Rapid Discrimination and Authentication of Korean Farmstead Mozzarella Cheese through MALDI-TOF and Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectra of Mozzarella Cheese Samples
2.2. Discrimination of Cheese Samples from Farm and Import
2.3. Discrimination of Cheese Samples from Company and Farmstead
2.4. Discrimination of Cheese Samples from Company and Import
2.5. Potential Marker Proteins in Discrimination of Cheeses
3. Materials and Methods
3.1. Sample Collection
3.2. Sample Preparation
3.3. Mass Spectrometry
3.4. Data Acquisition and Processing
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hrković-Porobija, A.; Hodžić, A.; Hadžimusić, N.; Pašić-Juhas, E.; Rustempašić, A.; Božić, I. 73. Food labelling: Giving food information to consumers. In Professionals in Food Chains; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; pp. 467–469. [Google Scholar]
- Barron, L.J.R.; Aldai, N.; Virto, M.; de Renobales, M. Cheeses with protected land- and tradition-related labels: Traceability and authentication. Glob. Cheesemaking Technol. Cheese Qual. Charact. 2017, 100–119. [Google Scholar] [CrossRef]
- Danezis, G.P. An update on dairy products authenticity—Scientometric evaluation and prospects. Int. J. Innov. Sci. Eng. Technol. 2018, 5, 21–25. [Google Scholar]
- Hassoun, A.; Måge, I.; Schmidt, W.F.; Temiz, H.T.; Li, L.; Kim, H.Y.; Nilsen, H.; Biancolillo, A.; Aït-Kaddour, A.; Sikorski, M.; et al. Fraud in animal origin food products: Advances in emerging spectroscopic detection methods over the past five years. Foods 2020, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; De Ceglie, C.; Monopoli, A.; Zambonin, C.G. Detection of sheep and goat milk adulterations by direct MALDI-TOF MS analysis of milk tryptic digests. J. Mass Spectrom. 2012, 47, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Arena, S.; Salzano, A.M.; Scaloni, A. Identification of protein markers for the occurrence of defrosted material in milk through a MALDI-TOF-MS profiling approach. J. Proteom. 2016, 147, 56–65. [Google Scholar] [CrossRef]
- Cozzolino, R.; Passalacqua, S.; Salemi, S.; Garozzo, D. Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 2002, 37, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Kuckova, S.; Zitkova, K.; Novotny, O.; Smirnova, T. Verification of cheeses authenticity by mass spectrometry. J. Sep. Sci. 2019, 42, 3487–3496. [Google Scholar] [CrossRef]
- Guarino, C.; Fuselli, F.; La Mantia, A.; Longo, L.; Faberi, A.; Marianella, R.M. Peptidomic approach, based on liquid chromatography/electrospray ionization tandem mass spectrometry, for detecting sheep’s milk in goat’s and cow’s cheeses. Rapid Commun. Mass Spectrom. 2010, 24, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulou, M.; Petrou, P.S.; Raptis, I.; Misiakos, K.; Livaniou, E.; Makarona, E.; Kakabakos, S. Rapid detection of mozzarella and feta cheese adulteration with cow milk through a silicon photonic immunosensor. Analyst 2021, 146, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Larrabee, L.; Chun, H.R.; Specialist, M. Korea-Republic of Dairy and Products Annual 2018 Dairy and Products; USDA Foreign Agricultural Service: Washington, DC, USA, 2018; USDA Gain Reports. GAIN Report Number: KS1839.
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.H.; Ham, J.S. 1H HRMAS-NMR based metabolic fingerprints for discrimination of cheeses based on sensory qualities. Saudi J. Biol. Sci. 2020, 27, 1446–1461. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.-H.; Ham, J.-S. Quantitative analysis of biogenic amines in different cheese varieties obtained from the korean domestic and retail markets. Metabolites 2021, 1, 31. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, N.; Xu, Y.; Goodacre, R. MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Anal. Bioanal. Chem. 2011, 399, 3491–3502. [Google Scholar] [CrossRef] [PubMed]
- Sassi, M.; Arena, S.; Scaloni, A. MALDI-TOF-MS Platform for integrated proteomic and peptidomic profiling of milk samples allows rapid detection of food adulterations. J. Agric. Food Chem. 2015, 63, 6157–6171. [Google Scholar] [CrossRef]
- Pavlovic, M.; Mewes, A.; Maggipinto, M.; Schmidt, W.; Messelhäußer, U.; Balsliemke, J.; Hörmansdorfer, S.; Busch, U.; Huber, I. MALDI-TOF MS based identification of food-borne yeast isolates. J. Microbiol. Methods 2014, 106, 123–128. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, T.; Wei, L.; Yang, X.; Wang, C.; Zhang, X.; Xu, D.; Chen, Z.; Yang, F.; Li, J.C. The discovery and identification of a candidate proteomic biomarker of active tuberculosis. BMC Infect. Dis. 2013, 13, 506. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.R.; Kim, S.H.; Lee, H.W.; Ha, J.H. A novel method to rapidly distinguish the geographical origin of traditional fermented-salted vegetables by mass fingerprinting. PLoS ONE 2017, 12, e0188217. [Google Scholar] [CrossRef] [Green Version]
- Chambery, A.; del Monaco, G.; Di Maro, A.; Parente, A. Peptide fingerprint of high quality Campania white wines by MALDI-TOF mass spectrometry. Food Chem. 2009, 113, 1283–1289. [Google Scholar] [CrossRef]
- Wang, J.; Kliks, M.M.; Qu, W.; Jun, S.; Shi, G.; Li, Q.X. Rapid determination of the geographical origin of honey based on protein fingerprinting and barcoding using MALDI TOF MS. J. Agric. Food Chem. 2009, 57, 10081–10088. [Google Scholar] [CrossRef] [PubMed]
- El Karkouri, K.; Couderc, C.; Decloquement, P.; Abeille, A.; Raoult, D. Rapid MALDI-TOF MS identification of commercial truffles. Sci. Rep. 2019, 9, 17686. [Google Scholar] [CrossRef]
- Cao, G.; Hong, Y.; Wu, H.; Chen, Z.; Lu, M.; Cai, Z. Visual authentication of edible vegetable oil and used cooking oil using MALDI imaging mass spectrometry. Food Control 2021, 125, 107966. [Google Scholar] [CrossRef]
- Flaudrops, C.; Armstrong, N.; Raoult, D.; Chabrière, E. Determination of the animal origin of meat and gelatin by MALDI-TOF-MS. J. Food Compos. Anal. 2015, 41, 104–112. [Google Scholar] [CrossRef]
- Caira, S.; Pinto, G.; Nicolai, M.A.; Chianese, L.; Addeo, F. Simultaneously tracing the geographical origin and presence of bovine milk in Italian water buffalo Mozzarella cheese using MALDI-TOF data of casein signature peptides. Anal. Bioanal. Chem. 2016, 408, 5609–5621. [Google Scholar] [CrossRef] [PubMed]
- Galli, B.D.; Baptista, D.P.; Cavalheiro, F.G.; Negrão, F.; Eberlin, M.N.; Gigante, M.L. Peptide profile of Camembert-type cheese: Effect of heat treatment and adjunct culture Lactobacillus rhamnosus GG. Food Res. Int. 2019, 123, 393–402. [Google Scholar] [CrossRef]
- Rau, J.; Korte, N.; Dyk, M.; Wenninger, O.; Schreiter, P.; Hiller, E. Rapid animal species identification of feta and mozzarella cheese using MALDI-TOF mass-spectrometry. Food Control 2020, 117, 107349. [Google Scholar] [CrossRef]
- Lignitto, L.; Segato, S.; Balzan, S.; Cavatorta, V.; Oulahal, N.; Sforza, S.; Degraeve, P.; Galaverna, G.; Novelli, E. Preliminary investigation on the presence of peptides inhibiting the growth of Listeria innocua and Listeria monocytogenes in Asiago d’Allevo cheese. Dairy Sci. Technol. 2012, 92, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Baum, F.; Fedorova, M.; Ebner, J.; Hoffmann, R.; Pischetsrieder, M. Analysis of the endogenous peptide profile of milk: Identification of 248 mainly casein-derived peptides. J. Proteome Res. 2013, 12, 5447–5462. [Google Scholar] [CrossRef]
- Baptista, D.P.; Galli, B.D.; Cavalheiro, F.G.; Negrão, F.; Eberlin, M.N.; Gigante, M.L. Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. Int. Dairy J. 2018, 87, 75–83. [Google Scholar] [CrossRef]
- Giacometti Cavalheiro, F.; Parra Baptista, D.; Domingues Galli, B.; Negrão, F.; Nogueira Eberlin, M.; Lúcia Gigante, M. High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity. Food Chem. 2020, 333, 127482. [Google Scholar] [CrossRef]
- da Silva, D.D.; dos Santos Falcão deLima, M.; da Silva, M.F.; da Silva, G.R.; Campos, J.F.; Albuquerque, W.W.C.; Cavalcanti, M.T.H.; Porto, A.L.F. Bioactive water-soluble peptides from fresh buffalo cheese may be used as product markers. LWT 2019, 108, 97–105. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinforma 2019, 68, e86. [Google Scholar] [CrossRef]
- Feeney, E.P.; Guinee, T.P.; Fox, P.F. Effect of pH and calcium concentration on proteolysis in Mozzarella cheese. J. Dairy Sci. 2002, 85, 1646–1654. [Google Scholar] [CrossRef]
- Mauriello, G.; Moio, L.; Genovese, A.; Ercolini, D. Relationships between flavoring capabilities, bacterial composition, and geographical origin of natural whey cultures used for traditional water-buffalo mozzarella cheese manufacture. J. Dairy Sci. 2003, 86, 486–497. [Google Scholar] [CrossRef]
- Ercolini, D.; Frisso, G.; Mauriello, G.; Salvatore, F.; Coppola, S. Microbial diversity in Natural Whey Cultures used for the production of Caciocavallo Silano PDO cheese. Int. J. Food Microbiol. 2008, 124, 164–170. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, Y.; Qi, Y.; Wang, F.; Yan, J.; Zou, H. Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion. J. Proteom. 2016, 141, 24–46. [Google Scholar] [CrossRef]
- Su, R.; Liang, M.; Qi, W.; Liu, R.; Yuan, S.; He, Z. Pancreatic hydrolysis of bovine casein: Peptide release and time-dependent reaction behavior. Food Chem. 2012, 133, 851–858. [Google Scholar] [CrossRef]
- Baum, F.; Ebner, J.; Pischetsrieder, M. Identification of multiphosphorylated peptides in milk. J. Agric. Food Chem. 2013, 61, 9110–9117. [Google Scholar] [CrossRef]
- Grimaldi, G.; Nocerino, R.; Paparo, L.; Cosenza, L.; Aitoro, R.; Trinchese, G.; Amoroso, A.; Canani, R.B. The potential immunonutritional role of parmigiano reggiano cheese in children with food allergy. Prog. Nutr. 2016, 18, 3–7. [Google Scholar]
- Sforza, S.; Cavatorta, V.; Lambertini, F.; Galaverna, G.; Dossena, A.; Marchelli, R. Cheese peptidomics: A detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J. Dairy Sci. 2012, 95, 3514–3526. [Google Scholar] [CrossRef] [Green Version]
- Ham, J.S.; Han, G.S.; Jeong, S.G.; Seol, K.H.; Jang, A.R.; Oh, M.H.; Kim, D.H.; Park, Y.W. Determination of molecular weights of caprine milk proteins by matrix-assisted laser desorption/ionization mass spectrometry. J. Dairy Sci. 2012, 95, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Holman, J.D.; Tabb, D.L.; Mallick, P. Employing ProteoWizard to convert raw mass spectrometry data. Curr. Protoc. Bioinforma 2014, 46, 13.24.1–13.24.9. [Google Scholar] [CrossRef]
- López-Fernández, H.; Santos, H.M.; Capelo, J.L.; Fdez-Riverola, F.; Glez-Peña, D.; Reboiro-Jato, M. Mass-Up: An all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinform. 2015, 16, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
m/z | Average of Peak Intensities (Arbitrary Units) | Anova p-Value a | FDR a | Tukey’s HSD Test b | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Farm (n = 24) | Company (n = 9) | Import (n = 10) | Farm/Import | Farm/Company | Company/Import | ||||||
Mean | SD | Mean | SD | Mean | SD | ||||||
1231.80 | 8.24 | 4.68 | 2.57 | 2.81 | 0.67 | 0.72 | 5.2 × 10−9 | 8.9 × 10−8 | (****) | (****) | ns |
1628.63 | 5.08 | 3.21 | 1.70 | 2.17 | 2.36 | 3.40 | 1.2 × 10−3 | 2.8 × 10−3 | (*) | (**) | ns |
1869.42 | 50.07 | 30.80 | 22.47 | 31.83 | 10.55 | 20.41 | 2.6 × 10−5 | 1.5 × 10−4 | (****) | (*) | ns |
2244.32 | 14.36 | 6.43 | 7.51 | 8.19 | 11.63 | 27.30 | 6.9 × 10−5 | 3.3 × 10−4 | (****) | (*) | ns |
3715.46 | 0.67 | 1.30 | 1.22 | 1.65 | 5.98 | 13.34 | 1.2 × 10−2 | 2.5 × 10−2 | (**) | ns | ns |
3976.18 | 0.44 | 0.00 | 4.86 | 4.80 | 4.50 | 2.52 | 1.4 × 10−8 | 1.6 × 10−7 | (***) | (***) | ns |
4025.02 | 7.59 | 7.30 | 1.23 | 2.16 | 0.35 | 0.00 | 2.1 × 10−7 | 1.8 × 10−6 | (****) | (****) | ns |
4232.10 | 0.30 | 0.00 | 1.41 | 1.25 | 0.62 | 0.68 | 1.7 × 10−4 | 6.5 × 10−4 | ns | (***) | (*) |
4479.91 | 0.99 | 1.44 | 2.51 | 2.14 | 3.17 | 1.74 | 3.6 × 10−4 | 1.1 × 10−3 | (***) | ns | ns |
4693.16 | 7.74 | 5.01 | 2.76 | 1.89 | 1.33 | 1.54 | 2.2 × 10−4 | 7.4 × 10−4 | (***) | ns | ns |
4909.33 | 10.52 | 5.48 | 2.75 | 2.24 | 1.74 | 1.33 | 8.2 × 10−7 | 5.6 × 10−6 | (****) | (****) | ns |
7049.74 | 0.36 | 0.37 | 1.22 | 1.98 | 1.36 | 1.30 | 2.4 × 10−2 | 4.8 × 10−2 | (*) | ns | ns |
7407.80 | 1.37 | 1.54 | 0.15 | 0.00 | 0.15 | 0.11 | 1.6 × 10−4 | 6.5 × 10−4 | (**) | (**) | ns |
10,115.31 | 1.16 | 1.27 | 0.29 | 0.49 | 0.13 | 0.00 | 1.1 × 10−3 | 2.7 × 10−3 | (**) | (*) | ns |
10,426.62 | 1.82 | 0.76 | 0.36 | 0.51 | 0.54 | 0.68 | 3.5 × 10−9 | 8.9 × 10−8 | (****) | (****) | ns |
11,416.56 | 2.94 | 3.70 | 0.32 | 0.11 | 0.32 | 0.00 | 6.0 × 10−4 | 1.7 × 10−3 | (**) | (**) | ns |
14,092.60 | 0.29 | 0.32 | 0.78 | 0.55 | 0.63 | 0.45 | 9.7 × 10−3 | 2.2 × 10−2 | ns | (*) | ns |
m/z | Farmstead/Import | m/z | Company/Farmstead | m/z | Company/Import | |||
---|---|---|---|---|---|---|---|---|
p | FC | p | FC | p | FC | |||
3976.2 | 7.91 × 10−12 | −3.22 | 10,427.6 | 7.75 × 10−9 | −2.66 | 1470.8 | 0.0128 | −1.96 |
1869.6 | 2.60 × 10−8 | 2.03 | 4233.6 | 3.87 × 10−6 | 2.34 | 4692.5 | 0.0411 | 1.05 |
1231.8 | 1.44 × 10−7 | 2.64 | 3975.2 | 7.21 × 10−6 | 2.65 | 5905.4 | 0.0795 | −1.29 |
4909.4 | 3.10 × 10−7 | 2.11 | 1869.2 | 1.79 × 10−5 | −1.18 | |||
4479.9 | 1.17 × 10−6 | −2.69 | 12,255.5 | 4.43 × 10−5 | 1.83 | |||
10,426.6 | 1.65 × 10−6 | 1.76 | 4909.2 | 0.0001 | −1.37 | |||
4024.7 | 2.15 × 10−6 | 3.25 | 14,093.8 | 0.0012 | 1.76 | |||
12,255.2 | 7.19 × 10−6 | −1.77 | 3470.0 | 0.0027 | 2.30 | |||
7049.7 | 0.0013 | −2.25 | 9443.9 | 0.0041 | 1.47 | |||
3715.6 | 0.0019 | −2.30 | 10,870.2 | 0.0047 | 1.41 | |||
10,115.3 | 0.0019 | 2.88 | 4479.9 | 0.0052 | 1.78 | |||
14,092.6 | 0.0027 | −2.11 | 6127.2 | 0.0064 | 1.60 | |||
3470.1 | 0.0033 | −1.97 | 7407.8 | 0.0089 | −2.55 | |||
4693.8 | 0.0034 | 1.82 | 1231.8 | 0.0115 | −1.03 | |||
7407.8 | 0.0044 | 2.65 | 11,416.6 | 0.0156 | −1.99 | |||
11,416.6 | 0.0065 | 2.87 | 10,115.3 | 0.0243 | −1.80 | |||
9443.9 | 0.0094 | −1.84 | 11,073.6 | 0.0848 | −1.32 | |||
10,871.5 | 0.0108 | −2.03 | 8632.6 | 0.0883 | 1.44 | |||
7998.9 | 0.0186 | −1.59 | ||||||
1470.8 | 0.0466 | −1.35 | ||||||
11,812.4 | 0.0655 | −1.97 |
Predicted m/z | Theoretical m/z | Farmstead | Company | Import | Suggested Peptide | References |
---|---|---|---|---|---|---|
1101.5 | 1102.5 | + | + | - | as1-CNf(165–173) | [28] |
β-CNf (178–186) | [36] | |||||
1231.8 | 1231.6 | + | + | - | β-CNf (123–133) | [36] |
1232.6 | as2-CNf(88–96 | |||||
3976.2 | 3975.1 | - | + | + | κ-CNf(43–76) | [36] |
3975.8 | β-CNf(1–32) | [37,38] | ||||
4024.7 | 4024 | + | + | - | ß-CNf(59–96) | [27,39] |
4025 | ß-CNf(57–93) | [40] | ||||
4233.6 | 4235 | - | + | + | as1-CNf(1–36) | [27,28] |
4237 | as1-CNf(80–114) | [40] | ||||
7407.8 * | - | + | - | - | - | - |
11,416.6 * | - | + | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Ham, J.-S. Rapid Discrimination and Authentication of Korean Farmstead Mozzarella Cheese through MALDI-TOF and Multivariate Statistical Analysis. Metabolites 2021, 11, 333. https://doi.org/10.3390/metabo11060333
Kandasamy S, Yoo J, Yun J, Kang H-B, Seol K-H, Ham J-S. Rapid Discrimination and Authentication of Korean Farmstead Mozzarella Cheese through MALDI-TOF and Multivariate Statistical Analysis. Metabolites. 2021; 11(6):333. https://doi.org/10.3390/metabo11060333
Chicago/Turabian StyleKandasamy, Sujatha, Jayeon Yoo, Jeonghee Yun, Han-Byul Kang, Kuk-Hwan Seol, and Jun-Sang Ham. 2021. "Rapid Discrimination and Authentication of Korean Farmstead Mozzarella Cheese through MALDI-TOF and Multivariate Statistical Analysis" Metabolites 11, no. 6: 333. https://doi.org/10.3390/metabo11060333
APA StyleKandasamy, S., Yoo, J., Yun, J., Kang, H. -B., Seol, K. -H., & Ham, J. -S. (2021). Rapid Discrimination and Authentication of Korean Farmstead Mozzarella Cheese through MALDI-TOF and Multivariate Statistical Analysis. Metabolites, 11(6), 333. https://doi.org/10.3390/metabo11060333