A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice
Abstract
:1. Introduction
2. Results
2.1. Change in Body Weight
2.2. Relative Tissue or Organ Weight
2.3. Grip Power and Maximal Exercise Capacity Test
2.4. Analysis of Plasma Biochemical Indexes
2.5. Gene Expression in Tissues and Organs
3. Discussion
4. Materials and Methods
4.1. Mice Maintenance and Diets
4.2. Training Procedures
4.3. Forelimb Grip Strength Test
4.4. Maximal Workload
4.5. Sampling and Plasma Biochemical Assessment
4.6. Real-Time PCR
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Engin, A. The definition and prevalence of obesity and metabolic syndrome. Adv. Exp. Med. Biol. 2017, 960, 1–17. [Google Scholar] [PubMed]
- Frank, A.P.; de Souza Santos, R.; Palmer, B.F.; Clegg, D.J. Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J. Lipid Res. 2019, 60, 1710–1719. [Google Scholar] [CrossRef]
- Jabłonowska-Lietz, B.; Wrzosek, M.; Włodarczyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 2017, 75, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Kaila, B.; Raman, M. Obesity: A review of pathogenesis and management strategies. Can. J. Gastroenterol. 2008, 22, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Ma, S.; Tominaga, T.; Suzuki, K.; Liu, C. An 8-week, low carbohydrate, high fat, ketogenic diet enhanced exhaustive exercise capacity in mice part 2: Effect on fatigue recovery, post-exercise biomarkers and anti-oxidation capacity. Nutrients 2018, 10, 1339. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.; Meinert Larsen, T.; Harper, A. Atkins and other low-carbohydrate diets: Hoax or an effective tool for weight loss? Lancet 2004, 364, 897–899. [Google Scholar] [CrossRef]
- Obert, J.; Pearlman, M.; Obert, L.; Chapin, S. Popular weight loss strategies: A review of four weight loss techniques. Curr. Gastroenterol. Rep. 2017, 19, 61. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, N.; Niihara, H.; Mizokami, T.; Yano, H.; Suzuki, K. Exercise training attenuates adipose tissue fibrosis in diet-induced obese mice. Biochem. Biophys. Res. Commun. 2013, 440, 774–779. [Google Scholar] [CrossRef]
- Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017, 13, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, N.; Niihara, H.; Mizokami, T.; Yada, K.; Suzuki, K. Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice. Physiol. Rep. 2015, 3, e12534. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Li, B.; Li, L.; Mitchell, S.E.; Green, C.L.; D’Agostino, G.; Wang, G.; Wang, L.; Li, M.; Li, J.; et al. Very-low-protein diets lead to reduced food intake and weight loss, linked to inhibition of hypothalamic mtor signaling, in mice. Cell Metab. 2021. [Google Scholar] [CrossRef]
- Laeger, T.; Henagan, T.M.; Albarado, D.C.; Redman, L.M.; Bray, G.A.; Noland, R.C.; Muenzberg, H.; Hutson, S.M.; Gettys, T.W.; Schwartz, M.W.; et al. Fgf21 is an endocrine signal of protein restriction. J. Clin. Investig. 2014, 124, 3913–3922. [Google Scholar] [CrossRef] [Green Version]
- So, W.Y.; Leung, P.S. Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus. Med. Res. Rev. 2016, 36, 672–704. [Google Scholar] [CrossRef] [PubMed]
- Owen, B.M.; Ding, X.; Morgan, D.A.; Coate, K.C.; Bookout, A.L.; Rahmouni, K.; Kliewer, S.A.; Mangelsdorf, D.J. Fgf21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014, 20, 670–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Yang, J.; Tominaga, T.; Liu, C.; Suzuki, K. A low-carbohydrate ketogenic diet and treadmill training enhanced fatty acid oxidation capacity but did not enhance maximal exercise capacity in mice. Nutrients 2021, 13, 611. [Google Scholar] [CrossRef]
- Ma, S.; Suzuki, K. Keto-adaptation and endurance exercise capacity, fatigue recovery, and exercise-induced muscle and organ damage prevention: A narrative review. Sports 2019, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Huang, Q.; Tominaga, T.; Liu, C.; Suzuki, K. An 8-week ketogenic diet alternated interleukin-6, ketolytic and lipolytic gene expression, and enhanced exercise capacity in mice. Nutrients 2018, 10, 1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharitonenkov, A.; Adams, A.C. Inventing new medicines: The fgf21 story. Mol. Metab. 2014, 3, 221–229. [Google Scholar] [CrossRef]
- Petridou, A.; Siopi, A.; Mougios, V. Exercise in the management of obesity. Metabolism 2019, 92, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, L.; Meyer, T.E.; Klein, S.; Holloszy, J.O. Long-term low-calorie low-protein vegan diet and endurance exercise are associated with low cardiometabolic risk. Rejuvenation Res. 2007, 10, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Graham-Thiers, P.M.; Kronfeld, D.S.; Kline, K.A.; Sklan, D.J. Dietary protein restriction and fat supplementation diminish the acidogenic effect of exercise during repeated sprints in horses. J. Nutr. 2001, 131, 1959–1964. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low protein intake is associated with a major reduction in igf-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Gao, J.; Du, M.; Song, J.; Mao, X. Milk fat globule membrane attenuates high-fat diet-induced obesity by inhibiting adipogenesis and increasing uncoupling protein 1 expression in white adipose tissue of mice. Nutrients 2018, 10, 331. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.S.; Kim, W.; Kim, T.H.; Jung, H.Y.; Kwon, H.J.; Kim, D.W.; Hwang, I.K.; Choi, J.H. Changes of fat-mass and obesity-associated protein expression in the hippocampus in animal models of high-fat diet-induced obesity and d-galactose-induced aging. Lab. Anim. Res. 2020, 36, 20. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Yang, W.-K.; Kim, H.Y.; Min, B.; Caturla, N.; Jones, J.; Park, Y.-C.; Lee, Y.-C.; Kim, S.-H. Metabolaid((r)) combination of lemon verbena and hibiscus flower extract prevents high-fat diet-induced obesity through amp-activated protein kinase activation. Nutrients 2018, 10, 1204. [Google Scholar] [CrossRef] [Green Version]
- Tomé, D.; Chaumontet, C.; Even, P.C.; Darcel, N.; Thornton, S.N.; Azzout-Marniche, D. Protein status modulates an appetite for protein to maintain a balanced nutritional state-a perspective view. J. Agric. Food Chem. 2020, 68, 1830–1836. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.I.; Appel, S. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men: A secondary analysis of energy expenditure and physical activity. PLoS ONE 2019, 14, e0222971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nymo, S.; Coutinho, S.R.; Jørgensen, J.; Rehfeld, J.F.; Truby, H.; Kulseng, B.; Martins, C. Timeline of changes in appetite during weight loss with a ketogenic diet. Int. J. Obes. 2017, 41, 1224–1231. [Google Scholar] [CrossRef] [Green Version]
- Kawanishi, N.; Mizokami, T.; Yano, H.; Suzuki, K. Exercise attenuates M1 macrophages and CD8+ T cells in the adipose tissue of obese mice. Med. Sci. Sports Exerc. 2013, 45, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Verboven, K.; Hansen, D. Critical reappraisal of the role and importance of exercise intervention in the treatment of obesity in adults. Sports Med. 2021, 51, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Schuit, A.J.; Schouten, E.G.; Miles, T.P.; Evans, W.J.; Saris, W.H.; Kok, F.J. The effect of six months training on weight, body fatness and serum lipids in apparently healthy elderly dutch men and women. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Damas, F.; Libardi, C.A.; Ugrinowitsch, C. The development of skeletal muscle hypertrophy through resistance training: The role of muscle damage and muscle protein synthesis. Eur. J. Appl. Physiol. 2018, 118, 485–500. [Google Scholar] [CrossRef]
- Phillips, S.M.; Parise, G.; Roy, B.D.; Tipton, K.D.; Wolfe, R.R.; Tamopolsky, M.A. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can. J. Physiol. Pharmacol. 2002, 80, 1045–1053. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International society of sports nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuyan, D.; Turkoglu, S.A.; Kockar, F. Carbonic anhydrase iii is a new target of hif1 alpha in prostate cancer model. Gene 2020, 762, 145034. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.F.; Umpierre, D.; Teodoro, J.L.; Lisboa, S.C.; Baroni, B.M.; Izquierdo, M.; Cadore, E.L. Effects of resistance training performed to failure or not to failure on muscle strength, hypertrophy, and power output: A systematic review with meta-analysis. J. Strength Cond. Res. 2021, 35, 1165–1175. [Google Scholar] [CrossRef]
- Phillips, S.M. Protein requirements and supplementation in strength sports. Nutrition 2004, 20, 689–695. [Google Scholar] [CrossRef]
- Phillips, S.M.; Van Loon, L.J. Dietary protein for athletes: From requirements to optimum adaptation. J. Sports Sci. 2011, 29 (Suppl. S1), S29–S38. [Google Scholar] [CrossRef]
- Edelmann, F.; Gelbrich, G.; Düngen, H.D.; Fröhling, S.; Wachter, R.; Stahrenberg, R.; Binder, L.; Töpper, A.; Lashki, D.J.; Schwarz, S.; et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: Results of the ex-dhf (exercise training in diastolic heart failure) pilot study. J. Am. Coll. Cardiol. 2011, 58, 1780–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdou, M.; Hafez, M.H.; Anwar, G.M.; Fahmy, W.A.; Abd Alfattah, N.M.; Salem, R.I.; Arafa, N. Effect of high protein and fat diet on postprandial blood glucose levels in children and adolescents with type 1 diabetes in cairo, egypt. Diabetes Metab. Syndr. 2021, 15, 7–12. [Google Scholar] [CrossRef]
- Monroe, J.C.; Naugle, K.M.; Naugle, K.E. Effect of acute bouts of volume-matched high-intensity resistance training protocols on blood glucose levels. J. Strength Cond. Res. 2020, 34, 445–450. [Google Scholar] [CrossRef] [PubMed]
- González-Reimers, E.; López-Lirola, A.; Olivera, R.M.; Santolaria-Fernández, F.; Galindo-Martín, L.; Abreu-González, P.; Sánchez-Sanchez, J.J.; Martínez-Riera, A. Effects of protein deficiency on liver trace elements and antioxidant activity in carbon tetrachloride-induced liver cirrhosis. Biol. Trace Elem. Res. 2003, 93, 127–140. [Google Scholar] [CrossRef]
- Lippo, B.R.; Batista, T.M.; de Rezende, L.F.; Cappelli, A.P.; Camargo, R.L.; Branco, R.C.; Sampaio, H.C.; Protzek, A.O.; Wanderley, M.I.; Arantes, V.C.; et al. Low-protein diet disrupts the crosstalk between the pka and pkc signaling pathways in isolated pancreatic islets. J. Nutr. Biochem. 2015, 26, 556–562. [Google Scholar] [CrossRef]
- Ji, J.J.; Qian, L.L.; Zhu, Y.; Wu, Y.P.; Guo, J.Q.; Ma, G.S.; Yao, Y.Y. Serpina3c protects against high-fat diet-induced pancreatic dysfunction through the jnk-related pathway. Cell. Signal. 2020, 75, 109745. [Google Scholar] [CrossRef]
- Maida, A.; Zota, A.; Sjoberg, K.A.; Schumacher, J.; Sijmonsma, T.P.; Pfenninger, A.; Christensen, M.M.; Gantert, T.; Fuhrmeister, J.; Rothermel, U.; et al. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J. Clin. Investig. 2016, 126, 3263–3278. [Google Scholar] [CrossRef] [Green Version]
- Chapnik, N.; Genzer, Y.; Froy, O. Relationship between fgf21 and ucp1 levels under time-restricted feeding and high-fat diet. J. Nutr. Biochem. 2017, 40, 116–121. [Google Scholar] [CrossRef]
- Fisher, F.M.; Maratos-Flier, E. Understanding the physiology of fgf21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Demine, S.; Renard, P.; Arnould, T. Mitochondrial uncoupling: A key controller of biological processes in physiology and diseases. Cells 2019, 8, 795. [Google Scholar] [CrossRef] [Green Version]
- Harms, M.; Seale, P. Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 2013, 19, 1252–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, Y.; Ide, T. Dietary n-3 fatty acids affect mrna level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat. Br. J. Nutr. 2000, 84, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Malzahn, J.; Kastrenopoulou, A.; Papadimitriou-Olivgeri, I.; Papachristou, D.J.; Brown, J.M.; Oppermann, U.; Athanasou, N.A. Immunophenotypic expression of ucp1 in hibernoma and other adipose/non adipose soft tissue tumours. Clin. Sarcoma Res. 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Fisher, F.M.; Kleiner, S.; Douris, N.; Fox, E.C.; Mepani, R.J.; Verdeguer, F.; Wu, J.; Kharitonenkov, A.; Flier, J.S.; Maratos-Flier, E.; et al. Fgf21 regulates pgc-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012, 26, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kim, S.H.; Min, Y.K.; Yang, H.M.; Lee, J.B.; Lee, M.S. Acute exercise induces fgf21 expression in mice and in healthy humans. PLoS ONE 2013, 8, e63517. [Google Scholar] [CrossRef]
- Geng, L.; Liao, B.; Jin, L.; Huang, Z.; Triggle, C.R.; Ding, H.; Zhang, J.; Huang, Y.; Lin, Z.; Xu, A. Exercise alleviates obesity-induced metabolic dysfunction via enhancing fgf21 sensitivity in adipose tissues. Cell Rep. 2019, 26, 2738–2752.e2734. [Google Scholar] [CrossRef] [Green Version]
- Blanco, A.M.; Bertucci, J.I.; Unniappan, S. Fgf21 mimics a fasting-induced metabolic state and increases appetite in zebrafish. Sci. Rep. 2020, 10, 6993. [Google Scholar] [CrossRef]
- Blundell, J.E.; Gibbons, C.; Caudwell, P.; Finlayson, G.; Hopkins, M. Appetite control and energy balance: Impact of exercise. Obes. Rev. 2015, 16 (Suppl. S1), 67–76. [Google Scholar] [CrossRef] [Green Version]
- Münzberg, H.; Singh, P.; Heymsfield, S.B.; Yu, S.; Morrison, C.D. Recent advances in understanding the role of leptin in energy homeostasis. F1000Research 2020, 9, F1000 Faculty Rev-1451. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.G., Jr.; Leibel, R.L.; Seeley, R.J.; Schwartz, M.W. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol. Metab. 2010, 21, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Ranallo, R.F.; Rhodes, E.C. Lipid metabolism during exercise. Sports Med. 1998, 26, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Widmann, M.; Nieß, A.M.; Munz, B. Physical exercise and epigenetic modifications in skeletal muscle. Sports Med. 2019, 49, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.J.; Nederveen, J.P.; Snijders, T.; Bell, K.E.; Kumbhare, D.; Phillips, S.M.; Parise, G.; Heisz, J.J. Exercise training impacts skeletal muscle gene expression related to the kynurenine pathway. Am. J. Physiol. Cell Physiol. 2019, 316, C444–C448. [Google Scholar] [CrossRef]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar]
- Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of ketone body metabolism and the role of pparα. Int. J. Mol. Sci. 2016, 17, 2093. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Tsuruda, T.; Sekita-Hatakeyama, Y.; Sakamoto, S.; Kitamura, K. A high-fat diet is deleterious to mice under glycolysis restriction. Appl. Physiol. Nutr. Metab. 2018, 43, 419–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, K.M.; Anderson, B.D.; Cifelli, C.J. The effects of dairy product and dairy protein intake on inflammation: A systematic review of the literature. J. Am. Coll. Nutr. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Townsend, K.L.; Tseng, Y.-H. Brown fat fuel utilization and thermogenesis. Trends Endocrinol. Metab. 2014, 25, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Jensen, T.L.; Kiersgaard, M.K.; Sørensen, D.B.; Mikkelsen, L.F. Fasting of mice: A review. Lab. Anim. 2013, 47, 225–240. [Google Scholar] [CrossRef] [PubMed]
Tissue/Organ | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
WAT, % | 2.87 ± 0.79 be | 1.50 ± 0.61 aef | 2.25 ± 0.33 e | 1.89 ± 0.46 e | 5.09 ± 1.43 abcdf | 3.10 ± 0.92 be | *** | *** | * |
BAT, % | 0.34 ± 0.07 | 0.33 ± 0.09 | 0.38 ± 0.09 | 0.34 ± 0.10 | 0.35 ± 0.07 | 0.27 ± 0.07 | n.s. | n.s. | n.s. |
SKM, % | 0.58 ± 0.05 | 0.61 ± 0.03 | 0.60 ± 0.04 | 0.61 ± 0.06 | 0.50 ± 0.05 | 0.56 ± 0.05 | ** | *** | n.s. |
Liver, % | 3.57 ± 0.33 | 3.82 ± 0.31 | 4.19 ± 0.57 | 4.10 ± 0.21 | 3.49 ± 0.40 | 3.76 ± 0.25 | n.s. | *** | n.s. |
Kidney, % | 1.04 ± 0.11 | 1.14 ± 0.12 e | 1.00 ± 0.06 | 1.03 ± 0.05 | 0.92 ± 0.11 bf | 1.13 ± 0.11 e | *** | n.s. | * |
Index | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
MW (kg·m) | 19,641 ± 1345 bcdf | 41,378 ± 1269 acef | 12,534 ± 884 abdef | 41,211 ± 2331 acef | 16,437 ± 2510 bcdf | 47,668 ± 3931 abcde | *** | *** | *** |
Index | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
Albumin, mg/dL | 2.55 ± 0.23 | 2.44 ± 0.19 | 2.21 ± 0.16 | 2.29 ± 0.16 | 2.51 ± 0.16 | 2.33 ± 0.14 | n.s. | *** | n.s. |
BUN, mg/dL | 23.44 ± 5.02 | 25.09 ± 3.50 | 16.61 ± 2.41 | 17.48 ± 5.35 | 21.30 ± 4.11 | 21.26 ± 3.06 | n.s. | *** | n.s. |
Creatinine, mg/dL | 0.11 ± 0.03 | 0.12 ± 0.02 | 0.11 ± 0.04 | 0.11 ± 0.05 | 0.09 ± 0.02 | 0.09 ± 0.02 | n.s. | n.s. | n.s. |
Glucose, mg/dL | 201.38 ± 58.67 e | 212.25 ± 33.78 e | 179.63 ± 37.35 e | 195.00 ± 39.70 e | 292.88 ± 45.75 abcdf | 216.75 ± 46.08 e | n.s. | *** | ** |
T-CHO, mg/dL | 100.88 ± 10.13 | 93.38 ± 8.40 | 110.63 ± 23.70 | 113.25 ± 7.65 | 133.88 ± 22.56 | 116.25 ± 13.58 | n.s. | *** | n.s. |
L-CHO, mg/dL | 13.88 ± 3.56 | 15.00 ± 4.81 | 19.88 ± 8.17 | 19.13 ± 5.54 | 21.00 ± 7.35 | 20.25 ± 3.85 | n.s. | ** | n.s. |
H-CHO, mg/dL | 76.13 ± 8.17 | 69.75 ± 6.94 | 82.13 ± 19.11 | 85.88 ± 6.98 | 103.50 ± 16.35 | 88.88 ± 13.41 | n.s. | *** | n.s. |
NEFA, µEq/L | 2.85 ± 0.31 | 2.63 ± 0.20 | 2.45 ± 0.48 | 2.63 ± 0.18 | 2.75 ± 0.34 | 2.64 ± 0.44 | n.s. | n.s. | n.s. |
TG, mg/dL | 20.63 ± 7.25 | 16.13 ± 7.85 | 12.38 ± 7.76 | 14.25 ± 6.76 | 13.71 ± 3.82 | 16.88 ± 7.16 | n.s. | n.s. | n.s. |
UA, mg/dL | 1.39 ± 0.51 | 1.39 ± 0.51 | 1.46 ± 0.65 | 1.20 ± 0.32 | 1.13 ± 0.68 | 1.09 ± 0.45 | n.s. | n.s. | n.s. |
BOHB, mmol/L | 0.40 ± 0.43 | 0.31 ± 0.36 | 0.39 ± 0.11 | 0.44 ± 0.10 | 0.33 ± 0.14 | 0.29 ± 0.13 | n.s. | n.s. | n.s. |
Index | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
Amylase, IU/L | 1756 ± 252 | 1623 ± 220 | 1635 ± 174 | 1761 ± 332 | 1989 ± 216 | 1833 ± 280 | n.s. | * | n.s. |
AST, IU/L | 81 ± 47 | 69 ± 48 | 108 ± 64 | 132 ± 106 | 76 ± 40 | 66 ± 24 | n.s. | * | n.s. |
CK, IU/L | 155 ± 130 | 136 ± 204 | 330 ± 307 | 231 ± 295 | 127 ± 96 | 113 ± 81 | n.s. | n.s. | n.s. |
LDH, IU/L | 421 ± 290 d | 881 ± 299 f | 394 ± 99 d | 1190 ± 615 acef | 407 ± 277 d | 390 ± 202 bd | ** | *** | ** |
Lipase, IU/L | 40 ± 7 | 46 ± 6 | 64 ± 11 | 63 ± 7 | 47 ± 7 | 58 ± 21 | n.s. | *** | n.s. |
Gene | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
Adiponectin (Anti-inflammation) | 1.00 ± 0.46 | 1.01 ± 0.29 | 0.79 ± 0.32 | 0.69 ± 0.42 | 0.43 ± 0.13 | 0.79 ± 0.37 | n.s. | * | n.s. |
Atgl (Fatty acid mobilization) | 1.00 ± 0.40 | 0.95 ± 0.43 | 0.77 ± 0.43 | 0.31 ± 0.18 | 0.35 ± 0.17 | 0.27 ± 0.10 | n.s. | *** | n.s. |
Cd36 (Fatty acid transportation) | 1.00 ± 0.36 | 0.90 ± 0.29 | 0.87 ± 0.28 | 0.72 ± 0.38 | 0.62 ± 0.27 | 0.71 ± 0.37 | n.s. | n.s. | n.s. |
F480 (Inflammation) | 1.00 ± 0.30 e | 0.91 ± 0.20 e | 0.96 ± 0.13 e | 0.90 ± 0.61 e | 3.91 ± 1.84 abcdf | 0.99 ± 0.36 e | *** | *** | *** |
Il-6 (Inflammation) | 1.00 ± 0.51 | 0.53 ± 0.19 | 0.36 ± 0.11 | 0.45 ± 0.32 | 0.64 ± 0.06 | 0.86 ± 0.86 | n.s. | n.s. | n.s. |
Klotho (FGF21 receptor) | 1.00 ± 0.34 | 1.05 ± 0.50 | 1.23 ± 0.63 | 1.49 ± 0.68 | 0.50 ± 0.17 | 0.68 ± 0.31 | n.s. | ** | n.s. |
Leptin (Energy metabolism) | 1.00 ± 0.61 | 0.56 ± 0.39 | 0.55 ± 0.28 | 0.58 ± 0.36 | 1.89 ± 0.92 | 1.38 ± 0.66 | n.s. | *** | n.s. |
Prdm16 (Browning of WAT) | 1.00 ± 0.29 | 0.88 ± 0.22 | 0.64 ± 0.30 | 0.54 ± 0.25 | 0.53 ± 0.11 | 1.08 ± 0.82 | n.s. | n.s. | n.s. |
Pgc1α (Browning of WAT) | 1.00 ± 0.67 | 1.27 ± 0.68 | 1.20 ± 0.30 | 0.81 ± 0.46 | 0.29 ± 0.19 | 0.60 ± 0.28 | n.s. | ** | n.s. |
Pparγ (Browning of WAT) | 1.00 ± 0.51 | 1.23 ± 0.54 | 1.07 ± 0.48 | 0.84 ± 0.48 | 0.68 ± 0.23 | 1.02 ± 0.46 | n.s. | n.s. | n.s. |
Ucp1 (Thermogenesis) | 1.00 ± 0.83 d | 0.27 ± 0.14 d | 2.94 ± 1.46 d | 10.70 ± 9.16 abcef | 0.76 ± 0.15d | 1.06 ± 1.44 d | n.s. | *** | * |
Cidea (Thermogenesis) | 1.00 ± 0.30 | 0.81 ± 0.25 | 1.32 ± 1.49 | 1.95 ± 3.09 | 0.32 ± 0.16 | 0.34 ± 0.18 | n.s. | n.s. | n.s. |
Pparα (Browning of WAT) | 1.00 ± 0.66 | 0.75 ± 0.13 | 0.79 ± 0.39 | 0.62 ± 0.31 | 0.37 ± 0.17 | 0.68 ± 0.48 | n.s. | n.s. | n.s. |
Gene | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
Cidea (Thermogenesis) | 1.00 ± 0.15 | 1.20 ± 0.07 | 1.09 ± 0.53 | 1.09 ± 0.37 | 1.49 ± 0.36 | 0.96 ± 0.19 | n.s. | n.s. | * |
Il-6 (Inflammation) | 1.00 ± 0.51 | 1.45 ± 0.55 | 1.27 ± 0.63 | 1.55 ± 1.07 | 1.20 ± 0.91 | 0.83 ± 0.47 | n.s. | n.s. | n.s. |
Prdm16 (Thermogenesis) | 1.00 ± 0.28 | 1.15 ± 0.34 | 1.33 ± 0.31 | 1.18 ± 0.36 | 1.36 ± 0.36 | 0.94 ± 0.28 | n.s. | n.s. | n.s. |
Ucp1 (Thermogenesis) | 1.00 ± 0.24 ef | 1.60 ± 0.55 e | 1.36 ± 0.45 ef | 1.85 ± 0.30 e | 3.46 ± 0.95 abcd | 2.52 ± 0.66 ac | n.s. | *** | ** |
Il-10 (Inflammation) | 1.00 ± 1.17 | 0.37 ± 0.18 | 0.18 ± 0.06 | 0.40 ± 0.19 | 0.33 ± 0.24 | 0.30 ± 0.17 | n.s. | n.s. | n.s. |
Cs (Mitochondrial respiration) | 1.00 ± 0.40 | 0.82 ± 0.25 | 0.86 ± 0.42 | 0.98 ± 0.43 | 0.77 ± 015 | 0.87 ± 0.44 | n.s. | n.s. | n.s. |
Gene | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
Acat1 (Ketone body metabolism) | 1.00 ± 0.47 | 1.05 ± 0.44 | 1.05 ± 0.44 | 0.67 ± 0.33 | 1.00 ± 0.31 | 1.04 ± 0.50 | n.s. | n.s. | n.s. |
Cd36 (Fatty acid transportation) | 1.00 ± 0.28 | 0.99 ± 0.29 | 0.65 ± 0.15 | 0.83 ± 0.37 | 0.95 ± 0.37 | 1.40 ± 0.82 | n.s. | n.s. | n.s. |
Cox4 (Mitochondrial respiration) | 1.00 ± 0.30 | 0.97 ± 0.28 | 0.68 ± 0.26 | 0.66 ± 0.27 | 0.87 ± 0.39 | 1.26 ± 0.59 | n.s. | * | n.s. |
Cs (Mitochondrial respiration) | 1.00 ± 0.23 | 1.20 ± 0.43 | 0.75 ± 0.38 | 0.76 ± 0.33 | 0.94 ± 0.42 | 1.33 ± 0.70 | n.s. | n.s. | n.s. |
Cytochrome c (Mitochondrial respiration) | 1.00 ± 0.28 | 1.13 ± 0.44 | 0.87 ± 0.34 | 0.74 ± 0.29 | 1.13 ± 0.85 | 1.44 ± 0.69 | n.s. | n.s. | n.s. |
Gp (Glycogen phosphatase) | 1.00 ± 0.25 | 1.21 ± 0.69 | 1.28 ± 0.34 | 0.31 ± 0.14 | 0.83 ± 0.32 | 1.13 ± 0.80 | n.s. | n.s. | * |
Gs (Glycogen synthase) | 1.00 ± 0.40 | 0.84 ± 0.40 | 1.03 ± 0.37 | 0.98 ± 0.51 | 0.44 ± 0.16 | 0.79 ± 0.62 | n.s. | n.s. | n.s. |
Hadh (Fatty acid oxidation) | 1.00 ± 0.27 | 0.96 ± 0.37 | 0.80 ± 0.41 | 0.64 ± 0.22 | 1.16 ± 0.64 | 1.28 ± 0.56 | n.s. | * | n.s. |
Hbdh (Ketone body metabolism) | 1.00 ± 0.45 | 0.95 ± 0.44 | 0.44 ± 0.30 | 0.62 ± 0.33 | 1.04 ± 0.48 | 1.53 ± 0.67 | n.s. | ** | n.s. |
Mct1 (Ketone body transportation) | 1.00 ± 0.22 | 0.93 ± 0.43 | 0.98 ± 0.54 | 0.62 ± 0.22 | 1.83 ± 0.94 | 1.53 ± 0.54 | n.s. | ** | n.s. |
Oxct1 (Ketone body metabolism) | 1.00 ± 1.10 | 0.53 ± 0.30 | 0.33 ± 0.30 | 0.37 ± 0.31 | 0.61 ± 0.27 | 0.57 ± 0.24 | n.s. | n.s. | n.s. |
Sirt1 (Mitochondrial respiration) | 1.00 ± 0.39 | 0.79 ± 0.18 | 1.11 ± 0.30 | 0.82 ± 0.28 | 0.78 ± 0.20 | 0.63 ± 0.09 | * | n.s. | n.s. |
Tfam (Mitochondrial respiration) | 1.00 ± 0.26 | 1.09 ± 0.42 | 0.96 ± 0.34 | 0.70 ± 0.22 | 1.18 ± 0.39 | 1.33 ± 0.69 | n.s. | n.s. | n.s. |
Pparγ (Glucose metabolism) | 1.00 ± 0.25 | 1.11 ± 0.51 | 1.31 ± 1.13 | 0.76 ± 0.31 | 1.36 ± 0.66 | 1.35 ± 0.70 | n.s. | n.s. | n.s. |
Gene | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
Acat1 (Ketone body metabolism) | 1.00 ± 0.35 | 0.51 ± 0.16 | 0.79 ± 0.19 | 0.53 ± 0.19 | 1.69 ± 0.74 | 2.32 ± 1.31 | n.s. | *** | n.s. |
Cox4 (Mitochondrial respiration) | 1.00 ± 0.35 | 1.48 ± 0.20 | 0.96 ± 0.40 | 1.20 ± 0.46 | 1.71 ± 0.24 | 2.63 ± 1.00 | * | *** | n.s. |
Cpt1α (Fatty acid oxidation) | 1.00 ± 0.33 | 0.62 ± 0.17 | 1.05 ± 0.51 | 0.84 ± 0.31 | 3.17 ± 1.06 | 2.76 ± 1.22 | n.s. | *** | n.s. |
Hbdh (Ketone body metabolism) | 1.00 ± 0.51 | 0.70 ± 0.25 | 0.56 ± 0.12 | 0.48 ± 0.15 | 1.47 ± 0.57 | 1.79 ± 0.92 | n.s. | ** | n.s. |
Hk2 (Glycolysis) | 1.00 ± 0.42 | 1.09 ± 0.13 | 0.70 ± 0.28 | 0.85 ± 0.37 | 2.11 ± 0.77 | 2.21 ± 1.04 | n.s. | *** | n.s. |
Il-6 (Fatty acid oxidation) | 1.00 ± 0.57 | 1.05 ± 0.57 | 0.70 ± 0.51 | 0.80 ± 0.40 | 1.62 ± 1.10 | 1.37 ± 1.09 | n.s. | n.s. | n.s. |
Mcad (Fatty acid oxidation) | 1.00 ± 0.64 | 0.55 ± 0.31 | 0.46 ± 0.54 | 0.81 ± 0.20 | 2.75 ± 2.88 | 3.49 ± 2.37 | n.s. | ** | n.s. |
Mct1 (Ketone body transportation) | 1.00 ± 0.85 | 1.32 ± 0.52 | 1.92 ± 1.13 | 1.50 ± 0.66 | 5.51 ± 3.11 | 5.25 ± 1.69 | n.s. | *** | n.s. |
Tfam (Mitochondrial respiration) | 1.00 ± 0.53 | 0.83 ± 0.26 | 0.88 ± 0.31 | 1.01 ± 0.26 | 1.40 ± 0.43 | 1.94 ± 0.85 | n.s. | ** | n.s. |
Pparγ (Glucose metabolism) | 1.00 ± 0.50 | 0.33 ± 0.10 | 0.77 ± 0.47 | 0.50 ± 0.26 | 1.72 ± 0.62 | 2.23 ± 1.33 | n.s. | *** | n.s. |
Pgc1α (Fatty acid mobilization) | 1.00 ± 0.47 | 0.40 ± 0.09 f | 0.55 ± 0.48 f | 0.44 ± 0.23 f | 1.07 ± 0.35 | 1.79 ± 0.78 bcd | n.s. | *** | * |
Il-10 (Inflammation) | 1.00 ± 0.93 | 0.42 ± 0.34 | 0.26 ± 0.28 | 0.27 ± 0.16 | 2.06 ± 2.24 | 4.17 ± 5.68 | n.s. | * | n.s. |
Pepck (Glycolysis) | 1.00 ± 0.79 | 2.31 ± 2.02 | 6.74 ± 6.59 | 5.35 ± 6.05 | 3.39 ± 0.91 | 3.53 ± 1.67 | n.s. | n.s. | n.s. |
Acc2 (Fatty acid synthesis) | 1.00 ± 0.23 | 0.61 ± 0.21 | 0.43 ± 0.14 | 0.77 ± 0.43 | 1.46 ± 0.57 | 1.62 ± 0.82 | n.s. | *** | n.s. |
Gene | Con Groups | LPHF Groups | HPHF Groups | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Con | Con+T | LPHF | LPHF+T | HPHF | HPHF+T | Training | Feed | Interaction | |
F480 (Inflammation) | 1.00 ± 0.26 | 0.95 ± 0.23 | 1.30 ± 0.76 | 0.72 ± 0.35 | 0.79 ± 0.29 | 0.72 ± 0.19 | n.s. | n.s. | n.s. |
Hmgcs2 (Ketogenesis) | 1.00 ± 0.56 | 0.65 ± 0.59 | 3.71 ± 2.30 | 2.73 ± 0.78 | 1.33 ± 0.99 | 1.26 ± 0.50 | n.s. | *** | n.s. |
Il-6 (Inflammation) | 1.00 ± 0.57 | 0.70 ± 0.22 | 2.32 ± 3.37 | 0.31 ± 0.19 | 0.65 ± 0.41 | 0.92 ± 1.18 | n.s. | n.s. | n.s. |
Pparγ (Glucose metabolism) | 1.00 ± 0.44 | 0.55 ± 0.13 | 1.10 ± 0.45 | 0.98 ± 0.26 | 1.06 ± 0.45 | 1.34 ± 0.60 | n.s. | * | n.s. |
Cxcl2 (Inflammation) | 1.00 ± 0.47 | 1.07 ± 1.08 | 0.55 ± 0.32 | 0.42 ± 0.31 | 0.51 ± 0.52 | 1.12 ± 0.92 | n.s. | n.s. | n.s. |
Atgl (Fatty acid mobilization) | 1.00 ± 0.41 | 0.89 ± 0.60 | 0.81 ± 0.48 | 0.32 ± 0.15 | 0.34 ± 0.17 | 0.46 ± 0.34 | n.s. | ** | n.s. |
Fgf21 (Energy metabolism) | 1.00 ± 1.11 | 0.57 ± 0.70 | 5.06 ± 3.88 | 3.75 ± 3.43 | 0.65 ± 0.33 | 1.15 ± 0.97 | n.s. | *** | n.s. |
Klotho (FGF21 receptor) | 1.00 ± 0.17 | 0.86 ± 0.24 | 0.85 ± 0.20 | 0.86 ± 0.30 | 0.60 ± 0.16 | 0.70 ± 0.18 | n.s. | ** | n.s. |
Pparα (Fatty acid oxidation) | 1.00 ± 0.42 | 0.55 ± 0.27 | 0.32 ± 0.16 | 0.39 ± 0.08 | 0.81 ± 0.38 | 0.89 ± 0.69 | n.s. | *** | n.s. |
Pgc1α (Fatty acid mobilization) | 1.00 ± 0.22 | 1.65 ± 1.26 | 0.66 ± 0.22 | 0.43 ± 0.09 | 0.36 ± 0.09 | 0.58 ± 0.74 | n.s. | *** | n.s. |
Component | Con | LPHF | HPHF |
---|---|---|---|
Protein (%) | 14.2 | 4.8 | 14.2 |
Fat (%) | 10.1 | 60.0 | 60.0 |
-Corn oil | 10.1 | 8.7 | 8.7 |
-Lard | 0.0 | 36.1 | 36.1 |
-Cream | 0.0 | 15.2 | 15.2 |
Carbohydrate (%) | 75.7 | 35.1 | 25.8 |
Kcal/g | 3.6 | 5.5 | 5.3 |
Gene | Forward | Reverse |
---|---|---|
18s | CGGCTACCACATCCAAGGA | AGCTGGAATTACCGCGGC |
Gp | TGGCAGAAGTGGTGAACAATGAC | CCGTGGAGATCTGCTCCGATA |
Adiponectin | AGAGTCGTTGACGTTATCTGCATA | GGGCTCTGTGCTGCTCCATCT |
Gs | ACTGCTTGGGCGTTATCTCTGTG | ATGCCCGCTCCATGCGTA |
Atgl | GAGCCCCGGGGTGGAACAAGAT | AAAAGGTGGTGGGCAGGAGTAAGG |
Hadh | ACTACATCAAAATGGGCTCTCAG | AGCAGAAATGGAATGCGGACC |
Cd36 | TGGCCTTACTTGGGATTGG | CCAGTGTATATGTAGGCTCATCCA |
Hbdh | AGTTTGGGGTCGAGGCTTTC | TGGTGGCCGCTATGAAGTTG |
F480 | CTTTGGCTATGGGCTTCCAGTC | GCAAGGAGGACAGAGTTTATCGTG |
Mct1 | GCCTGAGCAAGTCAAGCTAG | TCAGACCTCGGATCCAGTAC |
Il-6 | AACGATGATGCACTTGCAGA | TGGTACTCCAGAAGACCAGAGG |
Oxct1 | CCAAGGAAGTAAATGAAGATCTCCTA | ACGTGTATGTTACAAGAAATGGCTTACC |
Klotho | TGTTCTGCTGCGAGCTGTTAC | TACCGGACTCACGTACTGTTT |
Tfam | TTCCCAAGACTTCATTTCATTGTC | GATGATTCGGCTCAGGGAAA |
Leptin | GCTTTGGTCCTATCTGTCTTATGTT | CAATGGTCTTGATGAGGGTTTT |
Cpt1α | CCAGGCTACAGTGGGACATT | GAACTTGCCCATGTCCTTGT |
Prdm16 | CCACCAGCGAGGACTTCA | GGAGGACTCTCGTAGCTCGAA |
Mcad | GCTCGTGAGCACATTGAAAA | CATTGTCCAAAAGCCAAACC |
Pgc1α | GACTGGAGGAAGACTAAACGGCCA | GCCAGTCACAGGAGGCATCTTT |
Cxcl2 | CCAACCACCAGGCTACAGG | GCGTCACACTCAAGCTCTG |
Pparγ | CCACCAGCGAGGACTTCAC | GGAGGACTCTCGTAGCTCGAA |
Ucp1 | TGGTTGGTTTTATTCGTGGT | AGGGTTTGTGGCTTCTTTTC |
Cidea | TCCTCGGCTGTCTCAATG | GGCTGCTCTTCTGTATCG |
Fgf21 | CAAGACACTGAAGCCCACCT | CACCCAGGATTTGAATGACC |
Pparα | GAACCGGAACAAATGCCAGT | CTTCAGGTAGGCTTCGTGGA |
Il-10 | GCTCTTACTGACTGGCATGAG | CGCAGCTCTAGGAGCATGTG |
Sirt1 | GCAACAGCATCTTGCCTGAT | GTGCTACTGGTCTCACTT |
Cs | GCAGCCAAGAACTCATCCTG | TCTGGGCCTGCTCCTTAGGTA |
Acat1 | CCGAGACAACTACCCAAGGA | CACACACAGGACCAGGACAC |
Cox4 | TGGGAGTGTTGTGAAGAGTGA | GCAGTGAAGCCGATGAAGAAC |
Cytochrome c | CACGCTTTACCCTTCGTTCT | CTCATTTCCCTGCCATTCTC |
Hk2 | CTGTCTACAAGAAACATCCCCATTT | CACCGCCGTCACCATAGC |
Pepck | ACAGTCATCATCACCCAAGAGC | CATAGGGCGAGTCTGTCAGTTC |
Acc2 | GACGCCCGAGGATCTGAAG | GGGACAGGGACGTACTGATC |
Hmgcs2 | AACTGGTGCAGAAATCTCTAGC | GGTTGAATAGCTCAGAACTAGCC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rang, Y.; Ma, S.; Yang, J.; Liu, H.; Suzuki, K.; Liu, C. A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice. Metabolites 2021, 11, 301. https://doi.org/10.3390/metabo11050301
Rang Y, Ma S, Yang J, Liu H, Suzuki K, Liu C. A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice. Metabolites. 2021; 11(5):301. https://doi.org/10.3390/metabo11050301
Chicago/Turabian StyleRang, Yifeng, Sihui Ma, Jiao Yang, Huan Liu, Katsuhiko Suzuki, and Chunhong Liu. 2021. "A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice" Metabolites 11, no. 5: 301. https://doi.org/10.3390/metabo11050301
APA StyleRang, Y., Ma, S., Yang, J., Liu, H., Suzuki, K., & Liu, C. (2021). A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice. Metabolites, 11(5), 301. https://doi.org/10.3390/metabo11050301