Establishment, Validation, and Initial Application of a Sensitive LC-MS/MS Assay for Quantification of the Naturally Occurring Isomers Itaconate, Mesaconate, and Citraconate
Abstract
:1. Introduction
2. Results
2.1. Detection of Itaconate and Its Isomers Using HPLC-MS/MS
2.2. Validation of the Assay
2.3. Assessment of Preanalytic Biosample Parameters
2.3.1. Freeze/Thaw Cycles
2.3.2. Stability in Extraction Reagent and Stability of Dried Extracts
2.3.3. Stability in Human Plasma and Whole Blood
2.3.4. Long Term Storage Stability of Unprocessed Samples
2.4. Biological Proof-of-Concept Studies
2.4.1. Detection in Human Whole Blood, Plasma, and Blood Leukocytes
2.4.2. Detection in Mouse Organs
3. Discussion
3.1. Potential Applications
3.2. Preanalytical Properties
3.3. Differences in Organ Distribution of Itaconate Isomers
4. Experimental Procedures
4.1. Reagents
4.2. Preparation of Calibrations and QCs
4.3. HPLC-MS/MS Assay
4.4. Quantification of Metabolites
4.5. Human Blood Donors
4.6. Spike-In Experiments
4.7. In Vitro Stimulation of Peripheral Whole Blood
4.8. Preparation and Extraction of Mouse Organs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Michelucci, A.; Cordes, T.; Ghelfi, J.; Pailot, A.; Reiling, N.; Goldmann, O.; Binz, T.; Wegner, A.; Tallam, A.; Rausell, A.; et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA 2013, 110, 7820–7825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Lukat, P.; Iqbal, A.A.; Saile, K.; Kaever, V.; van den Heuvel, J.; Blankenfeldt, W.; Bussow, K.; Pessler, F. Crystal structure of cis-aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 20644–20654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooftman, A.; O’Neill, L.A.J. The Immunomodulatory Potential of the Metabolite Itaconate. Trends Immunol. 2019, 40, 687–698. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.J.; Artyomov, M.N. Itaconate: The poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 2019, 19, 273–281. [Google Scholar] [CrossRef]
- Cordes, T.; Metallo, C.M. Exploring the evolutionary roots and physiological function of itaconate. Curr. Opin. Biotech. 2021, 68, 144–150. [Google Scholar] [CrossRef]
- Gu, L.; Lin, J.; Wang, Q.; Li, C.; Peng, X.; Fan, Y.; Lu, C.; Lin, H.; Niu, Y.; Zhu, G.; et al. Dimethyl itaconate protects against fungal keratitis by activating the Nrf2/HO-1 signaling pathway. Immunol. Cell. Biol. 2020, 98, 229–241. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, P.; He, Z.; Yuan, X.; Guo, J.; Li, Y.; Hu, X.; Cao, Y.; Fu, Y.; Zhang, N. Dimethyl itaconate protects against lippolysacchride-induced mastitis in mice by activating MAPKs and Nrf2 and inhibiting NF-kappaB signaling pathways. Microb. Pathog. 2019, 133, 103541. [Google Scholar] [CrossRef]
- Tang, C.; Wang, X.; Xie, Y.; Cai, X.; Yu, N.; Hu, Y.; Zheng, Z. 4-Octyl Itaconate Activates Nrf2 Signaling to Inhibit Pro-Inflammatory Cytokine Production in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Cell Physiol. Biochem. 2018, 51, 979–990. [Google Scholar] [CrossRef]
- Cordes, T.; Lucas, A.; Divakaruni, A.S.; Murphy, A.N.; Cabrales, P.; Metallo, C.M. Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. Mol. Metab. 2020, 32, 122–135. [Google Scholar] [CrossRef]
- Lampropoulou, V.; Sergushichev, A.; Bambouskova, M.; Nair, S.; Vincent, E.E.; Loginicheva, E.; Cervantes-Barragan, L.; Ma, X.; Huang, S.C.; Griss, T.; et al. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016, 24, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Lu, Z.; Zhang, Z.; Man, J.; Guo, R.; Liu, C.; Wang, J. A likely protective effect of dimethyl itaconate on cerebral ischemia/reperfusion injury. Int. Immunopharmacol. 2019, 77, 105924. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Alfaro, A.C.; Merien, F.; Young, T.; Grandiosa, R. Metabolic and immunological responses of male and female new Zealand Greenshell mussels (Perna canaliculus) infected with Vibrio sp. J. Invertebr. Pathol. 2018, 157, 80–89. [Google Scholar] [CrossRef]
- Aggrey, S.E.; Milfort, M.C.; Fuller, A.L.; Yuan, J.; Rekaya, R. Effect of host genotype and Eimeria acervulina infection on the metabolome of meat-type chickens. PLoS ONE 2019, 14, e0223417. [Google Scholar] [CrossRef]
- Michopoulos, F.; Karagianni, N.; Whalley, N.M.; Firth, M.A.; Nikolaou, C.; Wilson, I.D.; Critchlow, S.E.; Kollias, G.; Theodoridis, G.A. Targeted Metabolic Profiling of the Tg197 Mouse Model Reveals Itaconic Acid as a Marker of Rheumatoid Arthritis. J. Proteome Res. 2016, 15, 4579–4590. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Deng, X.; Zhong, L. Lipidomic and metabolomic profiling reveals novel candidate biomarkers in active systemic lupus erythematosus. Int. J. Clin. Exp. Pathol. 2019, 12, 857–866. [Google Scholar]
- Mossa, A.H.; Shamout, S.; Cammisotto, P.; Campeau, L. Urinary metabolomics predict the severity of overactive bladder syndrome in an aging female population. Int. Urogynecol. J. 2019, 31, 1023–1031. [Google Scholar] [CrossRef]
- Meiser, J.; Kraemer, L.; Jaeger, C.; Madry, H.; Link, A.; Lepper, P.M.; Hiller, K.; Schneider, J.G. Itaconic acid indicates cellular but not systemic immune system activation. Oncotarget 2018, 9, 32098–32107. [Google Scholar] [CrossRef]
- Duran, M.; Bruinvis, L.; Ketting, D.; Wadman, S.K. Deranged isoleucine metabolism during ketotic attacks in patients with methylmalonic acidaemia. J. Inherit. Metab. Dis. 1978, 1, 105–107. [Google Scholar] [CrossRef]
- Zhu, J.; Djukovic, D.; Deng, L.; Gu, H.; Himmati, F.; Abu Zaid, M.; Chiorean, E.G.; Raftery, D. Targeted serum metabolite profiling and sequential metabolite ratio analysis for colorectal cancer progression monitoring. Anal. Bioanal. Chem. 2015, 407, 7857–7863. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, H.; Yao, L.; Cui, L.; Zhang, L.; Gao, B.; Liu, W.; Wu, D.; Chen, M.; Li, X.; et al. Serum metabolic profiling of type 2 diabetes mellitus in Chinese adults using an untargeted GC/TOFMS. Clin. Chim. Acta 2018, 477, 39–47. [Google Scholar] [CrossRef]
- Eguchi, A.; Sakurai, K.; Watanabe, M.; Mori, C. Exploration of potential biomarkers and related biological pathways for PCB exposure in maternal and cord serum: A pilot birth cohort study in Chiba, Japan. Environ. Int. 2017, 102, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Yang, T.; Zhou, Y.; Gao, G.Y.; Xing, F.; Peng, Y.; Tao, Y.Y.; Liu, C.H. Serum Metabolomics Analysis Reveals a Distinct Metabolic Profile of Patients with Primary Biliary Cholangitis. Sci. Rep. 2017, 7, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Biase, I.; Pasquali, M.; Asamoah, A. Unusual Metabolites in a Patient with Isovaleric Acidemia. Clin. Chem. 2019, 65, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Coman, D.; Vissers, L.; Riley, L.G.; Kwint, M.P.; Hauck, R.; Koster, J.; Geuer, S.; Hopkins, S.; Hallinan, B.; Sweetman, L.; et al. Squalene Synthase Deficiency: Clinical, Biochemical, and Molecular Characterization of a Defect in Cholesterol Biosynthesis. Am. J. Hum. Genet. 2018, 103, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Cordes, T.; Wallace, M.; Michelucci, A.; Divakaruni, A.S.; Sapcariu, S.C.; Sousa, C.; Koseki, H.; Cabrales, P.; Murphy, A.N.; Hiller, K.; et al. Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. J. Biol. Chem. 2016, 291, 14274–14284. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Huang, X.; Zhong, C.; Li, J.; Lu, X. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus. Appl. Microbiol. Biotechnol. 2016, 100, 7541–7548. [Google Scholar] [CrossRef]
- Bonnarme, P.; Gillet, B.; Sepulchre, A.M.; Role, C.; Beloeil, J.C.; Ducrocq, C. Itaconate biosynthesis in Aspergillus terreus. J. Bacteriol. 1995, 177, 3573–3578. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Yang, J.Y.; Jeon, B.Y.; Yoon, Y.J.; Cho, S.N.; Kang, Y.H.; Ryu, D.H.; Hwang, G.S. (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J. Proteome Res. 2011, 10, 2238–2247. [Google Scholar] [CrossRef]
- Zhu, X.; Lei, H.; Wu, J.; Li, J.V.; Tang, H.; Wang, Y. Systemic responses of BALB/c mice to Salmonella typhimurium infection. J. Proteome Res. 2014, 13, 4436–4445. [Google Scholar] [CrossRef]
- Cordes, T.; Metallo, C.M. Itaconate Alters Succinate and Coenzyme A Metabolism via Inhibition of Mitochondrial Complex II and Methylmalonyl-CoA Mutase. Metabolites 2021, 11, 117. [Google Scholar] [CrossRef]
- Tsikas, D. Pentafluorobenzyl bromide-A versatile derivatization agent in chromatography and mass spectrometry: I. Analysis of inorganic anions and organophosphates. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1043, 187–201. [Google Scholar] [CrossRef]
- ElAzzouny, M.; Tom, C.T.; Evans, C.R.; Olson, L.L.; Tanga, M.J.; Gallagher, K.A.; Martin, B.R.; Burant, C.F. Dimethyl Itaconate Is Not Metabolized into Itaconate Intracellularly. J. Biol. Chem. 2017, 292, 4766–4769. [Google Scholar] [CrossRef] [Green Version]
- Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.H.; Higgins, M.; Hams, E.; et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018, 556, 113–117. [Google Scholar] [CrossRef]
- Strelko, C.L.; Lu, W.; Dufort, F.J.; Seyfried, T.N.; Chiles, T.C.; Rabinowitz, J.D.; Roberts, M.F. Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 2011, 133, 16386–16389. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Malu, S.; Roth, K.D. Development of ion pairing LC-MS/MS method for itaconate and cis-aconitate in cell extract and cell media. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1146, 122120. [Google Scholar] [CrossRef]
- Bambouskova, M.; Potuckova, L.; Paulenda, T.; Kerndl, M.; Mogilenko, D.A.; Lizotte, K.; Swain, A.; Hayes, S.; Sheldon, R.D.; Kim, H.; et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep. 2021, 34, 108756. [Google Scholar] [CrossRef]
- Swain, A.; Bambouskova, M.; Kim, H.; Andhey, P.S.; Duncan, D.; Auclair, K.; Chubukov, V.; Simons, D.M.; Roddy, T.P.; Stewart, K.M.; et al. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nat. Metab. 2020, 2, 594–602. [Google Scholar] [CrossRef]
- Bambouskova, M.; Gorvel, L.; Lampropoulou, V.; Sergushichev, A.; Loginicheva, E.; Johnson, K.; Korenfeld, D.; Mathyer, M.E.; Kim, H.; Huang, L.H.; et al. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature 2018, 556, 501–504. [Google Scholar] [CrossRef]
- Abeln, M.; Borst, K.M.; Cajic, S.; Thiesler, H.; Kats, E.; Albers, I.; Kuhn, M.; Kaever, V.; Rapp, E.; Munster-Kuhnel, A.; et al. Sialylation Is Dispensable for Early Murine Embryonic Development in Vitro. ChemBioChem 2017, 18, 1305–1316. [Google Scholar] [CrossRef]
- Fu, X.; Xu, Y.K.; Chan, P.; Pattengale, P.K. Simple, Fast, and Simultaneous Detection of Plasma Total Homocysteine, Methylmalonic Acid, Methionine, and 2-Methylcitric Acid Using Liquid Chromatography and Mass Spectrometry (LC/MS/MS). JIMD Rep. 2013, 10, 69–78. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. Bioanalytical Method Validation. Available online: https://www.fda.gov/media/70858/download (accessed on 17 July 2020).
- Engstad, C.S.; Gutteberg, T.J.; Osterud, B. Modulation of blood cell activation by four commonly used anticoagulants. Thromb. Haemost. 1997, 77, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Segre, E.; Fullerton, J.N. Stimulated Whole Blood Cytokine Release as a Biomarker of Immunosuppression in the Critically Ill: The Need for a Standardized Methodology. Shock 2016, 45, 490–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinzelmann, M.; Bosshart, H. Heparin binds to lipopolysaccharide (LPS)-binding protein, facilitates the transfer of LPS to CD14, and enhances LPS-induced activation of peripheral blood monocytes. J. Immunol. 2005, 174, 2280–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinzelmann, M.; Mercer-Jones, M.A.; Flodgaard, H.; Miller, F.N. Heparin-binding protein (CAP37) is internalized in monocytes and increases LPS-induced monocyte activation. J. Immunol. 1998, 160, 5530–5536. [Google Scholar] [PubMed]
- Cheng, S.C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.; Rao, N.A.; Aghajanirefah, A.; et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014, 345, 1250684. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Zhang, Y.; Tang, H.; Liu, D.; Chen, Y.; Liu, Y.; Wang, C. Chemoproteomic Profiling of Itaconation by Bioorthogonal Probes in Inflammatory Macrophages. J. Am. Chem. Soc. 2020, 142, 10894–10898. [Google Scholar] [CrossRef]
- Shen, H.; Campanello, G.C.; Flicker, D.; Grabarek, Z.; Hu, J.; Luo, C.; Banerjee, R.; Mootha, V.K. The Human Knockout Gene CLYBL Connects Itaconate to Vitamin B12. Cell 2017, 171, 771–782. [Google Scholar] [CrossRef]
- Wang, S.F.; Adler, J.; Lardy, H.A. The pathway of itaconate metabolism by liver mitochondria. J. Biol. Chem. 1961, 236, 26–30. [Google Scholar] [CrossRef]
- Khadka, M.; Todor, A.; Maner-Smith, K.M.; Colucci, J.K.; Tran, V.; Gaul, D.A.; Anderson, E.J.; Natrajan, M.S.; Rouphael, N.; Mulligan, M.J.; et al. The Effect of Anticoagulants, Temperature, and Time on the Human Plasma Metabolome and Lipidome from Healthy Donors as Determined by Liquid Chromatography-Mass Spectrometry. Biomolecules 2019, 9, 200. [Google Scholar] [CrossRef] [Green Version]
- Barri, T.; Dragsted, L.O. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: Effect of experimental artefacts and anticoagulant. Anal. Chim. Acta 2013, 768, 118–128. [Google Scholar] [CrossRef]
- Beloborodova, N.; Pautova, A.; Sergeev, A.; Fedotcheva, N. Serum Levels of Mitochondrial and Microbial Metabolites Reflect Mitochondrial Dysfunction in Different Stages of Sepsis. Metabolites 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- de Seymour, J.V.; Conlon, C.A.; Sulek, K.; Villas Boas, S.G.; McCowan, L.M.; Kenny, L.C.; Baker, P.N. Early pregnancy metabolite profiling discovers a potential biomarker for the subsequent development of gestational diabetes mellitus. Acta Diabetol. 2014, 51, 887–890. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, S.A.; Liimatta, K.; Wong Fok Lung, T.; Fields, B.; Ahn, D.; Chen, D.; Lozano, C.; Saenz, Y.; Uhlemann, A.C.; Kahl, B.C.; et al. Pseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation. Cell Metab. 2020, 31, 1091–1106. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Alfaro, A.C. Targeted metabolomics to investigate antimicrobial activity of itaconic acid in marine molluscs. Metabolomics 2019, 15, 97. [Google Scholar] [CrossRef]
- Shao, C.; Song, J.; Zhao, S.; Jiang, H.; Wang, B.; Chi, A. Therapeutic Effect and Metabolic Mechanism of A Selenium-Polysaccharide from Ziyang Green Tea on Chronic Fatigue Syndrome. Polymers 2018, 10, 1269. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.M.; Davies, L.C.; Karwan, M.; Ileva, L.; Ozaki, M.K.; Cheng, R.Y.; Ridnour, L.A.; Annunziata, C.M.; Wink, D.A.; McVicar, D.W. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Investig. 2018, 128, 3794–3805. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, J.; Fang, B.; Tian, X.; Feng, Y.; Cheng, Z.; Fu, Z.; Zhang, J.; Wu, J. Runners’ metabolomic changes following marathon. Nutr. Metab. 2020, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, S.; Nafar, M.; Samavat, S.; Parvin, M. 1 H NMR-based metabolomics study for identifying urinary biomarkers and perturbed metabolic pathways associated with severity of IgA nephropathy: A pilot study. Magn. Reson. Chem. 2017, 55, 693–699. [Google Scholar] [CrossRef]
- Wu, Q.; Lai, X.; Zhao, H.; Zhu, Z.; Hong, Z.; Guo, Z.; Chai, Y. A metabolomics approach for predicting the response to intravenous iron therapy in peritoneal dialysis patients with anemia. RSC Adv. 2017, 7, 1915–1922. [Google Scholar] [CrossRef] [Green Version]
- Tasic, L.; Pontes, J.G.M.; Carvalho, M.S.; Cruz, G.; Dal Mas, C.; Sethi, S.; Pedrini, M.; Rizzo, L.B.; Zeni-Graiff, M.; Asevedo, E.; et al. Metabolomics and lipidomics analyses by (1)H nuclear magnetic resonance of schizophrenia patient serum reveal potential peripheral biomarkers for diagnosis. Schizophr. Res. 2017, 185, 182–189. [Google Scholar] [CrossRef]
- Maeda, E.; Matsuo, M.; Saiki, K.; Nakamura, H.; Matsuo, T.; Takemine, H. Methylsuccinate and mesaconate in urine of patients treated with sodium benzoate. Acta Paediatr. Jpn. 1989, 31, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, Y.; Sudo, M.; Momoi, T.; Inoue, Y.; Suzuki, Y.; Kameyama, J. Changing plasma and urinary organic acid levels in a patient with isovaleric acidemia during an attack. Pediatr. Res. 1982, 16, 771–775. [Google Scholar] [CrossRef] [Green Version]
- Truscott, R.J.; Malegan, D.; McCairns, E.; Burke, D.; Hick, L.; Sims, P.; Halpern, B.; Tanaka, K.; Sweetman, L.; Nyhan, W.L.; et al. New metabolites in isovaleric acidemia. Clin. Chim. Acta 1981, 110, 187–203. [Google Scholar] [CrossRef]
- Liebich, H.M.; Pickert, A.; Stierle, U.; Woll, J. Gas chromatography-mass spectrometry of saturated and unsaturated dicarboxylic acids in urine. J. Chromatogr. 1980, 199, 181–189. [Google Scholar] [CrossRef]
- Nakamura, E.; Rosenberg, L.E.; Tanaka, K. Microdetermination of methylmalonic acid and other short chain dicarboxylic acids by gas chromatography: Use in prenatal diagnosis of methylmalonic acidemia and in studies of isovaleric acidemia. Clin. Chim. Acta 1976, 68, 127–140. [Google Scholar] [CrossRef]
- Gao, L.; Yuan, H.; Xu, E.; Liu, J. Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics. Sci. Rep. 2020, 10, 1790. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, J.A.; Mamer, O.A.; Scriver, C.R. Metabolism of ethylmalonate to mesaconate in the rat. Evidence for trans-dehydrogenation of methylsuccinate. Biochem. J. 1983, 214, 641–644. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Shi, J.; Zhao, Y.; Yan, F.; Lei, L.; Li, H. Porphyromonas gingivalis triggers inflammatory responses in periodontal ligament cells by succinate-succinate dehydrogenase-HIF-1alpha axis. Biochem. Biophys. Res. Commun. 2020, 522, 184–190. [Google Scholar] [CrossRef]
- Shigematsu, M.; Tomonaga, S.; Shimokawa, F.; Murakami, M.; Imamura, T.; Matsui, T.; Funaba, M. Regulatory responses of hepatocytes, macrophages and vascular endothelial cells to magnesium deficiency. J. Nutr. Biochem. 2018, 56, 35–47. [Google Scholar] [CrossRef]
Intraday | Interday | Operator | Autosampler Stability | Recovery | Carryover | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QC-L QC-M QC-H | 5 Injections of One Sample Set | Independent Preparations on 6 Days | 10 Preparations on One Day | 24 h in Between Injections | Ratio Peak Area Pre-/Post Extraction (%) | Ratio Peak Area Blank/ LLOQ (%) | |||||||
Exp. Conc (µM) | Mean (µM) | Accuracy (%) | Precision (%CV) | Mean (µM) | Accuracy (%) | Precision (%CV) | Mean (µM) | Accuracy (%) | Precision (%CV) | Ratio Conc. d1/d0 (%) | |||
Itaconate | 0.3 | 0.3 | 102.7 | 2.6 | 0.3 | 101.1 | 3.0 | 0.3 | 106.4 | 4.6 | 96.4 | 100.1 | |
3 | 3.1 | 102.6 | 1.0 | 3.1 | 104.2 | 4.7 | 3.1 | 103.4 | 2.3 | 99.7 | 101.4 | ||
80 | 87.1 | 108.8 | 1.4 | 86.2 | 107.7 | 3.8 | 84.3 | 105.4 | 1.9 | 100.2 | 105.2 | 3.8 ± 5.1 | |
Citraconate | 0.15 | 0.2 | 100.7 | 4.0 | 0.2 | 100.7 | 6.7 | 0.2 | 114.5 | 4.6 | 90.5 | 103.8 | |
3 | 3.1 | 102.9 | 2.4 | 3.1 | 103.7 | 5.2 | 3.0 | 101.0 | 2.8 | 102.3 | 101.0 | ||
40 | 44.0 | 110.0 | 1.2 | 43.4 | 108.4 | 3.8 | 42.9 | 107.2 | 2.1 | 98.2 | 106.3 | 5.1 ± 6.5 | |
Mesaconate | 0.3 | 0.3 | 107.7 | 1.8 | 0.3 | 104.1 | 4.9 | 0.3 | 105.4 | 7.0 | 95.2 | 99.2 | |
3 | 3.1 | 104.9 | 2.6 | 3.2 | 105.4 | 4.8 | 3.1 | 102.9 | 1.5 | 97.9 | 101.7 | ||
80 | 86.9 | 108.7 | 1.4 | 86.1 | 107.6 | 3.4 | 85.2 | 106.5 | 2.1 | 99.0 | 106.1 | 4.5 ± 6.7 | |
4-Octyl-Itaconate | 0.03 | 0.03 | 110.9 | 2.2 | 0.03 | 107.9 | 12.2 | 0.04 | 119.3 | 6.8 | 96.6 | 88.8 | |
0.3 | 0.3 | 90.5 | 2.3 | 0.3 | 95.4 | 10.6 | 0.3 | 99.0 | 2.3 | 96.1 | 114.9 | ||
2 | 2.3 | 112.7 | 1.9 | 2.3 | 113.8 | 5.2 | 2.1 | 107.1 | 3.0 | 97.3 | 170.4 | 21.8 ± 5.2 | |
cis-Aconitate | 0.15 | 0.2 | 100.5 | 1.3 | 0.1 | 99.9 | 4.8 | 0.1 | 98.1 | 4.1 | 102.6 | 99.3 | |
3 | 3.1 | 102.5 | 0.9 | 3.1 | 102.8 | 4.0 | 3.0 | 101.5 | 2.0 | 98.8 | 101.3 | ||
40 | 43.7 | 109.2 | 1.6 | 43.5 | 108.8 | 2.9 | 42.5 | 106.3 | 1.4 | 99.3 | 109.2 | 3.3 ± 5 | |
Citrate | 1.2 | 1.3 | 105.3 | 0.8 | 1.3 | 105.4 | 1.1 | 1.3 | 104.8 | 3.8 | 101.3 | 94.9 | |
6 | 6.4 | 106.2 | 1.3 | 6.4 | 106.0 | 2.0 | 6.2 | 103.5 | 1.0 | 101.0 | 97.2 | ||
20 | 22.0 | 109.9 | 2.1 | 21.8 | 108.9 | 3.8 | 20.9 | 104.7 | 1.4 | 99.8 | 104.4 | 0.2 ± 0.2 | |
Fumarate | 5 | 5.5 | 109.3 | 2.4 | 5.4 | 107.3 | 2.7 | 5.3 | 107.0 | 2.0 | 100.0 | 97.6 | |
12 | 13.0 | 108.0 | 2.4 | 13.1 | 108.9 | 2.4 | 12.6 | 105.1 | 1.3 | 102.9 | 100.8 | ||
40 | 45.1 | 112.8 | 1.9 | 45.8 | 114.4 | 3.3 | 43.2 | 107.9 | 1.4 | 98.8 | 108.4 | 0.5 ± 1 | |
Isocitrate | 0.6 | 0.6 | 99.9 | 2.2 | 0.6 | 101.9 | 3.3 | 0.6 | 102.5 | 3.5 | 99.1 | 98.4 | |
6 | 6.2 | 103.8 | 1.7 | 6.4 | 106.6 | 2.8 | 6.5 | 109.0 | 1.6 | 98.3 | 101.4 | ||
40 | 40.9 | 102.3 | 2.2 | 42.1 | 105.2 | 4.8 | 43.2 | 107.9 | 2.5 | 97.3 | 112.1 | 15.6 ± 11.3 | |
Lactate | 50 | 54.5 | 109.0 | 2.6 | 55.6 | 111.2 | 6.2 | 55.0 | 109.9 | 5.9 | 97.3 | 103.0 | |
150 | 160.6 | 107.1 | 1.5 | 159.8 | 106.6 | 4.9 | 161.6 | 107.7 | 3.4 | 99.4 | 100.5 | ||
400 | 449.2 | 112.3 | 2.7 | 436.8 | 109.2 | 5.5 | 427.5 | 106.9 | 2.0 | 100.8 | 103.9 | 2.1 ± 1.3 | |
Malate | 0.6 | 0.7 | 109.8 | 3.8 | 0.7 | 110.4 | 4.1 | 0.7 | 116.6 | 3.9 | 97.9 | 99.8 | |
6 | 6.4 | 107.5 | 2.1 | 6.6 | 109.3 | 3.2 | 6.7 | 111.5 | 2.0 | 98.3 | 102.5 | ||
40 | 41.4 | 103.4 | 2.0 | 42.0 | 104.9 | 4.9 | 43.0 | 107.5 | 2.3 | 99.7 | 110.7 | 18.8 ± 12.8 | |
Succinate | 5 | 4.6 | 92.5 | 1.4 | 4.4 | 87.6 | 7.0 | 3.9 | 78.5 | 2.7 | 98.6 | 99.1 | |
12 | 11.3 | 94.2 | 2.0 | 10.8 | 90.0 | 6.1 | 9.3 | 77.6 | 1.7 | 102.2 | 101.5 | ||
40 | 41.2 | 103.0 | 1.7 | 39.7 | 99.2 | 6.6 | 35.3 | 88.3 | 1.9 | 97.8 | 106.5 | 13 ± 4.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winterhoff, M.; Chen, F.; Sahini, N.; Ebensen, T.; Kuhn, M.; Kaever, V.; Bähre, H.; Pessler, F. Establishment, Validation, and Initial Application of a Sensitive LC-MS/MS Assay for Quantification of the Naturally Occurring Isomers Itaconate, Mesaconate, and Citraconate. Metabolites 2021, 11, 270. https://doi.org/10.3390/metabo11050270
Winterhoff M, Chen F, Sahini N, Ebensen T, Kuhn M, Kaever V, Bähre H, Pessler F. Establishment, Validation, and Initial Application of a Sensitive LC-MS/MS Assay for Quantification of the Naturally Occurring Isomers Itaconate, Mesaconate, and Citraconate. Metabolites. 2021; 11(5):270. https://doi.org/10.3390/metabo11050270
Chicago/Turabian StyleWinterhoff, Moritz, Fangfang Chen, Nishika Sahini, Thomas Ebensen, Maike Kuhn, Volkhard Kaever, Heike Bähre, and Frank Pessler. 2021. "Establishment, Validation, and Initial Application of a Sensitive LC-MS/MS Assay for Quantification of the Naturally Occurring Isomers Itaconate, Mesaconate, and Citraconate" Metabolites 11, no. 5: 270. https://doi.org/10.3390/metabo11050270
APA StyleWinterhoff, M., Chen, F., Sahini, N., Ebensen, T., Kuhn, M., Kaever, V., Bähre, H., & Pessler, F. (2021). Establishment, Validation, and Initial Application of a Sensitive LC-MS/MS Assay for Quantification of the Naturally Occurring Isomers Itaconate, Mesaconate, and Citraconate. Metabolites, 11(5), 270. https://doi.org/10.3390/metabo11050270