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Abstract: Metabolomics is beginning to be used for assessing unintended changes in genetically
modified (GM) crops. To investigate whether Cry1C gene transformation would induce metabolic
changes in rice plants, and whether the metabolic changes would pose potential risks when Cry1C
rice plants are exposed to rice dwarf virus (RDV), the metabolic profiles of Cry1C rice T1C-19
and its non-Bt parental rice MH63 under RDV-free and RDV-infected status were analyzed using
gas chromatography–mass spectrometry (GC-MS). Compared to MH63 rice, slice difference was
detected in T1C-19 under RDV-free conditions (less than 3%), while much more metabolites showed
significant response to RDV infection in T1C-19 (15.6%) and in MH63 (5.0%). Pathway analysis
showed biosynthesis of lysine, valine, leucine, and isoleucine may be affected by RDV infection
in T1C-19. No significant difference in the contents of free amino acids (AAs) was found between
T1C-19 and MH63 rice, and the free AA contents of the two rice plants showed similar responses to
RDV infection. Furthermore, no significant differences of the RDV infection rates between T1C-19
and MH63 were detected. Our results showed the Cry1C gene transformation did not affect the
sensitivity of rice to RDV, indicating Cry1C rice would not aggravate the epidemic and dispersal
of RDV.

Keywords: rice dwarf virus; Cry1C rice; metabolites; free amino acids; RDV infection rates

1. Introduction

Rice (Oryza sativa L.) is one of the most important food crops around the world and
serves as a staple food source for more than half of the world’s population [1]. Unfortu-
nately, the yield of rice is often affected by insect pests, leading to great economic loss and
a threat to food security [2,3]. The traditional way to reduce the damage caused by insect
pests is usually the application of chemical insecticides. Genetic engineering technology
provides a cost-effective way to develop transgenic insect-resistant rice plants [4]. A series
of transgenic rice lines expressing Cry proteins derived from the soil bacterium Bacillus
thuringiensis (Bt) have been developed to control lepidopteran pests [4,5]. The Chinese
government has issued the biosafety certificates of two Cry1Ab/Ac rice lines (Huahui1
and Bt-Shanyou 63) [5]. To date, assessments of Bt rice on non-target organisms and the
environment have been conducted thoroughly, and negligible adverse effects have been
found [4–9]. However, Bt rice is not yet commercially produced largely due to the lack of
public acceptance.

Metabolomics is an analytical approach providing an unprejudiced identification
and quantification of various metabolite classes in biological materials [10–12]. Gas or
liquid (GC/LC) chromatography mass spectrometry (MS) based metabolomics has been
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conducted to detect a wide range of low-molecular-weight metabolites such as amino
acids, organic acids, carbohydrates, fatty acids, fatty alcohols, wax esters, sterols, and so
on [13–15]. In recent years, metabolomic techniques are beginning to be used for assessing
intended and unintended changes in genetically modified (GM) crops and conventionally
bred crops, as it can provide a whole profile of plant metabolites and could be considered
as an alternative supplementary for the safety assessment [16–23]. GC-MS-based metabolic
profiling was employed by Zhou et al. [18] to determine the metabolic changes in rice grains.
More metabolic changes were found from the tissue culture than those from exogenous
gene insertion. Studies of field grown transgenic rice and maize indicated that environmen-
tal factors such as sowing dates or locations had a greater influence than gene modification
on plant metabolome [16,17]. The seed metabolome of an herbicide-tolerant soybean line
SYHT06W had no significant deviation from the natural variation range of metabolome
within 48 commercial soybean lines [19]. Grains of carotenoid-biofortified transgenic rice
had a similar polar metabolite profiling to its non-transgenic counterpart [20]. The extent
of metabolome modification occurring in leaves of genetic engineered rice and maize did
not go beyond that in traditional cross-breeding crops [21,23]. Cross with traditional rice
cultivars could help to reduce unwanted variation occurring during transformation pro-
cesses [18,22]. Although most reported studies showed that GM crops had little difference
with its non-transgenic parents in the metabolome, differences in metabolic changes were
found between transgenic rice and its non-transgenic counterpart in response to insecti-
cide. Insecticide led to much stronger regulations of signaling molecules and antioxidants
in Cry1Ab rice B4b87 at the early stage, compared with its non-transgenic counterpart
MH86 [24]. Similar results were also reported when comparing the metabolic response to
insecticide stress between Cry1Ac/Sck rice 8Km732 and its non-transgenic counterpart
MH3301 [25]. Previous studies indicated that agrobacterium-mediated transformation
would inevitably stimulate some defense pathways; for example, N-acetylglutamate and
phytocassane, which play important roles in plant resistance, were increased in trans-
genic rice containing cryIAc-bt and G10-epsps genes [22,26,27]. Whether defense-related
metabolite changes in Cry1C rice, which would change the disease resistance of rice,
is largely unknown.

Rice dwarf virus (RDV), the causal agent of rice dwarf disease causing economic dam-
age in many Asian countries, belongs to Phytoreovirus in the family Reoviridae [28–30].
RDV is mainly transmitted by green rice leafhoppers (GRLHs), Nephotettix cincticeps
(Hemiptera: Cicadellidae) in a persistent-propagative manner. RDV-free GRLHs acquire
the virus by feeding on RDV-infected plants for a few minutes or several days. RDV can
proliferate in almost 70% of GRLH individuals, which become viruliferous after a latent
period of 2–3 weeks [31]. Viruliferous GRLHs could transmit RDV to rice plants through-
out their lifetime. RDV infection would cause considerable damage to rice plants such as
stunted growth, white chlorotic specks on leaves, incomplete panicle exsertion, resulting in
significant yield loss [28,32,33].

In this study, the metabolic profiles of RDV-free or RDV-infected Bt rice T1C-19
and its non-Bt parental rice MH63 were analyzed using a GC-MS-based metabolomic
technique. We compared the metabolic profiles of T1C-19 and MH63 to evaluate the
metabolic changes as well as the differences in metabolic response to RDV infection.
Free amino acid (AA) contents in rice leaves were investigated to validate the effects of
exogenous gene transformation and RDV infection on amino acid metabolism. In addition,
the RDV infection rates of the two rice plants were detected. Our results turned out that
Cry1C gene transformation did not affect the sensitivity of rice plants to RDV. Thus, it would
not pose potential environmental risks when Cry1C rice plants are exposed to RDV.

2. Results
2.1. Metabolic Profiling Overview

To understand the effects of Bt gene transformation and RDV infection on metabo-
lites in rice leaves, the metabolic profiles of MH63, T1C-19, MH63-RDV, and T1C-19-RDV
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rice plants were analyzed. A total of 1054 peaks were primordially detected by Gas
Chromatography Tandem Time-of-Flight Mass Spectrometry (GC-TOF-MS), and 920 effec-
tive peaks were obtained after normalization. Finally, 320 substances including carbohy-
drates, fatty acids, organic acids, aliphatic acyclic compounds, aromatic heteropoly cyclic
compounds, nucleosides, amino acids, and other compounds were identified (Table S1).
PCA was conducted using peak numbers and normalized peak areas, which showed a
global view of metabolic differences among the samples. As seen in PCA score plots,
MH63 and MH63-RDV samples were separated from T1C-19 and T1C-19-RDV on PC1,
which accounted for 13.8% of the variability among the samples; MH63-RDV and T1C-19-
RDV samples were separated from T1C-19 on PC2, which accounted for 10.0% of the total
variability (Figure 1). PLS-DA and permutation tests confirmed the model effectiveness for
each compared group (R2Ycum > 0.98, Q2Ycum between 0.778 and 0.911, Figures S1 and S2).
After correction by OPLS-DA, Variable importance in the projection (VIP) of the first princi-
pal component (VIP > 1) and Student’s t-test (p < 0.05) were used to identify the differential
metabolites for each compared group. Hierarchical cluster analysis (HCA) of the 320 iden-
tified metabolites from the four different rice plants showed that the metabolic profiles of
T1C-19 and MH63 clustered more closely, when compared with those of RDV-infected rice
plants (MH63-RDV, T1C-19-RDV). The metabolic profile of T1C-19-RDV rice plants showed
more differences with the others (Figure 2). Numbers of differential metabolites between
each group were summarized in a Venn diagram (Figure 3A–C). Slice metabolite changes
(<3% of total metabolites) were predicted between Bt rice T1C-19 and MH63 (Figure 3A,
Table S2), while much more metabolites were altered by RDV infection in both MH63 and
T1C-19 (Figure 3B,C).
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Figure 1. Principal component analysis (PCA) score plots of the 320 identified metabolites in rice
leaves of the four treatments. MH63, green square; T1C-19, red triangle; MH63-RDV, blue circle;
T1C-19-RDV, orange rhombus.
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Figure 2. Hierarchical cluster analysis of the 320 identified metabolites in rice leaves of the four
treatments. In the heatmap, each treatment is visualized in a single column, and each metabolite
is represented by a single row. Metabolite accumulation is shown in different colors, where blue
indicates high abundance and low relative expression is shown in indigo (color key scale on the right
of the heat map).
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Figure 3. Number of the changed metabolites in three different rice groups. Venn diagrams depicting the changed metabolites between T1C-19 and MH63 rice plants (A), between
MH63-RDV and MH63 rice plants (B), and between T1C-19-RDV and T1C-19 rice plants (C). Classification of the changed metabolites and the fold changes between T1C-19 and MH63 rice
plants (D), between MH63-RDV and MH63 rice plants (E), and between T1C-19-RDV and T1C-19 rice plants (F).
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2.2. Classification of Differential Metabolites between Each Rice Group

The predicted differential metabolites between T1C-19 and MH63 (calculated by
log2

T1C-19/MH63) included 3 carbohydrates, 1 amino acid, 2 organic acids, and 3 others
(Figure 3D). Gentiobiose, threonic acid, and 2-deoxyerythritol were higher in T1C-19 than
in MH63, while cytidine-monophosphate was lower in T1C-19 than in MH63 (Table S2).
The 16 metabolites showed significant response to RDV infection in MH63 (calculated by
log2

MH63-RDV/MH63) containing 5 carbohydrates, 3 organic acids, 2 amino acids, 1 aliphatic
acyclic compound, 2 aromatic heteropoly cyclic compounds, and 3 others (Figure 3E).
The accumulation of D-arabitol (29.34-fold), 5-oxoproline (29.06-fold), lactic acid (26.38-
fold), threonic acid (21.76-fold), and 2-deoxyerythritol (22.40-fold) was dramatically in-
duced by RDV infection, while the relative concentrations of cytidine-monophosphate
(−25.94-fold), glutamine (−25.57-fold), nicotinic acid (−24.45-fold) and acetophenone
(−22.54-fold) were reduced. Meanwhile, 50 metabolites were altered in T1C-19-RDV plants
when compared with RDV-free T1C-19 plants, including 16 carbohydrates, 10 amino acids
and derivatives, 1 nucleoside, 4 lipids, 3 organic acids, 1 aromatic heteropoly cyclic com-
pound, and 15 others (Figure 3F). Metabolites showed a more than 20-fold change (calcu-
lated by log2

T1C-19-RDV/T1C-19) containing D-talose (36.2-fold), fructose (28.14-fold), galacti-
nol (27.07-fold), 3,6-anhydro-D-galactose (24.13-fold), glucose-1-phosphate (21.67-fold),
palatinitol (21.77-fold), N-acetyl-L-leucine (24.97-fold), uridine (22.40-fold), glutaric acid
(25.35-fold), aldosterone (22.43-fold), citraconic acid (25.57-fold), malonamide (25.15-fold),
gluconic lactone (23.46-fold), phosphate (23.2-fold),
2-aminophenol (22.12-fold), acetol (21.89-fold), tetracosane (21.61-fold), gentiobiose (−24.30-
fold), isomaltose (−24.69-fold), and glutaraldehyde (−22.93-fold). Three significantly
changed metabolites were found in all the three comparative analysis groups, including
glutamine, threonic acid, and 2-deoxyerythritol (Tables S2–S4), and they showed similar
trends in two groups (T1C-19 vs. MH63, MH63-RDV vs. MH63) but opposite to the other
(T1C-19-RDV vs. T1C-19). Cytidine-monophosphate showed significant changes with
similar trends in groups T1C-19 vs. MH63 and MH63-RDV vs. MH63, while gentiobiose
and isomaltose showed significant changes with opposite trends in groups T1C-19 vs.
MH63 and T1C-19-RDV vs. T1C-19 (Tables S2–S4).

2.3. Pathway Analysis of Differential Metabolites

The pathway analysis of the differential metabolites from three groups is shown in a
bubble chart (Figure 4). The predicted differential metabolites between MH63 and T1C-19
were enriched to alanine, aspartate and glutamate metabolism, nitrogen metabolism, carbohy-
drate metabolism pathways including glycolysis or gluconeogenesis, pyruvate metabolism,
TCA cycle, glyoxylate and dicarboxylate metabolism, and energy metabolism pathway car-
bon fixation (Figure 4A). In response to RDV infection, nitrogen metabolism, carbohydrate
metabolism pathways including fructose and mannose metabolism, glycolysis or gluconeo-
genesis, pyruvate metabolism, and amino acid metabolism pathways including alanine, as-
partate and glutamate metabolism, and arginine and proline metabolism were significantly
changed in MH63 (Figure 4B). Compared with MH63, other amino acid metabolism path-
ways were more affected by RDV infection in T1C-19, such as valine, leucine and isoleucine
biosynthesis, beta-alanine metabolism, aminoacyl-tRNA biosynthesis, lysine biosynthesis
and glycine, and serine and threonine metabolism. The biosynthesis of other secondary
metabolites (stilbenoid, diarylheptanoid, and gingerol) and lipid metabolism pathways
showed significant response to RDV infection in T1C-19, as well as cofactors and vitamin
metabolism pathways (Figure 4C). Metabolites involved in carbohydrate metabolism path-
ways also showed significant changes in response to RDV infection in T1C-19, but they
were different with those in MH63.
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Figure 4. Pathway enrichment of the significantly changed metabolites. Pathway enrichment of the changed metabolites between T1C-19 and MH63 (A), between MH63-RDV and MH63
(B), and between T1C-19-RDV and T1C-19 (C). The abscissa represents the impact of the path topological analysis, and the ordinate is the negative logarithm of p-value of the pathway
enrichment analysis. The bigger the bubble, the bigger the impact is; the deeper the color, the larger the value of −ln (p), indicates the more significant the enrichment.
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2.4. Effects of Rice Type and RDV Infection on Free Amino Acids (AAs) Contents in Rice
Leaf Tissues

Considering the changes in amino acid metabolism pathways between rice types,
as well as between RDV-infected and RDV-free plants, the free AA contents in rice leaves
were determined. Concentrations of threonine (Thr), valine (Val), and isoleucine (Ile) were
a little bit higher in T1C-19 than in MH63 (Table 1). However, no significant difference in
free AA contents was found between rice types. In contrast, concentrations of AAs were
increased after RDV infection, and significant effects were detected for 11 AAs including
Thr, serine (Ser), alanine (Ala), cysteine (Cys), Val, Ile, leucine (Leu), phenylalanine (Phe),
gamma aminobutyric acid (g-ABA), lysine (Lys), and arginine (Arg) (Table 1). The interac-
tion of rice type and RDV infection had no significant effects on free AA contents in rice
plants expect for Ala and Leu (Table 1).

2.5. The RDV Infection Rates between Cry1C and MH63 Rice Plants

The RDV infection rates in MH63 and Cry1C rice plants were 72.38% and 63.72%,
and no significant difference was found between Cry1C and MH63 rice plants (t = 0.812,
df = 4, p = 0.462) (Figure 5).
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Table 1. Effects of rice type, RDV infection status, and the interaction of rice type and RDV infection status on free amino acid content in rice plants.

Content (µg/g) MH63 MH63-RDV T1C-19 T1C-19-RDV Two-Way ANOVA

Aspartic acid (Asp) 142.286 ± 23.315 a 183.935 ± 23.135 a 106.239 ± 20.036 a 159.286 ± 23.135 a FA = 1.835, p = 0.209; FB = 4.468,
p = 0.064; FA × B = 0.065, p = 0.805

Threonine (Thr) 90.659 ± 19.691 b 160.652 ± 19.691 ab 109.088 ± 17.052 ab 176.621 ± 19.691 a FA = 0.814, p = 0.391; FB = 13.008,
p = 0.006; FA × B = 0.004, p = 0.950

Serine (Ser) 144.014 ± 18.571 a 188.826 ± 18.571 a 161.652 ± 16.083 a 216.211 ± 18.571 a FA = 1.567, p = 0.242; FB = 7.636,
p = 0.022; FA × B = 0.073, p = 0.792

Glutamic acid (Glu) 287.509 ± 60.978 a 380.280 ± 60.978 a 298.339 ± 52.809 a 191.462 ± 60.978 a FA = 2.272, p = 0.166; FB = 0.014,
p = 0.908; FA × B = 2.859, p = 0.125

Glycine (Gly) 26.859 ± 3.578 a 26.632 ± 3.578 a 30.171 ± 3.099 a 29.133 ± 3.578 a FA = 0.704, p = 0.423; FB = 0.033,
p = 0.859; FA × B = 0.014, p = 0.909

Alanine (Ala) 96.375 ± 11.656 b 192.164 ± 11.656 a 112.280 ± 10.094 b 125.361 ± 11.656 b FA = 5.085, p = 0.051; FB = 23.266,
p = 0.001; FA × B = 13.427, p = 0.005

Cysteine (Cys) 26.226 ± 4.262 a 36.919 ± 4.262 a 33.514 ± 3.691 a 42.092 ± 4.262 a FA = 2.280, p = 0.165; FB = 5.453,
p = 0.044; FA × B = 0.066, p = 0.803

Valine (Val) 14.860 ± 2.457 b 25.592 ± 2.457 a 17.348 ± 2.127 ab 20.525 ± 2.457 ab FA = 0.294, p = 0.601; FB = 8.547,
p = 0.017; FA × B = 2.522, p = 0.147

Methionine (Met) 332.581 ± 38.217 a 341.890 ± 38.217 a 367.295 ± 33.097 a 311.576 ± 38.217 a FA = 0.004, p = 0.954; FB = 0.393,
p = 0.546; FA × B = 0.772, p = 0.402

Isoleucine (Ile) 5.215 ± 0.612 c 8.192 ± 0.612 ab 5.667 ± 0.530 bc 9.044 ± 0.612 a FA = 1.213, p = 0.299; FB = 28.769,
p < 0.001; FA × B = 0.114, p = 0.743

Leucine (Leu) 15.582 ± 2.095 b 17.954 ± 2.095 b 13.859 ± 1.815 b 27.198 ± 2.095 a FA = 3.436, p = 0.097; FB = 14.992,
p = 0.004; FA × B = 7.306, p = 0.024

Tyrosine (Tyr) 26.524 ± 3.563 a 25.708 ± 3.563 a 28.631 ± 3.086 a 33.962 ± 3.563 a FA = 2.255, p = 0.167; FB = 0.428,
p = 0.529; FA × B = 0.794, p = 0.396

Phenylalanine (Phe) 18.635 ± 1.687 b 27.756 ± 1.687 a 17.272 ± 1.461b 28.749 ± 1.687 a FA = 0.013, p = 0.912; FB = 39.741,
p = 0.000; FA × B = 0.520, p = 0.489

Gamma aminobutyric acid
(g-ABA) 213.114 ± 39.964 b 418.288 ± 39.964 a 232.886 ± 34.610b 466.853 ± 39.964 a FA = 0.78, p = 0.400; FB = 32.198,

p < 0.001; FA × B = 0.138, p = 0.718

Lysine (Lys) 23.069 ± 3.050 b 34.497 ± 3.050 ab 24.039 ± 2.641 b 39.426 ± 3.050 a FA = 0.998, p = 0.344; FB = 20.612,
p = 0.001; FA × B = 0.449, p = 0.519

Histidine (His) 6.890 ± 0.699 a 8.511 ± 0.699 a 6.650 ± 0.605 a 7.877 ± 0.699 a FA = 0.416, p = 0.535; FB = 4.429,
p = 0.065; FA × B = 0.085, p = 0.777

Arginine (Arg) 15.512 ± 2.206 a 23.356 ± 2.206 a 18.116 ± 1.911 a 22.678 ± 2.206 a FA = 0.203, p = 0.663; FB = 8.433,
p = 0.017; FA × B = 0.590, p = 0.462

Note: The data are presented as means ± standard error (n = 5). Four groups of free amino acid content were analyzed using general linear models (GLM) followed by Tukey’s multiple range test. Different
letters in the same row indicate significant differences among treatments (p < 0.05). FA: rice type; FB: RDV infection status; FA × B: the interaction of rice type and RDV infection status.
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3. Discussion

Omics techniques such as transcriptomics, proteomics, and metabolomics provide
powerful approaches for analyzing the unintended changes in genetically engineered
plants [21,23,34–38]. The transcriptomes, proteomes, or metabolomes of different Bt rice
events were compared with their non-transgenic parents and other traditional-breeding rice
cultivars [17,18,23,39]. It was reported that, compared with tissue culture, environmental
factors and natural variations among rice cultivars with different genetic backgrounds,
transformations, and exogenous gene insertions had much less influence on the rice tran-
scriptome, proteome, or metabolome [17,18,23,39].

The present work compared the metabolic profiles between Bt rice T1C-19 and its
non-Bt parental rice MH63, as well as those between RDV-infected and RDV-free rice.
Less than 3% of total metabolites showed difference between T1C-19 and MH63 rice, which
were far less than those between traditional rice varieties (e.g., 8.26–33.94% in Fu et al. [22];
10.08–26.91% in Liu et al. [23]), while 16 (5.0%) and 50 (15.62%) compounds showed signifi-
cant changes in response to RDV infection in MH63 and T1C-19, respectively (Figure 3).
The results indicated that Cry1C gene insertion and transformation had negligible impact
on the metabolome of rice leaves, which was consistent with previous studies [22,23,27].
Similar results have also been reported in maize and barley [16,21,40]. A recent study
reported lower phloem transport capacity of potassium to grain and worse growth per-
formance in Cry1C rice T1C-19 than in MH63 by pot experiments with different levels of
K fertilizer [41]. They inferred it might be due to unintended changes caused by Cry1C
gene insertion. However, Fu and Liu [42] reported that T1C-19 had a stronger reproductive
capacity than MH63 when grown in saline-alkaline soil. No related change was found in
T1C-19 at either transcriptomic or metabolomic level based on the present and previous
studies [23]. What caused such variation needs to be further studied.

Similar as that of insecticide treatment, RDV infection had a greater influence on
rice metabolic profiling, especially on metabolites in pathways involving metabolism of
carbohydrates, amino acids and derivatives, and organic acids and derivatives [24,25].
Some aromatic, heteropoly cyclic, and aliphatic cyclic compounds were significantly af-
fected by RDV infection, but they were not consistent in the two rice lines. Four metabolites
in MH63 showed similar response to RDV infection with that to Cry1C gene transformation
(T1C-19 vs. MH63), including glutamine, threonic acid, 2-deoxyerythritol, and cytidine-
monophosphate (Tables S2–S4). It was supposed that these might be compounds related to
stimuli response. Previous studies have revealed that the process of foreign gene insertion
was somewhat like that of exposure to biotic or abiotic stress, as genes involved in the plant
immunity signaling pathways showed significant changes [22,26].

When comparing the effects of RDV infection on metabolomes between rice lines,
carbohydrate metabolism and amino acid metabolism pathways showed more significant
response to RDV in T1C-19 than those in MH63. Some lipid metabolism related compounds
and secondary metabolites (such as resveratrol, hesperitin and farnesol, classified into
the others) showed significant response to RDV infection in T1C-19 ( Figure 3; Figure 4;
Tables S2–S4). Similar with our results, insecticide led to much stronger regulations of ascor-
bate, α-tocopherol, and the shikimate-mediated secondary metabolism in Bt-transgenic
variety B4b87 at the early stage. More flavonoids were significantly changed in transgenic
rice [24,25]. Although some differences in the metabolome and metabolic response to RDV
infection did exist between T1C-19 and MH63, the RDV infection rates had no difference
between the two rice lines (Figure 5).

Metabolic changes involved in the amino acid metabolism pathway have been re-
ported in a few Bt rice events [18,26,27]. In the present study, free amino acid contents in
Bt rice T1C-19 had no significant difference with its non-Bt parental rice MH63, although
differentially accumulated metabolites were enriched in alanine, aspartate, and glutamate
metabolism pathways. Meanwhile, the contents of free amino acids were induced by
RDV infection. Seven of them were significantly higher in RDV-infected rice plants than in
RDV-free rice, including Ala, Val, Ile, Leu, Phe, g-ABA, and Lys, which might be conductive
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to improving the performance of insect vectors feeding on virus-infected plants [43–45].
However, no more changes in amino acid contents in response to RDV infection were found
in the transgenic rice T1C-19, which was different with the results of metabolic profiling
analysis (Table 1, Figure 4). We inferred that some amino acid metabolism pathways might
be associated with stress response, but not amino acid biosynthesis.

4. Materials and Methods
4.1. Insects and Plants

The GRLH colonies were collected from the paddy field at the experiment farm of Zhejiang
University, Hangzhou, China. The colony was maintained on the susceptible rice “Taichung
Native1” (TN1) seedlings covered with a nylon cage (80-mesh, 50 cm × 50 cm × 50 cm) for
3–4 generations. It was kept in a climate chamber at 27 ± 1 ◦C, 75 ± 5% relative humidity,
under a photoperiod of 14 h: 10 h (light: dark). Viruliferous GRLHs were obtained as de-
scribed previously [9]. Non-viruliferous GRLH nymphs were confined with RDV-infected
TN1 rice plants for 48 h and then transferred into RDV-free TN1 rice plants. About two
weeks later, these nymphs were individually released into plastic tubes (diameter 2.5 cm,
height 25 cm) with one seedling in each tube and marked. Rice seedlings were replaced
every two days, and these seedlings were transplanted in the greenhouse with its reference
number. Viruliferous GRLHs were collected as typical RDV symptoms appeared on relative
rice plants and reared on the RDV-infected plants under the same condition as described
above until the experiment.

Bt rice line T1C-19 (Cry1C rice) was generated by Tang et al. [46] through the
agrobacterium-mediated transformation of the synthetic Cry1C gene into a widely used
restorer rice line Minghui63 (MH63). The 14th selfing progeny of the homozygous T1C-19
and the relative non-Bt parental rice MH63 were used in this study. To obtain RDV-infected
rice plants, 4th or 5th instar viruliferous GRLH nymphs were transferred to plastic tubes
with rice seedlings (10 days) individually after 2 h starvation. For consistency, RDV-free
rice seedlings were fed by non-viruliferous GRLHs nymphs. After 48 h of treatments,
all the GRLHs were removed, and rice seedlings were transplanted into a greenhouse
hydroponically under natural lighting at the temperature of 25 ± 2 ◦C. The RDV infection
status of the rice plants was confirmed by RT-PCR [47]. A total of 60 individual rice plants
were prepared for each treatment (MH63, T1C-19, MH63-RDV, T1C-19-RDV) for metabolite
profiling analysis and free amino acid content analysis.

4.2. Metabolite Extraction and Metabolite Profiling Analysis

Metabolite extraction and metabolite profiling analyses were similar as Guo et al. [48].
Approximately 50 mg rice leaf tissue (a mixture of three flag leaves from three 45-old-day
rice plants) for each sample was weighted into a 2 mL tube. Then, 0.4 mL extraction
buffer (methanol: chloroform at a volume ratio of 3:1) and 20 µL of ribitol (0.2 mg ml−1

stock in ddH2O, Sigma-Aldrich, Saint Louis, MO, USA) as an internal standard were
added into this tube. After vortex mixing for 10 s, the samples were homogenized in a
ball mill (Jinxin Biotech LTD. Shanghai, China) at 55 Hz for 5 min. The mixtures were
centrifuged at 12,000 rpm at 4 ◦C for 15 min, then 0.4 mL of supernatant was transferred
into a new 2 mL GC-MS sample vial and dried in a vacuum concentrator at 30 ◦C for
1.5 h. For derivatization, first, 80 µL methoxyamine (20 mg mL−1, dissolved in pyridine)
was added and incubated at 80 ◦C for 20 min after mixing and sealing. Second, 100 µL
BSTFA (containing 1% TCMS, v/v, Regis Technologies, Morton Grove, IL, USA) was added
for trimethylsilylation and incubated at 70 ◦C for 1 h. Six independent replications were
prepared for each treatment.

GC-TOF-MS analysis was performed using Agilent 7890 gas chromatograph system
(Agilent Technologies, Santa Clara, CA, USA) coupled with a Pegasus HT time-of-flight
mass spectrometer (LECO Corporation, Saint Joseph, MI, USA). DB-5 MS capillary column
coated with 5% diphenyl cross-linked with 95% dimethyl polysiloxane (30 m × 250 µm
inner diameter, 0.25 µm film thickness; J & W Scientific, Folsom, CA, USA) was used to
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separate metabolites. An aliquot of 1 µL derivative extract was injected in splitless mode
with the carrier gas helium. The front inlet purge flow was 3 mL min−1, and the gas flow
rate through the column was 1 mL min-1. The initial column temperature was kept at 50 ◦C
for 1 min, 10 ◦C min−1 rate up to the target of 330 ◦C, and then held for 5 min. The injection,
transfer line, and ion source temperatures were set at 280, 280, and 220 ◦C, respectively.
The ionization voltage was −70 eV in electron impact mode. Spectra were recorded in
full-scan mode with a scanning range from 85 to 600 m/z, at a rate of 20 spectra per second
after a solvent delay of 366 s.

4.3. Analysis of Free Amino Acid (AA) Contents

Approximately 1 g fresh rice leaf tissue (a mixture of six flag leaves from six 45-old-day
rice plants) of each sample was collected and grinded in the mortar with liquid nitrogen.
Then the powder was transferred to a 10 mL centrifuge tube containing 3% sulfosalicylic
acid solution and oscillated for 1 h. After centrifuging at 10,000 rpm at 4 ◦C for 15 min,
the supernatant was collected and filtered through 0.45 µm pore size membrane filter for
AA content analysis. Aliquots (20 µL) of the supernatants for each sample were injected
into an automated amino acid analyzer (L-8900, Hitachi, Japan) [49]. Five independent
replications for each treatment (MH63, T1C-19, MH63-RDV and T1C-19-RDV) were tested.

4.4. The RDV Infection Rates between Cry1C and MH63 Rice Plants

A group of 40 viruliferous GRLHs were selected and individually transferred into
plastic tubes (one rice seeding in each tube). Three biological replications were used for
studying the RDV infection rates between Cry1C and MH63 rice plants. Rice seedlings
were collected after 48 h GRLHs feeding and transplanted to a greenhouse with the same
method as described above. Fifteen days later, the RDV infection status of Cry1C and MH63
rice plants were determined by RT-PCR [47], and the RDV infection rates were calculated.

4.5. Data Processing and Statistical Analysis

Chroma TOF 4.3X software of LECO Corporation and LECO-Fiehn Rtx5 database
were used for raw peak extraction, peak alignment, peak identification, and integration
of the peak area [50]. Retention time index (RI) was used for peak identification, and the
RI tolerance was 5000. The resultant three-dimensional data, including peak numbers,
sample names, and normalized data, were then imported into the “soft independent mod-
elling of class analogy” (SIMCA) 13.0 software (Umetrics, Umea, Sweden) for principal
component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), and or-
thogonal PLS discriminant analysis (OPLS-DA). A hierarchical clustering heat map was
created using HemI (1.0.3.7) software. A two-step strategy was used to calculate the dis-
tance among treatments. The distance between data sets was calculated using ‘Pearson
distance’, while distance between clusters was calculated by ‘Average linkage clustering’
algorithm [51]. Variable importance in the projection (VIP > 1) of the first principal compo-
nent using the OPLS-DA model and Student’s t-test (p < 0.05) were used to identify the
differential metabolite. The three compared groups were T1C-19 vs. MH63, MH63-RDV
vs. MH63, and T1C-19-RDV vs. T1C-19. Discriminatory compounds were then mapped
to metabolic pathways in MetaboAnalyst (https://www.metaboanalyst.ca), while KEGG
(Kyoto Encyclopaedia of Genes and Genomes) was selected for database search. Fisher
exact test was selected for enrichment, and relative betweenness centrality was chosen for
topology analysis [52].

Data on free AA contents of rice leaves and the RDV infection rates were analyzed
using SPSS 20.0 software. The free AA contents of four different groups were analyzed
using general linear models (GLMs) followed by Tukey’s multiple range test. The RDV
infection rates between Cry1C and MH63 rice plants were analyzed using Student’s t-test.

https://www.metaboanalyst.ca
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5. Conclusions

In summary, we compared the metabolic profiling of Bt rice T1C-19 with its non-Bt
parent rice MH63 and also the differences in metabolic changes in response to RDV stress
between the two rice lines. Slice difference was detected in metabolic profiles between
T1C-19 and MH63, while RDV infection had an obviously greater influence on metabolic
profiles of both rice lines. We should be aware that metabolite changes alone do not mean
it is unsafe. As it has been found in this study, the transformation of Cry1C gene does
not affect the RDV sensitivity of rice plants. The greenhouse experiments can reflect the
field experiments to a certain extent, due to the complex environmental factors in the field.
To further validate the results in the greenhouse, field experiments are the direction of our
next research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11040209/s1, Figure S1. Partial least squares discriminant analysis (PLS-DA) of
metabolites for three compared groups. PLS-DA score plots for T1C-19 (green square) and MH63 (red
triangle) (A), for MH63-RDV (blue circle) and MH63 (red triangle) (B), for T1C-19-RDV (blue circle)
and T1C-19 (green square) (C). Figure S2. Permutation test of PLS-DA for the three compared groups.
Two hundred permutations were performed, and the resulting R2 and Q2 values were plotted. (R2,
green triangle), (Q2, blue square). The green dots represent the regression line for R2 and the blue
dots for Q2. (A) T1C-19 and MH63, (B) MH63-RDV and MH63, (C) T1C-19-RDV and T1C-19. Table
S1. Metabolite profiling for compounds in rice leaves identified using mass spectrometry database.
Table S2. The relative abundance of differential metabolites in rice leaves by pairwise comparison
between T1C-19 and MH63. Table S3. The relative abundance of differential metabolites in rice
leaves by pairwise comparison between MH63-RDV and MH63. Table S4. The relative abundance
of differential metabolites in rice leaves by pairwise comparison between T1C-19-RDV and T1C-19.
Table S5. The raw data of all metabolites. Table S6. The relative contents of all metabolites.
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