0.28 | 0.74 ± 0.21 | 0.53 ± 0.12 | 0.283 | <0.05 | <0.05 |
HDL (mmol/L) | 0.98 ± 0.19 | 1.01 ± 0.13 | 1.09 ± 0.09 | 0.047 | NS | NS |
LDL (mmol/L) | 2.86 ± 1.64 | 1.3 ± 0.42 | 4.04 ± 1.18 | −0.372 | <0.01 | <0.05 |
VLDL (mmol/L) | 0.04 ± 0.019 | 0.02 ± 0.01 | 0.05 ± 0.011 | −0.408 | <0.005 | <0.05 |
NEFA:Cholesterol ratio | 0.18 ± 0.14 | 0.31 ± 0.09 | 0.08 ± 0.05 | 0.516 | <0.001 | <0.05 |
Liver functionality index (LFI) | 9.91 ± 10.43 | 2.21 ± 5.2 | 18.6 ± 5.7 | −0.403 | <0.005 | <0.05 |
RQUICKI-BHB | 0.59 ± 0.12 | 0.5 ± 0.1 | 0.57 ± 0.1 | −0.312 | <0.05 | NS |
NEFA:Insulin ratio | 0.13 ± 0.08 | 0.22 ± 0.05 | 0.07 ± 0.05 | 0.593 | <0.001 | <0.05 |
TNF-α (ng/mL) | 10.07 ± 3.1 | 12.47 ± 1.92 | 7.29 ± 1.29 | 0.443 | <0.001 | <0.05 |
Blood Parameters | Coefficient of Correlation with TNF-α | p | Coefficient of Correlation with eHsp70 after Exclusion of TNF-α | p | Is Effect of eHsp70 Independent from Effect of TNF-α? |
---|---|---|---|---|---|
Cholesterol (mmol/L) | −0.433 | <0.005 | −0.243 | NS | No |
Triglycerides (mmol/L) | −0.373 | <0.005 | −0.292 | <0.05 | Yes |
NEFA (mmol/L) | 0.63 | <0.001 | 0.447 | <0.001 | Yes |
BHB (mmol/L) | 0.317 | <0.05 | 0.168 | NS | No |
HDL (mmol/L) | −0.211 | NS | 0.161 | NS | N/A |
LDL (mmol/L) | −0.403 | <0.005 | −0.236 | NS | No |
VLDL (mmol/L) | −0.373 | <0.005 | −0.292 | <0.05 | Yes |
NEFA:Cholesterol ratio | 0.519 | <0.001 | 0.373 | <0.005 | Yes |
LFI (Liver functionality index) | −0.384 | <0.01 | −0.289 | <0.05 | Yes |
RQUICKI-BHB | −0.360 | <0.05 | −0.182 | NS | No |
NEFA:Insulin ratio | 0.667 | <0.001 | 0.445 | <0.005 | Yes |
Blood Parameters | High Concentration of TNF-α (n = 6) | High Concentration of TNF-α + eHsp70 (n = 7) | p |
---|---|---|---|
NEFA (mmol/L) | 0.61 ± 0.09 | 0.82 ± 0.07 | <0.05 |
BHB (mmol/L) | 0.73 ± 0.08 | 0.95 ± 0.08 | <0.05 |
Triglycerides (mmol/L) | 0.19 ± 0.06 | 0.11 ± 0.05 | <0.05 |
VLDL | 0.042 ± 0.005 | 0.021 ± 0.005 | <0.05 |
NEFA:Cholesterol | 0.18 ± 0.05 | 0.35 ± 0.06 | <0.05 |
NEFA:Insulin ratio | 0.14 ± 0.07 | 0.22 ± 0.08 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, M.Ž.; Cincović, M.; Starič, J.; Djoković, R.; Belić, B.; Radinović, M.; Majkić, M.; Ilić, Z.Ž. The Correlation between Extracellular Heat Shock Protein 70 and Lipid Metabolism in a Ruminant Model. Metabolites 2022, 12, 19. https://doi.org/10.3390/metabo12010019
Petrović MŽ, Cincović M, Starič J, Djoković R, Belić B, Radinović M, Majkić M, Ilić ZŽ. The Correlation between Extracellular Heat Shock Protein 70 and Lipid Metabolism in a Ruminant Model. Metabolites. 2022; 12(1):19. https://doi.org/10.3390/metabo12010019
Chicago/Turabian StylePetrović, Miloš Ž., Marko Cincović, Jože Starič, Radojica Djoković, Branislava Belić, Miodrag Radinović, Mira Majkić, and Zoran Ž. Ilić. 2022. "The Correlation between Extracellular Heat Shock Protein 70 and Lipid Metabolism in a Ruminant Model" Metabolites 12, no. 1: 19. https://doi.org/10.3390/metabo12010019
APA StylePetrović, M. Ž., Cincović, M., Starič, J., Djoković, R., Belić, B., Radinović, M., Majkić, M., & Ilić, Z. Ž. (2022). The Correlation between Extracellular Heat Shock Protein 70 and Lipid Metabolism in a Ruminant Model. Metabolites, 12(1), 19. https://doi.org/10.3390/metabo12010019