Exploring the Glucose Fluxotype of the E. coli y-ome Using High-Resolution Fluxomics
Abstract
:1. Introduction
2. Results
2.1. Selection of E. coli y-ome Strains
- (i)
- We first considered all genes with a single-deletion mutant in the Keio mutant library [9]. This library contained single-gene deletion mutants able to grow on glucose, meaning the mutated genes are not essential for growth on glucose as sole carbon source. The Keio collection contains 3985 mutants.
- (ii)
- We, then, selected the genes in the Keio collection lacking evidence of function. This represented a total of 1563 y-genes
- (iii)
- We verified that each y-gene was duly expressed and translated during growth on glucose as the sole carbon source. This selection step was based on the extensive proteomic investigation performed by Schmidt et al., in 2016 [25]. These authors measured the functional expression of 55% E. coli genes (>2300 genes) by quantitative proteomics in 22 experimental conditions, including growth in minimal medium with glucose as carbon source. Among the y-genes identified in step 2, we further selected the 218 y-genes that were experimentally shown to be translated under these conditions.
- (iv)
- The y-gene status-i.e., the lack of annotation or of experimental evidence of function-was manually verified in two complementary databases, namely Biocyc (https://biocyc.org (accessed on 12 April 2019)) and Uniprot (https://www.uniprot.org (accessed on 12 April 2019)).
2.2. Integrated Workflow for High-Throughput Collection of High-Resolution Fluxotypes
2.3. Design of Fluxomics Experiments
2.4. High-Resolution Fluxotyping Workflow Validation
2.5. High-Resolution Glucose Fluxotyping of 180 Selected Y-Gene Mutant Strains
2.6. Glucose Fluxotypes of ΔybjP and ΔydcS Strains
2.7. Cofactor Usage in the ΔybjP and ΔydcS Strains
2.8. Scope and Quality of High-Throughput Fuxomics Investigations
- (i)
- fluxome resolution, which corresponds to the total number of fluxes that can be calculated from the experimental dataset, and is a measure of the coverage of the flux space in the investigated metabolic network. This resolution is generally low (e.g., 23) in high-throughput studies, and high (71–84) in low-throughput ones (Table 1). In this work, we were able to measure 94 fluxes per measured fluxotype, which is the highest fluxome resolution value among all 13C-fluxomics studies reported in Table 1.
- (ii)
- isotopic resolutive power of the flux map, defined as the ratio between the number of isotopic data and the number of fluxes calculated in the network. This index is assumed to reflect data redundancy in the flux estimates, hence, higher precision in the calculated flux values. Low-throughput investigations of the E. coli fluxome have isotopic resolutive power in the range of 1 to 8 (Table 1), though very high isotopic resolutive power (up to 17.6), has been obtained by performing multiple (e.g., parallel) labelling experiments to calculate a single flux map [38,39,40,41]. In the present work, the isotopic resolutive power of the flux maps was 1.13 (106 isotopic data for 94 fluxes), which is comparable to the values obtained in low-throughput investigations (Table 1).
- (iii)
- total flux dimension, which is equal to the number of fluxotypes multiplied by fluxome resolution, and is an indication of the scale of the fluxomics investigation. In the literature, this index ranges between 71 and 4370 (Table 1). In this study, the total flux dimension index was 18,612 (94 fluxes × 198 fluxotypes), which reflects both the high-throughput and high-resolution character of the analysis. Interestingly, the number of fluxotypes, generated in this study, is similar to the number reported by Haverkorn van Rijsewijk et al. [33] (198 versus 190, respectively) but the total flux dimension of this work is higher (18612 versus 4370, respectively) because of the higher number of fluxes per fluxotype (94 veresus 23, respectively).
- (iv)
- overall flux precision index, which is the median RSD of all (free) fluxes across the entire flux dataset. Only free fluxes are considered because the others, e.g., most biosynthetic fluxes are determined or given as constraints to the model. The average value of this index was 32% in the present study, compared with 0.4–23% in low-throughput studies, and 14–253% in HT studies (Table 1). The value, obtained in this work, appears to strike a good compromise between throughput and resolution. Moreover, when measured for specific pathways (overall pathway-specific precision), it appears that the level of precision achieved for most fluxes is drastically improved, notably for those in the glycolysis, PPP and ED pathways.
3. Discussion
4. Materials and Methods
4.1. Bacteria Strains and Cultivation Conditions
4.2. Robotic Platforms for Culture, Sampling and Sample Preparation
4.3. Isotopic Profiling of Proteinogenic Amino-Acids
4.4. NMR Analysis of Extracellular Medium
4.5. Growth Parameters
4.6. Flux Calculation and Visualization
4.7. Sensitivity Analysis
4.8. Statistical Analysis of Flux Datasets
4.9. Meta-Data Management
4.10. Calculation of Cofactor Production and Consumption Rates
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanson, A.D.; Pribat, A.; Waller, J.C.; de Crécy-lagard, V. ‘Unknown’ Proteins and ‘Orphan’ Enzymes: The Missing Half of the Engineering Parts List and How to Find It. Biochem. J. 2009, 425, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Janga, S.C.; Babu, M.; Díaz-Mejía, J.J.; Butland, G.; Yang, W.; Pogoutse, O.; Guo, X.; Phanse, S.; Wong, P.; et al. Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins. PLoS Biol. 2009, 7, e1000096. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, S.; King, Z.A.; Sastry, A.; Palsson, B.O. The y-ome Defines the Thirty-Four Percent of Escherichia coli Genes That Lack Experimental Evidence of Function. bioRxiv 2018, 328591. [Google Scholar] [CrossRef]
- Raamsdonk, L.M.; Teusink, B.; Broadhurst, D.; Zhang, N.; Hayes, A.; Walsh, M.C.; Berden, J.A.; Brindle, K.M.; Kell, D.B.; Rowland, J.J.; et al. A Functional Genomics Strategy That Uses Metabolome Data to Reveal the Phenotype of Silent Mutations. Nat. Biotechnol. 2001, 19, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Fuhrer, T.; Zampieri, M.; Sévin, D.C.; Sauer, U.; Zamboni, N. Genomewide Landscape of Gene-Metabolome Associations in Escherichia Coli. Mol. Syst. Biol. 2017, 13, 907. [Google Scholar] [CrossRef] [PubMed]
- Sévin, D.C.; Fuhrer, T.; Zamboni, N.; Sauer, U. Nontargeted in Vitro Metabolomics for High-Throughput Identification of Novel Enzymes in Escherichia Coli. Nat. Methods 2017, 14, 187–194. [Google Scholar] [CrossRef]
- Blaby-Haas, C.E.; de Crécy-Lagard, V. Mining High-Throughput Experimental Data to Link Gene and Function. Trends Biotechnol. 2011, 29, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Long, C.P.; Antoniewicz, M.R. Metabolic Flux Analysis of Escherichia coli Knockouts: Lessons from the Keio Collection and Future Outlook. Curr. Opin. Biotechnol. 2014, 28, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 In-frame, Single-gene Knockout Mutants: The Keio Collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef] [Green Version]
- Joyce, A.R.; Reed, J.L.; White, A.; Edwards, R.; Osterman, A.; Baba, T.; Mori, H.; Lesely, S.A.; Palsson, B.Ø.; Agarwalla, S. Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli. J. Bacteriol. 2006, 188, 8259–8271. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, G.I.; Olson, C.A.; Hefner, Y.; Phaneuf, P.V.; Catoiu, E.; Crepaldi, L.B.; Micas, L.G.; Palsson, B.O.; Feist, A.M. Reframing Gene Essentiality in Terms of Adaptive Flexibility. BMC Syst. Biol. 2018, 12, 1–20. [Google Scholar] [CrossRef]
- Tong, M.; French, S.; El Zahed, S.S.; Ong, W.K.; Karp, P.D.; Brown, E.D. Gene Dispensability in Escherichia coli Grown in Thirty Different Carbon Environments. mBio 2020, 11. [Google Scholar] [CrossRef]
- Warner, J.R.; Reeder, P.J.; Karimpour-Fard, A.; Woodruff, L.B.A.; Gill, R.T. Rapid Profiling of a Microbial Genome Using Mixtures of Barcoded Oligonucleotides. Nat. Biotechnol. 2010, 28, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gallay, C.; Kjos, M.; Domenech, A.; Slager, J.; van Kessel, S.P.; Knoops, K.; Sorg, R.A.; Zhang, J.-R.; Veening, J.-W. High-Throughput CRISPRi Phenotyping Identifies New Essential Genes in Streptococcus Pneumoniae. Mol. Syst. Biol. 2017, 13, 931. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Wetmore, K.M.; Waters, R.J.; Callaghan, M.; Ray, J.; Liu, H.; Kuehl, J.V.; Melnyk, R.A.; Lamson, J.S.; Suh, Y.; et al. Mutant Phenotypes for Thousands of Bacterial Genes of Unknown Function. Nature 2018, 557, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Wiechert, W. 13C Metabolic Flux Analysis. Metab. Eng. 2001, 3, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Sauer, U. Metabolic Networks in Motion: 13C-based Flux Analysis. Mol. Syst. Biol. 2006, 2, 62. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, C.; Portais, J.-C. Metabolic Flux Analysis. In Metabolomics in Practice; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 285–312. ISBN 978-3-527-65586-1. [Google Scholar]
- Ellis, D.I.; Goodacre, R. Metabolomics-Assisted Synthetic Biology. Curr. Opin. Biotechnol. 2012, 23, 22–28. [Google Scholar] [CrossRef]
- Fan, J.; Ye, J.; Kamphorst, J.J.; Shlomi, T.; Thompson, C.B.; Rabinowitz, J.D. Quantitative Flux Analysis Reveals Folate-Dependent NADPH Production. Nature 2014, 510, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Heux, S.; Bergès, C.; Millard, P.; Portais, J.-C.; Létisse, F. Recent Advances in High-Throughput 13C-Fluxomics. Curr. Opin. Biotechnol. 2017, 43, 104–109. [Google Scholar] [CrossRef]
- Heux, S.; Poinot, J.; Massou, S.; Sokol, S.; Portais, J.-C. A Novel Platform for Automated High-Throughput Fluxome Profiling of Metabolic Variants. Metab. Eng. 2014, 25, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Sauer, U. High-Throughput Phenomics: Experimental Methods for Mapping Fluxomes. Curr. Opin. Biotechnol. 2004, 15, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Moxley, J.F.; Jewett, M.C.; Antoniewicz, M.R.; Villas-Boas, S.G.; Alper, H.; Wheeler, R.T.; Tong, L.; Hinnebusch, A.G.; Ideker, T.; Nielsen, J.; et al. Linking High-Resolution Metabolic Flux Phenotypes and Transcriptional Regulation in Yeast Modulated by the Global Regulator Gcn4p. Proc. Natl. Acad. Sci. USA 2009, 106, 6477–6482. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Kochanowski, K.; Vedelaar, S.; Ahrné, E.; Volkmer, B.; Callipo, L.; Knoops, K.; Bauer, M.; Aebersold, R.; Heinemann, M. The Quantitative and Condition-Dependent Escherichia coli Proteome. Nat. Biotechnol. 2016, 34, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Millard, P.; Sokol, S.; Letisse, F.; Portais, J.-C. IsoDesign: A Software for Optimizing the Design of 13C-Metabolic Flux Analysis Experiments. Biotechnol. Bioeng. 2014, 111, 202–208. [Google Scholar] [CrossRef]
- Millard, P.; Letisse, F.; Sokol, S.; Portais, J.-C. IsoCor: Correcting MS Data in Isotope Labeling Experiments. Bioinforma. Oxf. Engl. 2012, 28, 1294–1296. [Google Scholar] [CrossRef] [Green Version]
- Millard, P.; Delépine, B.; Guionnet, M.; Heuillet, M.; Bellvert, F.; Létisse, F. IsoCor: Isotope Correction for High-Resolution MS Labeling Experiments. Bioinformatics 2019, 35, 4484–4487. [Google Scholar] [CrossRef]
- Neidhardt, F.C.; Curtiss, R. Escherichia Coli and Salmonella: Cellular and Molecular Biology; ASM Press: Washington, DC, USA, 1996; ISBN 978-1-55581-084-9. [Google Scholar]
- Sokol, S.; Millard, P.; Portais, J.-C. Influx_s: Increasing Numerical Stability and Precision for Metabolic Flux Analysis in Isotope Labelling Experiments. Bioinforma. Oxf. Engl. 2012, 28, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, C.; Kiefer, P.; Letisse, F.; Krömer, J.; Massou, S.; Soucaille, P.; Wittmann, C.; Lindley, N.D.; Portais, J.-C. Response of the Central Metabolism of Escherichia Coli to Modified Expression of the Gene Encoding the Glucose-6-Phosphate Dehydrogenase. FEBS Lett. 2007, 581, 3771–3776. [Google Scholar] [CrossRef] [Green Version]
- Millard, P.; Massou, S.; Wittmann, C.; Portais, J.-C.; Létisse, F. Sampling of Intracellular Metabolites for Stationary and Non-Stationary 13C Metabolic Flux Analysis in Escherichia coli. Anal. Biochem. 2014, 465, 38–49. [Google Scholar] [CrossRef]
- Haverkorn van Rijsewijk, B.R.B.; Nanchen, A.; Nallet, S.; Kleijn, R.J.; Sauer, U. Large-Scale 13C-Flux Analysis Reveals Distinct Transcriptional Control of Respiratory and Fermentative Metabolism in Escherichia coli. Mol. Syst. Biol. 2011, 7, 477. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Baba, T.; Mori, H.; Shimizu, K. Effect of Zwf Gene Knockout on the Metabolism of Escherichia coli Grown on Glucose or Acetate. Metab. Eng. 2004, 6, 164–174. [Google Scholar] [CrossRef]
- Hua, Q.; Yang, C.; Baba, T.; Mori, H.; Shimizu, K. Responses of the Central Metabolism in Escherichia coli to Phosphoglucose Isomerase and Glucose-6-Phosphate Dehydrogenase Knockouts. J. Bacteriol. 2003, 185, 7053–7067. [Google Scholar] [CrossRef] [Green Version]
- Giacomoni, F.; Le Corguillé, G.; Monsoor, M.; Landi, M.; Pericard, P.; Pétéra, M.; Duperier, C.; Tremblay-Franco, M.; Martin, J.-F.; Jacob, D.; et al. Workflow4Metabolomics: A Collaborative Research Infrastructure for Computational Metabolomics. Bioinformatics 2015, 31, 1493–1495. [Google Scholar] [CrossRef] [Green Version]
- Sauer, U.; Canonaco, F.; Heri, S.; Perrenoud, A.; Fischer, E. The Soluble and Membrane-Bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia coli. J. Biol. Chem. 2004, 279, 6613–6619. [Google Scholar] [CrossRef] [Green Version]
- Long, C.P.; Antoniewicz, M.R. High-Resolution 13C Metabolic Flux Analysis. Nat. Protoc. 2019, 14, 2856–2877. [Google Scholar] [CrossRef]
- Lange, A.; Becker, J.; Schulze, D.; Cahoreau, E.; Portais, J.-C.; Haefner, S.; Schröder, H.; Krawczyk, J.; Zelder, O.; Wittmann, C. Bio-Based Succinate from Sucrose: High-Resolution 13C Metabolic Flux Analysis and Metabolic Engineering of the Rumen Bacterium Basfia Succiniciproducens. Metab. Eng. 2017, 44, 198–212. [Google Scholar] [CrossRef]
- Leighty, R.W.; Antoniewicz, M.R. COMPLETE-MFA: Complementary Parallel Labeling Experiments Technique for Metabolic Flux Analysis. Metab. Eng. 2013, 20, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Crown, S.B.; Long, C.P.; Antoniewicz, M.R. Integrated 13C-Metabolic Flux Analysis of 14 Parallel Labeling Experiments in Escherichia coli. Metab. Eng. 2015, 28, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, D.; Reusch, R.N. Poly-3-Hydroxybutyrate Synthase from the Periplasm of Escherichia coli. Biochem. Biophys. Res. Commun. 2008, 374, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Juncker, A.S.; Willenbrock, H.; Von Heijne, G.; Brunak, S.; Nielsen, H.; Krogh, A. Prediction of Lipoprotein Signal Peptides in Gram-Negative Bacteria. Protein Sci. Publ. Protein Soc. 2003, 12, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Heuillet, M.; Bellvert, F.; Cahoreau, E.; Letisse, F.; Millard, P.; Portais, J.-C. Methodology for the Validation of Isotopic Analyses by Mass Spectrometry in Stable-Isotope Labeling Experiments. Anal. Chem. 2018, 90, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Peiro, C.; Millard, P.; de Simone, A.; Cahoreau, E.; Peyriga, L.; Enjalbert, B.; Heux, S. Chemical and Metabolic Controls on Dihydroxyacetone Metabolism Lead to Suboptimal Growth of Escherichia coli. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chazalviel, M.; Frainay, C.; Poupin, N.; Vinson, F.; Merlet, B.; Gloaguen, Y.; Cottret, L.; Jourdan, F. MetExploreViz: Web Component for Interactive Metabolic Network Visualization. Bioinformatics 2018, 34, 312–313. [Google Scholar] [CrossRef] [PubMed]
Leighty et al., 2013 [37] | Crown et al., 2015 [38] | Long & Antoniewicz 2019 [35] | Millard et al., 2014 [30] | Long et al., 2016 [39] | Heux et al., 2014 [22] | Haverkorn van Rijsewijk et al., 2011 [31] | This Paper | ||
---|---|---|---|---|---|---|---|---|---|
E. coli strains | MG1655 | MG1655 | BW25113ΔtpiA mutant | MG1655 | BW25113 | MG1655 | BW25113 + Keio mutants | MG1655 + BW25113 + keio mutants | |
Number of measured fluxotypes | 1 | 1 | 1 | 1 | 1 | 20 | 190 | 198 | |
Number of different label input(s) by strain or condition | 6 | 14 | 2 | 1 | 1 | 2 | 2 | 1 | |
Fluxome resolution = number of (net) fluxes by fluxotype | 71 | 71 | 75 | 84 | 71 | 23 | 23 | 94 | |
Isotopic resolutive power = number of isotopic data/number of calculated fluxes | 7.52 | 17.55 | 5.07 | 1.4 | 1.94 | 2.57 | 1.61 | 1.13 | |
Total flux dimension = number of fluxes per fluxotype × number of fluxotypes | 71 | 71 | 75 | 84 | 142 | 460 | 4370 | 18,612 | |
Global flux precision = median RSD over the global dataset | 12% | 15% | 7.80% | 19% | 23% | 285% | 14% | 32% | |
Global pathway precision = median RSD within specific pathways | S.A. (n = 1) | S.A. (n = 1) | S.A. (n = 1) | S.A. (n = 1) | S.A. (n = 1) | S.A. (n = 23) | S.A. (n = 23) | S.A. (n = 198) | biological replicates (n = 20) |
Glycolysis | 1% | 2% | 4.20% | 3% | 3.50% | 553% | 7% | 3% | 1% |
ppp + edp | 14% | 11% | 17% | 131% | 10% | 41% | 25% | 24% | 7% |
tca + gs | 11% | 19% | 4.90% | 20% | 31% | 795% | 19% | 40% | 21% |
anaplerosis | 122% | 144% | 87% | 13% | 1822% | 7% | 15% | 42% | 20% |
output fluxes | 12% | 25% | 4.7% | 15% | 42.4% | 426% | 0% | 10% | 14% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergès, C.; Cahoreau, E.; Millard, P.; Enjalbert, B.; Dinclaux, M.; Heuillet, M.; Kulyk, H.; Gales, L.; Butin, N.; Chazalviel, M.; et al. Exploring the Glucose Fluxotype of the E. coli y-ome Using High-Resolution Fluxomics. Metabolites 2021, 11, 271. https://doi.org/10.3390/metabo11050271
Bergès C, Cahoreau E, Millard P, Enjalbert B, Dinclaux M, Heuillet M, Kulyk H, Gales L, Butin N, Chazalviel M, et al. Exploring the Glucose Fluxotype of the E. coli y-ome Using High-Resolution Fluxomics. Metabolites. 2021; 11(5):271. https://doi.org/10.3390/metabo11050271
Chicago/Turabian StyleBergès, Cécilia, Edern Cahoreau, Pierre Millard, Brice Enjalbert, Mickael Dinclaux, Maud Heuillet, Hanna Kulyk, Lara Gales, Noémie Butin, Maxime Chazalviel, and et al. 2021. "Exploring the Glucose Fluxotype of the E. coli y-ome Using High-Resolution Fluxomics" Metabolites 11, no. 5: 271. https://doi.org/10.3390/metabo11050271
APA StyleBergès, C., Cahoreau, E., Millard, P., Enjalbert, B., Dinclaux, M., Heuillet, M., Kulyk, H., Gales, L., Butin, N., Chazalviel, M., Palama, T., Guionnet, M., Sokol, S., Peyriga, L., Bellvert, F., Heux, S., & Portais, J. -C. (2021). Exploring the Glucose Fluxotype of the E. coli y-ome Using High-Resolution Fluxomics. Metabolites, 11(5), 271. https://doi.org/10.3390/metabo11050271