Metabolic Analysis Reveals Cry1C Gene Transformation Does Not Affect the Sensitivity of Rice to Rice Dwarf Virus
Abstract
:1. Introduction
2. Results
2.1. Metabolic Profiling Overview
2.2. Classification of Differential Metabolites between Each Rice Group
2.3. Pathway Analysis of Differential Metabolites
2.4. Effects of Rice Type and RDV Infection on Free Amino Acids (AAs) Contents in Rice Leaf Tissues
2.5. The RDV Infection Rates between Cry1C and MH63 Rice Plants
3. Discussion
4. Materials and Methods
4.1. Insects and Plants
4.2. Metabolite Extraction and Metabolite Profiling Analysis
4.3. Analysis of Free Amino Acid (AA) Contents
4.4. The RDV Infection Rates between Cry1C and MH63 Rice Plants
4.5. Data Processing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadavalli, V.; Neelam, S.; Rao, A.S.; Reddy, A.R.; Subramanyam, R. Differential degradation of photosystem I subunits under iron deficiency in rice. J. Plant Physiol. 2012, 169, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, K.; He, X.; Zhu, B.; Liang, Z.; Li, H.; Luo, Y. Comparison of nutritional quality between Chinese indica rice with sck and cry1Ac genes and its nontransgenic counterpart. J. Food Sci. 2007, 72, S420–S424. [Google Scholar] [CrossRef]
- Liu, Q.; Hallerman, E.; Peng, Y.; Li, Y. Development of Bt rice and Bt maize in China and their efficacy in target pest control. Int. J. Mol. Sci. 2016, 17, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Shelton, A.; Ye, G.Y. Insect-resistant genetically modified rice in China: From research to commercialization. Annu. Rev. Entomol. 2011, 56, 81–101. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hallerman, E.M.; Liu, Q.; Wu, K.; Peng, Y. The development and status of Bt rice in China. Plant Biotechnol. J. 2016, 14, 839–848. [Google Scholar] [CrossRef]
- Jia, S.; Yuan, Q.; Pei, X.; Wang, F.; Hu, N.; Yao, K.; Wang, Z. Rice transgene flow: Its patterns, model and risk management. Plant Biotechnol. J. 2014, 12, 1259–1270. [Google Scholar] [CrossRef] [Green Version]
- Dang, C.; Lu, Z.; Wang, L.; Chang, X.; Wang, F.; Yao, H.; Peng, Y.; Stanley, D.; Ye, G. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China. Plant Biotechnol. J. 2017, 15, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ma, F.; Nawaz, M.; Wang, Y.; Cai, W.; Zhao, J.; He, Y.; Hua, H.; Zou, Y. The tiered-evaluation of the effects of transgenic cry1c rice on Cyrtorhinus lividipennis, a main predator of Nilaparvata lugens. Sci. Rep. 2017, 7, 2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, X.; Sun, L.; Ning, D.; Dang, C.; Yao, H.; Fang, Q.; Peng, Y.; Wang, F.; Ye, G. Cry1C rice doesn’t affect the ecological fitness of rice brown planthopper, Nilaparvata lugens either under RDV stress or not. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Maia, M.; Ferreira, A.E.N.; Nascimento, R.; Monteiro, F.; Traquete, F.; Marques, A.P.; Cunha, J.; Eiras-Dias, J.E.; Cordeiro, C.; Figueiredo, A.; et al. Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Hesami, M.; Pepe, M.; Alizadeh, M.; Rakei, A.; Baiton, A.; Jones, A.M.P. Recent advances in cannabis biotechnology. Ind. Crop. Prod. 2020, 158, 3026. [Google Scholar] [CrossRef]
- Wurtzel, E.T.; Kutchan, T.M. Plant metabolism, the diverse chemistry set of the future. Science 2016, 353, 1232–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikawa, A.; Matsuda, F.; Kusano, M.; Okazaki, Y.; Saito, K. Rice metabolomics. Rice 2008, 1, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Tsugawa, H.; Tsujimoto, Y.; Arita, M.; Bamba, T.; Fukusaki, E. GC/MS based metabolomics: Development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). BMC Bioinform. 2011, 12, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, T.; Joseph, B.; Yasumoto, S.; Akashi, T.; Aoki, T.; Harada, K.; Muranaka, S.; Bamba, T.; Fukusaki, E.; Takeuchi, Y.; et al. Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and its metabolism as a possible target for selective control. J. Exp. Bot. 2015, 66, 3085–3097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, E.; Lezar, S.; Anttonen, M.J.; Van Dijk, J.P.; Röhlig, R.M.; Kok, E.J.; Engel, K.-H. Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol. J. 2010, 8, 436–451. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhao, C.; Zhu, Z.; Wu, Z.; Zhou, J.; Zhao, Y.; Lu, X.; Xu, G. Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Mol. Biol. 2012, 78, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, L.; Li, X.; Chang, Y.; Gu, Q.; Lü, X.; Zhu, Z.; Xu, G. Metabolic profiling of transgenic rice progeny using gas chromatography–mass spectrometry: The effects of gene insertion, tissue culture and breeding. Metabolomics 2011, 8, 529–539. [Google Scholar] [CrossRef]
- Clarke, J.D.; Alexander, D.C.; Ward, D.P.; Ryals, J.A.; Mitchell, M.W.; Wulff, J.E.; Guo, L. Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome. Sci. Rep. 2013, 3, 3082. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.-Y.; Lee, S.M.; Lim, S.-H.; Kim, H.J.; Oh, S.-D.; Yeo, Y.; Cho, H.S.; Ha, S.-H. Unintended polar metabolite profiling of carotenoid-biofortified transgenic rice reveals substantial equivalence to its non-transgenic counterpart. Plant Biotechnol. Rep. 2012, 7, 121–128. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Yang, J.; Wang, Z. Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidalcryand glyphosate toleranceepspsgenes. Plant J. 2018, 93, 1007–1016. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Wang, C.; Xu, W.; Zhu, P.; Lu, Y.; Wei, S.; Wu, X.; Wu, Y.; Zhao, Y.; Zhu, S. Unintended effects of transgenic rice revealed by transcriptome and metabolism. GM Crop. Food 2019, 10, 20–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Yang, X.; Tzin, V.; Peng, Y.; Romeis, J.; Li, Y. Plant breeding involving genetic engineering does not result in unacceptable unintended effects in rice relative to conventional cross-breeding. Plant J. 2020, 103, 2236–2249. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Chang, Y.; Lu, X.; Zhu, Z.; Xu, G. Alteration of leaf metabolism in Bt-transgenic rice (Oryza sativa L.) and its wild type under insecticide stress. J. Proteome Res. 2012, 11, 4351–4360. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhang, L.; Lu, X.; Zhao, C.; Zhu, Z.; Wang, F.; Zhang, J.; Chen, S.; Zhao, Y.; Xu, G. A simultaneous extraction method for metabolome and lipidome and its application in cry1Ac and sck-transgenic rice leaf treated with insecticide based on LC–MS analysis. Metabolomics 2014, 10, 1197–1209. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, J.; Li, Y.; Zhang, W.; Jian, G.; Peng, Y.; Qi, F. Non-uniform distribution pattern for differentially expressed genes of transgenic rice Huahui 1 at different developmental stages and environments. PLoS ONE 2012, 7, e37078. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Ding, L.; Hu, C.; Chen, X.; Wang, X.; Xu, X.; Li, Y.; Xu, J. Effect on metabolome of the grains of transgenic rice containing insecticidal cry and glyphosate tolerance epsps genes. Plant Growth Regul. 2019, 88, 1–7. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, L.; Wei, C.; Hu, D.; Shen, Y.; Chen, Z.; Li, Y. Assembly of double-shelled, virus-like particles in transgenic rice plants expressing two major structural proteins of rice dwarf virus. J. Virol. 2000, 74, 9808–9810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Yoshii, M.; Wei, T.; Hirochika, H.; Omura, T. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein ofRice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol. J. 2009, 7, 24–32. [Google Scholar] [CrossRef]
- Emiyazaki, N.; Enakagawa, A.; Eiwasaki, K. Life cycle of phytoreoviruses visualized by electron microscopy and tomography. Front. Microbiol. 2013, 4, 306. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, Q.; Omura, T.; Uehara-Ichiki, T.; Wei, T. Sequential infection of Rice dwarf virus in the internal organs of its insect vector after ingestion of virus. Virus Res. 2011, 160, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Wei, T.; Hagiwara, K.; Higashi, T.; Kimura, I.; Akutsu, K.; Omura, T. Retention of rice dwarf virus by descendants of Pairs of viruliferous vector insects after rearing for 6 years. Phytopathol. 2007, 97, 712–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, T.; Li, Y. Rice reoviruses in insect vectors. Annu. Rev. Phytopathol. 2016, 54, 99–120. [Google Scholar] [CrossRef] [PubMed]
- Baudo, M.M.; Lyons, R.; Powers, S.; Pastori, G.M.; Edwards, K.J.; Holdsworth, M.J.; Shewry, P.R. Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol. J. 2006, 4, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Ricroch, A.E.; Bergé, J.B.; Kuntz, M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques: Table I. Plant Physiol. 2011, 155, 1752–1761. [Google Scholar] [CrossRef] [Green Version]
- Ladics, G.S.; Bartholomaeus, A.; Bregitzer, P.; Doerrer, N.G.; Gray, A.; Holzhauser, T.; Jordan, M.; Keese, P.; Kok, E.; Macdonald, P.; et al. Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res. 2015, 24, 587–603. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, T.; Sasaki, T.; Okazawa, A.; Teshima, R.; Misawa, N.; Ohta, D. Metabolite profiling and proteome analysis of ge-netically modified lettuce plants (Lactuca sativa L.) that produce astaxanthin and its esterified derivatives. Jpn. J. Food Chem. Saf. 2016, 23, 9–19. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, J.; Sun, Y.; Tong, Z.; Peng, C.; Chang, L.; Guo, A.; Wang, X. Comparative proteomics of phytase-transgenic maize seeds indicates environmental influence is more important than that of gene insertion. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Batista, R.; Fonseca, C.; Planchon, S.; Negrão, S.; Renaut, J.; Oliveira, M.M. Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. Sci. Rep. 2017, 7, 10624. [Google Scholar] [CrossRef] [Green Version]
- Kogel, K.-H.; Voll, L.M.; Schafer, P.; Jansen, C.; Wu, Y.; Langen, G.; Imani, J.; Hofmann, J.; Schmiedl, A.; Sonnewald, S.; et al. Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proc. Natl. Acad. Sci. USA 2010, 107, 6198–6203. [Google Scholar] [CrossRef] [Green Version]
- Ling, L.; Jiang, Y.; Meng, J.J.; Cai, L.M.; Cao, G.C. Phloem transport capacity of transgenic rice T1c-19 (Cry1C*) under several potassium fertilizer levels. PLoS ONE 2018, 13, 5058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, J.; Liu, B. Enhanced yield performance of transgenic cry1C* rice in saline-alkaline soil. GM Crop. Food 2020, 11, 97–112. [Google Scholar] [CrossRef]
- Koyama, K.; Mitsuhashi, J. Essential amino acids for the growth of the smaller brown planthopper, laodelphax striatellus FALLEN: Hemiptera: Delphacidae. Appl. Entomol. Zool. 1975, 10, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, T.L.; Douglas, A.E. Phloem amino acids and the host plant range of the polyphagous aphid, aphis fabae. Entomol. Exp. Appl. 2003, 106, 103–113. [Google Scholar] [CrossRef]
- Xu, H.-X.; He, X.-C.; Zheng, X.-S.; Yang, Y.-J.; Lu, Z.-X. Influence of rice black streaked dwarf virus on the ecological fitness of non-vector planthopperNilaparvata lugens(Hemiptera: Delphacidae). Insect Sci. 2013, 21, 507–514. [Google Scholar] [CrossRef]
- Tang, W.; Chen, H.; Xu, C.; Li, X.; Lin, Y.; Zhang, Q. Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol. Breed. 2006, 18, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Han, N.; Dang, C.; Lu, Z.; Wang, F.; Yao, H.; Peng, Y.; Stanley, D.; Ye, G. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). PLoS ONE 2017, 12, 1258. [Google Scholar] [CrossRef]
- Guo, R.; Shi, L.; Yang, C.; Yan, C.; Zhong, X.; Liu, Q.; Xia, X.; Li, H. Comparison of ionomic and metabolites response under alkali stress in old and young leaves of cotton (Gossypium hirsutum L.) seedlings. Front. Plant Sci. 2016, 7, 1785. [Google Scholar] [CrossRef] [Green Version]
- Dluzniewska, P.; Gessler, A.; Dietrich, H.; Schnitzler, J.-P.; Teuber, M.; Rennenberg, H. Nitrogen uptake and metabolism inPopulus × canescensas affected by salinity. New Phytol. 2006, 173, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Wang, Y.; Liu, Z.; Cheng, H.; Xue, Y. HemI: A toolkit for illustrating heatmaps. PLoS ONE 2014, 9, e111988. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Content (μg/g) | MH63 | MH63-RDV | T1C-19 | T1C-19-RDV | Two-Way ANOVA |
---|---|---|---|---|---|
Aspartic acid (Asp) | 142.286 ± 23.315 a | 183.935 ± 23.135 a | 106.239 ± 20.036 a | 159.286 ± 23.135 a | FA = 1.835, p = 0.209; FB = 4.468, p = 0.064; FA × B = 0.065, p = 0.805 |
Threonine (Thr) | 90.659 ± 19.691 b | 160.652 ± 19.691 ab | 109.088 ± 17.052 ab | 176.621 ± 19.691 a | FA = 0.814, p = 0.391; FB = 13.008, p = 0.006; FA × B = 0.004, p = 0.950 |
Serine (Ser) | 144.014 ± 18.571 a | 188.826 ± 18.571 a | 161.652 ± 16.083 a | 216.211 ± 18.571 a | FA = 1.567, p = 0.242; FB = 7.636, p = 0.022; FA × B = 0.073, p = 0.792 |
Glutamic acid (Glu) | 287.509 ± 60.978 a | 380.280 ± 60.978 a | 298.339 ± 52.809 a | 191.462 ± 60.978 a | FA = 2.272, p = 0.166; FB = 0.014, p = 0.908; FA × B = 2.859, p = 0.125 |
Glycine (Gly) | 26.859 ± 3.578 a | 26.632 ± 3.578 a | 30.171 ± 3.099 a | 29.133 ± 3.578 a | FA = 0.704, p = 0.423; FB = 0.033, p = 0.859; FA × B = 0.014, p = 0.909 |
Alanine (Ala) | 96.375 ± 11.656 b | 192.164 ± 11.656 a | 112.280 ± 10.094 b | 125.361 ± 11.656 b | FA = 5.085, p = 0.051; FB = 23.266, p = 0.001; FA × B = 13.427, p = 0.005 |
Cysteine (Cys) | 26.226 ± 4.262 a | 36.919 ± 4.262 a | 33.514 ± 3.691 a | 42.092 ± 4.262 a | FA = 2.280, p = 0.165; FB = 5.453, p = 0.044; FA × B = 0.066, p = 0.803 |
Valine (Val) | 14.860 ± 2.457 b | 25.592 ± 2.457 a | 17.348 ± 2.127 ab | 20.525 ± 2.457 ab | FA = 0.294, p = 0.601; FB = 8.547, p = 0.017; FA × B = 2.522, p = 0.147 |
Methionine (Met) | 332.581 ± 38.217 a | 341.890 ± 38.217 a | 367.295 ± 33.097 a | 311.576 ± 38.217 a | FA = 0.004, p = 0.954; FB = 0.393, p = 0.546; FA × B = 0.772, p = 0.402 |
Isoleucine (Ile) | 5.215 ± 0.612 c | 8.192 ± 0.612 ab | 5.667 ± 0.530 bc | 9.044 ± 0.612 a | FA = 1.213, p = 0.299; FB = 28.769, p < 0.001; FA × B = 0.114, p = 0.743 |
Leucine (Leu) | 15.582 ± 2.095 b | 17.954 ± 2.095 b | 13.859 ± 1.815 b | 27.198 ± 2.095 a | FA = 3.436, p = 0.097; FB = 14.992, p = 0.004; FA × B = 7.306, p = 0.024 |
Tyrosine (Tyr) | 26.524 ± 3.563 a | 25.708 ± 3.563 a | 28.631 ± 3.086 a | 33.962 ± 3.563 a | FA = 2.255, p = 0.167; FB = 0.428, p = 0.529; FA × B = 0.794, p = 0.396 |
Phenylalanine (Phe) | 18.635 ± 1.687 b | 27.756 ± 1.687 a | 17.272 ± 1.461b | 28.749 ± 1.687 a | FA = 0.013, p = 0.912; FB = 39.741, p = 0.000; FA × B = 0.520, p = 0.489 |
Gamma aminobutyric acid (g-ABA) | 213.114 ± 39.964 b | 418.288 ± 39.964 a | 232.886 ± 34.610b | 466.853 ± 39.964 a | FA = 0.78, p = 0.400; FB = 32.198, p < 0.001; FA × B = 0.138, p = 0.718 |
Lysine (Lys) | 23.069 ± 3.050 b | 34.497 ± 3.050 ab | 24.039 ± 2.641 b | 39.426 ± 3.050 a | FA = 0.998, p = 0.344; FB = 20.612, p = 0.001; FA × B = 0.449, p = 0.519 |
Histidine (His) | 6.890 ± 0.699 a | 8.511 ± 0.699 a | 6.650 ± 0.605 a | 7.877 ± 0.699 a | FA = 0.416, p = 0.535; FB = 4.429, p = 0.065; FA × B = 0.085, p = 0.777 |
Arginine (Arg) | 15.512 ± 2.206 a | 23.356 ± 2.206 a | 18.116 ± 1.911 a | 22.678 ± 2.206 a | FA = 0.203, p = 0.663; FB = 8.433, p = 0.017; FA × B = 0.590, p = 0.462 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Ning, D.; Mao, L.; Wang, B.; Fang, Q.; Yao, H.; Wang, F.; Ye, G. Metabolic Analysis Reveals Cry1C Gene Transformation Does Not Affect the Sensitivity of Rice to Rice Dwarf Virus. Metabolites 2021, 11, 209. https://doi.org/10.3390/metabo11040209
Chang X, Ning D, Mao L, Wang B, Fang Q, Yao H, Wang F, Ye G. Metabolic Analysis Reveals Cry1C Gene Transformation Does Not Affect the Sensitivity of Rice to Rice Dwarf Virus. Metabolites. 2021; 11(4):209. https://doi.org/10.3390/metabo11040209
Chicago/Turabian StyleChang, Xuefei, Duo Ning, Lijuan Mao, Beibei Wang, Qi Fang, Hongwei Yao, Fang Wang, and Gongyin Ye. 2021. "Metabolic Analysis Reveals Cry1C Gene Transformation Does Not Affect the Sensitivity of Rice to Rice Dwarf Virus" Metabolites 11, no. 4: 209. https://doi.org/10.3390/metabo11040209
APA StyleChang, X., Ning, D., Mao, L., Wang, B., Fang, Q., Yao, H., Wang, F., & Ye, G. (2021). Metabolic Analysis Reveals Cry1C Gene Transformation Does Not Affect the Sensitivity of Rice to Rice Dwarf Virus. Metabolites, 11(4), 209. https://doi.org/10.3390/metabo11040209