Dynamics of Fat Oxidation from Sitting at Rest to Light Exercise in Inactive Young Humans
Abstract
:1. Introduction
2. Results
2.1. Experiment I: No-Load Cycling
2.2. Experiment II: Graded Cycling Exercise in Very Low to Low Power Range
3. Discussion
3.1. Low Intensity vs. Sedentary Behaviour
3.2. Specific Response during No-Load Cycling
3.3. Metabolic Shift during Low Perceived Exertion
4. Materials and Methods
4.1. Subjects
4.2. General Study Design
4.3. Measurements
4.3.1. Indirect Calorimetry and Heart Rate
4.3.2. Rate of Perceived Exertion
4.4. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrow, J.S. Energy Balance and Obesity in Man; North-Holland Publishing Company: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Jéquier, E.; Tappy, L. Regulation of body weight in humans. Physiol. Rev. 1999, 79, 451–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Coquart, J.B.J.; Lemaire, C.; Dubart, A.E.; Luttembacher, D.P.; Douillard, C.; Garcin, M. Intermittent versus continuous exercise: Effects of perceptually lower exercise in obese women. Med. Sci. Sports Exerc. 2008, 40, 1546–1553. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Balady, G.; Blair, S.N.; Blumenthal, J.; Caspersen, C.; Chaitman, B.; Epstein, S.; Sivarajan Froelicher, E.S.; Froelicher, V.F.; Pina, I.L.; et al. Statement on exercise: Benefits and recommendations for physical activity programs for all Americans: A statement for health professionals by the committee on exercise and cardiac rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation 1996, 94, 857–862. [Google Scholar] [PubMed] [Green Version]
- Pedersen, B.K.; Saltin, B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sport. 2015, 25, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef] [Green Version]
- Bey, L.; Hamilton, M.T. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: A molecular reason to maintain daily low-intensity activity. J. Physiol. 2003, 551, 673–682. [Google Scholar] [CrossRef]
- Hill, J.O.; Wyatt, H.R.; Reed, G.W.; Peters, J.C. Obesity and the environment: Where do we go from here? Science 2003, 299, 853–855. [Google Scholar] [CrossRef] [Green Version]
- Sarafian, D.; Miles-Chan, J.L.; Yepuri, G.; Montani, J.P.; Schutz, Y.; Dulloo, A.G. A standardized approach to study human variability in isometric thermogenesis during low-intensity physical activity. Front Physiol. 2013, 4, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulloo, A.G.; Miles-Chan, J.L.; Montani, J.P.; Schutz, Y. Isometric thermogenesis at rest and during movement: A neglected variable in energy expenditure and obesity predisposition. Obes. Rev. 2017, 18, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Miles-Chan, J.L.; Dulloo, A.G. Posture Allocation Revisited: Breaking the Sedentary Threshold of Energy Expenditure for Obesity Management. Front Physiol. 2017, 8, 420. [Google Scholar] [CrossRef] [Green Version]
- Betts, J.A.; Smith, H.A.; Johnson-Bonson, D.A.; Ellis, T.I.; Dagnall, J.; Hengist, A.; Carroll, H.; Thompson, D.; Gonzalez, J.T.; Afman, G.H. The Energy Cost of Sitting versus Standing Naturally in Man. Med. Sci. Sports Exerc. 2019, 51, 726–733. [Google Scholar] [CrossRef]
- Altenburg, T.M.; Rotteveel, J.; Serné, E.H.; Chinapaw, M.J.M. Standing is not enough: A randomized crossover study on the acute cardiometabolic effects of variations in sitting in healthy young men. J. Sci. Med. Sport 2019. [Google Scholar] [CrossRef] [Green Version]
- Villablanca, P.A.; Alegria, J.R.; Mookadam, F.; Holmes, D.R.; Wright, R.S.; Levine, J.A. Nonexercise activity thermogenesis in obesity management. Mayo Clin. Proc. 2015, 90, 509–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurlo, F.; Lillioja, S.; Esposito-Del Puente, A.; Nyomba, B.L.; Raz, I.; Saad, M.F.; Swinburn, B.A.; Knowler, W.C.; Bogardus, C.; Ravussin, E. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: Study of 24-h RQ. Am. J. Physiol. 1990, 259, E650–E657. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.E. Skeletal muscle fat oxidation: Timing and flexibility are everything. J. Clin. Investig. 2005, 115, 1699–1702. [Google Scholar] [CrossRef] [Green Version]
- Romijn, J.A.; Coyle, E.F.; Sidossis, L.S.; Gastaldelli, A.; Horowitz, J.F.; Endert, E.; Wolfe, R.R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. Endocrinol. Metab. 1993, 265, E380–E391. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E.; Mensink, M.; Saris, W.H.; Wagenmakers, A.J. Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects. J. Appl. Physiol. 1997, 82, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.L.; Townsend, K.M.; Boughey, R.; Patterson, K.; Bassett, D.R., Jr. Substrate use during and following moderate- and low-intensity exercise: Implications for weight control. Eur. J. Appl. Physiol. 1998, 78, 43–49. [Google Scholar] [CrossRef] [PubMed]
- van Aggel-Leijssen, D.P.; Saris, W.H.; Wagenmakers, A.J.; Hul, G.B.; van Baak, M.A. The effect of low-intensity exercise training on fat metabolism of obese women. Obes. Res. 2001, 9, 86–96. [Google Scholar] [CrossRef]
- Dumortier, M.; Thoni, G.; Brun, J.F.; Mercier, J. Substrate oxidation during exercise: Impact of time interval from the last meal in obese women. Int. J. Obes. 2005, 29, 966–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordenave, S.; Metz, L.; Flavier, S.; Lambert, K.; Ghanassia, E.; Dupuy, A.-M.; Michel, F.; Puech-Cathala, A.-M.; Raynaud, E.; Brun, J.-F.; et al. Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity. Effect of endurance training in type 2 diabetes. Diabetes Metab. 2008, 34, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, R.J.; Noble, B.J. Perception of physical exertion: Methods, mediators, and applications. Exerc. Sport Sci. Rev. 1997, 25, 407–452. [Google Scholar] [CrossRef] [PubMed]
- Sarafian, D.; Schutz, Y.; Montani, J.P.; Dulloo, A.G.; Miles-Chan, J.L. Sex difference in substrate oxidation during low-intensity isometric exercise in young adults. Appl. Physiol. Nutr. Metab. 2016, 41, 977–984. [Google Scholar] [CrossRef]
- Pageaux, B. Perception of effort in Exercise Science: Definition, measurement and perspectives. Eur. J. Sport Sci. 2016, 16, 885–894. [Google Scholar] [CrossRef]
- Reger, M.; Peterman, J.E.; Kram, R.; Byrnes, W.C. Exercise efficiency of low power output cycling. Scand. J. Med. Sci. Sports 2013, 23, 713–721. [Google Scholar] [CrossRef]
- Fares, E.-J.; Isacco, L.; Monnard, C.R.; Miles-Chan, J.L.; Montani, J.-P.; Schutz, Y.; Dulloo, A.G. Reliability of low-power cycling efficiency in energy expenditure phenotyping of inactive men and women. Physiol. Rep. 2017, 5, e13233. [Google Scholar] [CrossRef] [Green Version]
- Miles-Chan, J.L.; Sarafian, D.; Montani, J.P.; Schutz, Y.; Dulloo, A.G. Sitting comfortably versus lying down: Is there really a difference in energy expenditure? Clin. Nutr. 2014. [Google Scholar] [CrossRef] [Green Version]
- Brooks, G.A.; Mercier, J. Balance of carbohydrate and lipid utilization during exercise: The “crossover” concept. J. Appl. Physiol. 1994, 76, 2253–2261. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E.; Wallis, G.A. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int. J. Sports Med. 2005, 26 (Suppl. S1), S28–S37. [Google Scholar] [CrossRef]
- Lazzer, S.; Lafortuna, C.; Busti, C.; Galli, R.; Agosti, F.; Sartorio, A. Effects of low- and high-intensity exercise training on body composition and substrate metabolism in obese adolescents. J. Endocrinol. Investig. 2011, 34, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Vangelakoudi, A.; Maridaki, M. Peak fat oxidation rate during walking in sedentary overweight men and women. J. Sport. Sci Med. 2008, 7, 525–531. [Google Scholar]
- Grams, L.; Kück, M.; Haufe, S.; Tegtbur, U.; Nelius, A.K.; Kerling, A. Peak fat oxidation during self-paced activities of daily life: Influence of sex and body composition. J. Sports Med. Phys. Fitness 2017, 57, 624–632. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Gender differences in substrate metabolism during endurance exercise. Appl. Physiol. Nutr. Metab. 2000, 25, 312–327. [Google Scholar] [CrossRef] [PubMed]
- Timmons, B.W.; Hamadeh, M.J.; Devries, M.C.; Tarnopolsky, M.A. Influence of gender, menstrual phase, and oral contraceptive use on immunological changes in response to prolonged cycling. J. Appl. Physiol. 2005, 99, 979–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, J.; Peronnet, F.; Massicotte, D.; Lavoie, C. Carbohydrate supplementation and sex differences in fuel selection during exercise. Med. Sci. Sport. Exerc. 2010, 42, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Cheneviere, X.; Borrani, F.; Sangsue, D.; Gojanovic, B.; Malatesta, D. Gender differences in whole-body fat oxidation kinetics during exercise. Appl. Physiol. Nutr. Metab. 2011, 36, 88–95. [Google Scholar] [CrossRef]
- Hamadeh, M.J.; Devries, M.C.; Tarnopolsky, M.A. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J. Clin. Endocrinol. Metab. 2005, 90, 3592–3599. [Google Scholar] [CrossRef] [Green Version]
- Carter, S.L.; Rennie, C.; Tarnopolsky, M.A. Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E898–E907. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.T. Relationship of adiposity to the population distribution of plasma triglyceride concentrations in vigorously active men and women. Atherosclerosis 2004, 174, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Jette, M.; Sidney, K.; Blumchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.A.; Schleusner, S.J.; Jensen, M.D. Energy expenditure of nonexercise activity. Am. J. Clin. Nutr. 2000, 72, 1451–1454. [Google Scholar] [CrossRef]
- Levine, J.A. Nonexercise activity thermogenesis (NEAT): Environment and biology. Am. J. Physiol. Endocrinol. Metab. 2004, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherr, J.; Wolfarth, B.; Christle, J.W.; Pressler, A.; Wagenpfeil, S.; Halle, M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 2013. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Optimizing fat oxidation through exercise and diet. Nutrition 2004, 20, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Davidsen, L.; Vistisen, B.; Astrup, A. Impact of the menstrual cycle on determinants of energy balance: A putative role in weight loss attempts. Int. J. Obes. 2007, 31, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Network, S.B.R. Letter to the Editor: Standardized use of the terms “sedentary” and “sedentary behaviours. ” Appl. Physiol. Nutr. Metab. 2012, 37, 540–542. [Google Scholar]
- Tremblay, M.S.; Warburton, D.E.; Janssen, I.; Paterson, D.H.; Latimer, A.E.; Rhodes, R.E.; Kho, M.E.; Hicks, A.; Leblanc, A.G.; Zehr, L.; et al. New Canadian physical activity guidelines. Appl. Physiol. Nutr. Metab. 2011, 36, 36–58. [Google Scholar] [CrossRef]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Frayn, K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charriere, N.; Montani, J.P.; Dulloo, A.G. Postprandial thermogenesis and respiratory quotient in response to galactose: Comparison with glucose and fructose in healthy young adults. J. Nutr. Sci. 2016, 5, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fares, E.J.; Charriere, N.; Montani, J.P.; Schutz, Y.; Dulloo, A.G.; Miles-Chan, J.L. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies. PLoS ONE 2016, 11, e0151552. [Google Scholar] [CrossRef] [PubMed]
- Schutz, Y.; Jéquier, E. Resting energy expenditure, thermic effect of food and total energy expenditur. In Handbook of Obesity: Etiology and Pathophysiology; Bray, G.A., Bouchard, C., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 615–629. [Google Scholar]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
Experiment | Variables | All subjects | Men | Women |
---|---|---|---|---|
I | n | 16 | 8 | 8 |
Age (y) | 23.4 ± 0.8 | 24.5 ± 1.3 | 22.4 ± 0.8 | |
Height (cm) | 173.4 ± 3.1 | 183.0 ± 2.65 | 163.8 ± 2.53 *** | |
Weight (kg) | 70.3 ± 3.9 | 83.7 ± 2.8 | 56.8 ± 2.6 *** | |
BMI (kg·m−2) | 23.1 ± 0.7 | 25.0 ± 0.7 | 21.1 ± 0.5 *** | |
FM (%) | 20.3 ± 1.7 | 16.9 ± 2.5 | 23.7 ± 1.8 * | |
FFM (kg) | 58.2 ± 4.4 | 73.7 ± 3.3 | 42.6 ± 1.9 *** | |
II | n | 19 | 7 | 12 |
Age (y) | 24.9 ± 0.6 | 25.9 ± 1.1 | 24.3 ± 0.8 | |
Height (cm) | 170.8 ± 1.8 | 177.7 ± 2.2 | 166.7 ± 1.6 *** | |
Weight (kg) | 64.6 ± 2.6 | 74.0 ± 4.7 | 59.1 ± 1.6 *** | |
BMI (kg·m−2) | 22.0 ± 0.5 | 23.3 ± 0.9 | 21.3 ± 0.6 * | |
FM (%) | 21.4 ± 1.8 | 15.8 ± 2.7 | 24.7 ± 1.8 ** | |
FFM (kg) | 50.7 ± 2.3 | 61.8 ± 2.7 | 44.3 ± 1.1 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calonne, J.; Fares, E.-J.; Montani, J.-P.; Schutz, Y.; Dulloo, A.; Isacco, L. Dynamics of Fat Oxidation from Sitting at Rest to Light Exercise in Inactive Young Humans. Metabolites 2021, 11, 334. https://doi.org/10.3390/metabo11060334
Calonne J, Fares E-J, Montani J-P, Schutz Y, Dulloo A, Isacco L. Dynamics of Fat Oxidation from Sitting at Rest to Light Exercise in Inactive Young Humans. Metabolites. 2021; 11(6):334. https://doi.org/10.3390/metabo11060334
Chicago/Turabian StyleCalonne, Julie, Elie-Jacques Fares, Jean-Pierre Montani, Yves Schutz, Abdul Dulloo, and Laurie Isacco. 2021. "Dynamics of Fat Oxidation from Sitting at Rest to Light Exercise in Inactive Young Humans" Metabolites 11, no. 6: 334. https://doi.org/10.3390/metabo11060334
APA StyleCalonne, J., Fares, E. -J., Montani, J. -P., Schutz, Y., Dulloo, A., & Isacco, L. (2021). Dynamics of Fat Oxidation from Sitting at Rest to Light Exercise in Inactive Young Humans. Metabolites, 11(6), 334. https://doi.org/10.3390/metabo11060334