Sex Affects Human Premature Neonates’ Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment
Abstract
:1. Introduction
2. Results
2.1. Populations
2.2. GA Effect on Blood Metabolome of Premature Female and Male Babies
2.2.1. Intra-Sex Analysis of GA Effect
2.2.2. Inter-Sex Analysis of GA Effect
2.3. PN Effect on Blood Metabolome of Female and Male Premature Neonates
2.3.1. Intra-Sex Analysis of PN Effect
2.3.2. Inter-Sex Differences of PN Effect
2.4. Caffeine Effect on Blood Metabolome of Female and Male Premature Neonates
2.4.1. Intra-Sex Analysis of Caffeine Effect
2.4.2. Inter-Sex Differences of Caffeine Effect
2.5. Cluster Analysis of Cohorts
2.6. Correlation Analysis
3. Discussion
4. Methods
4.1. Populations
4.2. Sample Preparation for Tandem Mass Spectrometry
4.3. Tandem Mass Spectrometry Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.; Driscoll, A.K.; Mathews, T.J. Births: Final data for 2015. Natl. Vital. Stat. Rep. 2017, 66, 1. [Google Scholar]
- Souza, R.T.; Mayrink, J.; Leite, D.F.; Costa, M.L.; Calderon, I.M.; Rocha Filho, E.A.; Vettorazzi, J.; Feitosa, F.E.; Cecatti, J.G. Metabolomics applied to maternal and perinatal health: A review of new frontiers with a translation potential. Clinics 2019, 74, e894. [Google Scholar] [CrossRef]
- Natarajan, G.; Shankaran, S. Short- and long-term outcomes of moderate and late preterm infants. Am. J. Perinatol. 2016, 33, 305–317. [Google Scholar] [PubMed]
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.B.; Kinney, M.; Lawn, J. Born too soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10 (Suppl. S1), S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, R.T.; Cecatti, J.G. A Comprehensive integrative review of the factors associated with spontaneous preterm birth, its prevention and prediction, including metabolomic markers. Rev. Bras. Ginecol. Obs. 2020, 42, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.H.; Yang, C.Y.; Chiu, Y.W. Neonatal outcomes in relation to sex differences: A national cohort survey in Taiwan. Biol. Sex Differ. 2015, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; Hawken, S.; Ducharme, R.; Potter, B.K.; Little, J.; Thebaud, B.; Chakraborty, P. Metabolomics of prematurity: Analysis of patterns of amino acids, enzymes, and endocrine markers by categories of gestational age. Pediatr. Res. 2014, 75, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Kaye, C.I.; Accurso, F.; La Franchi, S.; Lane, P.A.; Northrup, H.; Pang, S.; Schaefer, G.B. Introduction to the newborn screening fact sheets. Pediatrics 2006, 118, 1304–1312. [Google Scholar] [CrossRef] [Green Version]
- Ryckman, K.K.; Berberich, S.L.; Shchelochkov, O.A.; Cook, D.E.; Murray, J.C. Clinical and environmental influences on metabolic biomarkers collected for newborn screening. Clin. Biochem. 2013, 46, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.; Bhatia, J. Total parenteral nutrition for the very low birth weight infant. Semin. Fetal Neonatal Med. 2017, 22, 2–7. [Google Scholar] [CrossRef]
- Abdel-Hady, H.; Nasef, N.; Shabaan, A.E.; Nour, I. Caffeine therapy in preterm infants. World J. Clin. Pediatr. 2015, 4, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Aranda, J.V.; Beharry, K.D. Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Semin. Fetal Neonatal Med. 2020, 25, 101183. [Google Scholar] [CrossRef]
- Sinha, R.A.; Farah, B.L.; Singh, B.K.; Siddique, M.M.; Li, Y.; Wu, Y.; Ilkayeva, O.R.; Gooding, J.; Ching, J.; Zhou, J.; et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 2014, 59, 1366–1380. [Google Scholar] [CrossRef]
- Yeo, S.E.; Jentjens, R.L.; Wallis, G.A.; Jeukendrup, A.E. Caffeine increases exogenous carbohydrate oxidation during exercise. J. Appl. Physiol. 2005, 99, 844–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franconi, F.; Campesi, I.; Colombo, D.; Antonini, P. Sex-gender variable: Methodological recommendations for increasing scientific value of clinical studies. Cells 2019, 8, 476. [Google Scholar] [CrossRef] [Green Version]
- Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef] [Green Version]
- Rich-Edwards, J.W.; Kaiser, U.B.; Chen, G.L.; Manson, J.E.; Goldstein, J.M. Sex and gender differences research design for basic, clinical, and population studies: Essentials for investigators. Endocr. Rev. 2018, 39, 424–439. [Google Scholar] [CrossRef] [Green Version]
- Campesi, I.; Franconi, F.; Seghieri, G.; Meloni, M. Sex-gender-related therapeutic approaches for cardiovascular complications associated with diabetes. Pharmacol. Res. 2017, 119, 195–207. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I. Sex impact on biomarkers, pharmacokinetics and pharmacodynamics. Curr. Med. Chem. 2017, 24, 2561–2575. [Google Scholar] [CrossRef]
- Clarke, J. Observations on some causes of excess mortality of males above that of females. Philos. Trans. R. Soc. Lond. 1786, 76, 349–364. [Google Scholar]
- Oladipo, O.O.; Weindel, A.L.; Saunders, A.N.; Dietzen, D.J. Impact of premature birth and critical illness on neonatal range of plasma amino acid concentrations determined by LC-MS/MS. Mol. Genet. Metab. 2011, 104, 476–479. [Google Scholar] [CrossRef]
- Carter, R.A.; Pan, K.; Harville, E.W.; McRitchie, S.; Sumner, S. Metabolomics to reveal biomarkers and pathways of preterm birth: A systematic review and epidemiologic perspective. Metabolomics 2014, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Gucciardi, A.; Zaramella, P.; Costa, I.; Pirillo, P.; Nardo, D.; Naturale, M.; Chiandetti, L.; Giordano, G. Analysis and interpretation of acylcarnitine profiles in dried blood spot and plasma of preterm and full-term newborns. Pediatr. Res. 2015, 77, 36–47. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Scolamiero, E.; Caterino, M.; Mirisola, V.; Franconi, F.; Campesi, I. Female and male human babies have distinct blood metabolomic patterns. Mol. Biosyst. 2015, 11, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Caterino, M.; Ruoppolo, M.; Villani, G.R.D.; Marchese, E.; Costanzo, M.; Sotgiu, G.; Dore, S.; Franconi, F.; Campesi, I. Influence of sex on urinary organic acids: A cross-sectional study in children. Int. J. Mol. Sci. 2020, 21, 582. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Hernandez, Y.; Oropeza-Valdez, J.J.; Blanco-Sandate, J.O.; Herrera-Van Oostdam, A.S.; Zheng, J.; Chi Guo, A.; Lima-Rogel, V.; Rajabzadeh, R.; Salgado-Bustamante, M.; Adrian-Lopez, J.; et al. The urinary metabolome of healthy newborns. Metabolites 2020, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Foxall, P.J.; Bewley, S.; Neild, G.H.; Rodeck, C.H.; Nicholson, J.K. Analysis of fetal and neonatal urine using proton nuclear magnetic resonance spectroscopy. Arch. Dis. Child Fetal Neonatal Ed. 1995, 73, F153–F157. [Google Scholar] [CrossRef] [Green Version]
- Atzori, L.; Antonucci, R.; Barberini, L.; Locci, E.; Marincola, F.C.; Scano, P.; Cortesi, P.; Agostiniani, R.; Defraia, R.; Weljie, A.; et al. 1H NMR-based metabolomic analysis of urine from preterm and term neonates. Front. Biosci. 2011, 3, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Moltu, S.J.; Sachse, D.; Blakstad, E.W.; Strommen, K.; Nakstad, B.; Almaas, A.N.; Westerberg, A.C.; Ronnestad, A.; Braekke, K.; Veierod, M.B.; et al. Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients 2014, 6, 1913–1930. [Google Scholar] [CrossRef] [Green Version]
- Ernst, M.; Rogers, S.; Lausten-Thomsen, U.; Björkbom, A.; Laursen, S.S.; Courraud, J.; Børglum, A.; Nordentoft, M.; Werge, T.; Mortensen, P.B.; et al. Gestational age-dependent development of the neonatal metabolome. Pediatr. Res. 2020. [Google Scholar] [CrossRef]
- Slaughter, J.L.; Meinzen-Derr, J.; Rose, S.R.; Leslie, N.D.; Chandrasekar, R.; Linard, S.M.; Akinbi, H.T. The effects of gestational age and birth weight on false-positive newborn-screening rates. Pediatrics 2010, 126, 910–916. [Google Scholar] [CrossRef]
- Clark, R.H.; Kelleher, A.S.; Chace, D.H.; Spitzer, A.R. Gestational age and age at sampling influence metabolic profiles in premature infants. Pediatrics 2014, 134, e37–e46. [Google Scholar] [CrossRef] [Green Version]
- Liu Msc, D.; Wang Msc, L.; Shen Phd, H.; Han Phd, L.; Wang Phd, Y.; He Phd, Z. Dynamic changes in blood amino acid concentrations in preterm infants in different nutritional periods. Asia Pac. J. Clin. Nutr. 2020, 29, 803–812. [Google Scholar] [CrossRef]
- Martin, C.R.; Brown, Y.F.; Ehrenkranz, R.A.; O’Shea, T.M.; Allred, E.N.; Belfort, M.B.; McCormick, M.C.; Leviton, A. Nutritional practices and growth velocity in the first month of life in extremely premature infants. Pediatrics 2009, 124, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Bellu, R. Weight growth velocity and postnatal growth failure in infants 501 to 1500 grams: 2000–2013. Pediatrics 2015, 136, e84–e92. [Google Scholar] [CrossRef] [Green Version]
- Griffin, I.J.; Tancredi, D.J.; Bertino, E.; Lee, H.C.; Profit, J. Postnatal growth failure in very low birthweight infants born between 2005 and 2012. Arch. Dis. Child Fetal Neonatal Ed. 2016, 101, F50–F55. [Google Scholar] [CrossRef] [Green Version]
- Bonsante, F.; Gouyon, J.-B.; Robillard, P.-Y.; Gouyon, B.; Iacobelli, S. Early optimal parenteral nutrition and metabolic acidosis in very preterm infants. PLoS ONE 2017, 12, e0186936. [Google Scholar] [CrossRef] [Green Version]
- Altmaier, E.; Kastenmuller, G.; Romisch-Margl, W.; Thorand, B.; Weinberger, K.M.; Adamski, J.; Illig, T.; Doring, A.; Suhre, K. Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Mol. Nutr. Food Res. 2009, 53, 1357–1365. [Google Scholar] [CrossRef]
- Schlosberg, A.J.; Fernstrom, J.D.; Kopczynski, M.C.; Cusack, B.M.; Gillis, M.A. Acute effects of caffeine injection on neutral amino acids and brain monoamine levels in rats. Life Sci. 1981, 29, 173–183. [Google Scholar] [CrossRef]
- Struder, H.K.; Ferrauti, A.; Gotzmann, A.; Weber, K.; Hollmann, W. Effect of carbohydrates and caffeine on plasma amino acids, neuroendocrine responses and performance in tennis. Nutr. Neurosci. 1998, 1, 419–426. [Google Scholar] [CrossRef]
- Simoes-Henriques, C.; Mateus-Pinheiro, M.; Gaspar, R.; Pinheiro, H.; Mendes Duarte, J.; Baptista, F.I.; Canas, P.M.; Fontes-Ribeiro, C.A.; Cunha, R.A.; Ambrosio, A.F.; et al. Microglia cytoarchitecture in the brain of adenosine A2A receptor knockout mice: Brain region and sex specificities. Eur. J. Neurosci. 2020, 51, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Teng, B.; Mustafa, S.J. Sex difference in coronary endothelial dysfunction in apolipoprotein E knockout mouse: Role of NO and A2A adenosine receptor. Microcirculation 2015, 22, 518–527. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; March of Dimes; Partnership for Maternal Newborn and Child Health. Save the Children Born Too Soon: The Global Action Report on Preterm Birth; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Ruoppolo, M.; Caterino, M.; Albano, L.; Pecce, R.; Di Girolamo, M.G.; Crisci, D.; Costanzo, M.; Milella, L.; Franconi, F.; Campesi, I. Targeted metabolomic profiling in rat tissues reveals sex differences. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Campesi, I.; Scolamiero, E.; Pecce, R.; Caterino, M.; Cherchi, S.; Mercuro, G.; Tonolo, G.; Franconi, F. Serum Metabolomic Profiles Suggest Influence of Sex and Oral Contraceptive Use. Am. J. Transl. Res. 2014, 6, 614–624. [Google Scholar] [PubMed]
- Giacco, A.; Paoli, G.D.; Senese, R.; Cioffi, F.; Silvestri, E.; Moreno, M.; Ruoppolo, M.; Caterino, M.; Costanzo, M.; Lombardi, A.; et al. The saturation degree of fatty acids and their derived acylcarnitines determines the direct effect of metabolically active thyroid hormones on insulin sensitivity in skeletal muscle cells. FASEB J. 2019, 33, 1811–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pasquale, V.; Caterino, M.; Costanzo, M.; Fedele, R.; Ruoppolo, M.; Pavone, L.M. Targeted metabolomic analysis of a mucopolysaccharidosis IIIB mouse model reveals an imbalance of branched-chain amino acid and fatty acid metabolism. Int. J. Mol. Sci. 2020, 21, 4211. [Google Scholar] [CrossRef]
- Costanzo, M.; Caterino, M.; Cevenini, A.; Jung, V.; Chhuon, C.; Lipecka, J.; Fedele, R.; Guerrera, I.C.; Ruoppolo, M. Proteomics reveals that methylmalonyl-coa mutase modulates cell architecture and increases susceptibility to stress. Int. J. Mol. Sci. 2020, 21, 4998. [Google Scholar] [CrossRef] [PubMed]
Preterm Infants (311) | ||||||||
---|---|---|---|---|---|---|---|---|
Females (137) | Males (174) | |||||||
VPI (66) | MLPI (71) | VPI (81) | MLPI (93) | |||||
BW | 1313 (1120–1460) | 1600 (1470–1700) * | 1350 (1180–1470) | 1545 (1430–1690) * | ||||
GA | 30 (29–31) | 34 (33–34) * | 30 (29–31) | 33 (32–34) * | ||||
No caffeine (41) | Caffeine (25) | No caffeine (55) | Caffeine (16) | No caffeine (52) | Caffeine (29) | No caffeine (72) | Caffeine (21) | |
BW | 1250 | 1400 | 1600 | 1539 | 1350 | 1330 | 1560 | 1500 |
(1110–1400) | (1140–1580) | (1500–1700) | (1282–1703) | (1195–1452) | (1160–1564) | (1440–1683) | (1420–1700) | |
GA | 30 (29–31) | 30 (29–31) | 34 (33–35) | 33 (32–34) ° | 30 (29–31) | 30 (30–31) | 34 (32–35) | 32 (32–33) ° |
NPN (28) | PN (38) | NPN (34) | PN (37) | NPN (30) | PN (51) | NPN (49) | PN (44) | |
BW | 1340 | 1210 | 1670 | 1570 | 1350 | 1330 | 1590 | 1490 |
(1420–1700) | (996–1490) | (1500–1720) | (1450–1660) | (1240–1453) | (1160–1490) | (1450–1700) | (1380–1660) ^ | |
GA | 30.5 (29–31.5) | 31 (29–31) | 34 (33–35) | 33 (33–34) | 30.5 (30–31) | 30 (29–31) | 34 (32–36) | 33 (32–34) ^ |
Females(137) | ||||
VPI(66) | MLPI(71) | p | % of Change | |
Tyr | 52.0 (42.9–80.8) | 42.4 (30.4–60.8) | 0.002 | −18.5 |
C4 | 0.37 (0.26–0.50) | 0.26 (0.22–0.39) | 0.004 | −29.7 |
C5:1 | 0.03 (0.02–0.04) | 0.03 (0.02–0.03) | 0.02 | 0.0 |
C5 | 0.23 (0.19–0.32) | 0.19 (0.14–0.30) | 0.03 | −17.4 |
C8 | 0.08 (0.06–0.12) | 0.07 (0.05–0.10) | 0.02 | −12.5 |
C14:2 | 0.06 (0.05–0.07) | 0.05 (0.04–0.06) | 0.007 | −16.7 |
C4-OH | 0.08 (0.06–0.11) | 0.07 (0.06–0.10) | 0.03 | −12.5 |
Males(174) | ||||
VPI(81) | MLPI(93) | p | % of Change | |
Ala | 124.4 (94.8–147.2) | 143.2 (110.7–171.0) | 0.0008 | 15.1 |
Glu | 149.4 (117.5–190.2) | 165.1 (136.6–215.0) | 0.01 | 10.5 |
C3 | 3.0 (2.1–3.6) | 2.4 (1.6–3.1) | 0.002 | −20.0 |
C4 | 0.36 (0.28–0.58) | 0.30 (0.24–0.41) | 0.006 | −16.7 |
C5 | 0.25 (0.20–0.32) | 0.20 (0.14) | <0.001 | −20.0 |
C8 | 0.09 (0.07–0.13) | 0.08 (0.06–0.11) | 0.04 | −11.1 |
C3DC | 0.04 (0.03–0.05) | 0.03 (0.03–0.04) | 0.04 | −25.0 |
C4-OH | 0.09 (0.07–0.11) | 0.08 (0.06–0.10) | 0.01 | −11.1 |
C10:2 | 0.04 (0.03–0.05) | 0.03 (0.03–0.04) | 0.02 | −25.0 |
Females VPI(66) | NPN(28) | PN(38) | p | % of Change |
ASP | 26.2 (20.0–40.7) | 19.4 (14.9–24.6) | 0.002 | −26.0 |
Glu | 206.6 (172.7–256.8) | 150.5 (123.8–176.0) | 0.0003 | −27.2 |
Gly | 283.2 (240.4–332.3) | 260 (201.2–285.5) | 0.01 | −8.2 |
Cit | 10.5 (8.8–12.6) | 7.0 (6.3–9.7) | 0.01 | −33.3 |
C5OH | 0.14 (0.12–0.17) | 0.11 (0.09–0.15) | 0.02 | −21.4 |
C4DC | 0.12 (0.10–0.16) | 0.10 (0.08–0.14) | 0.007 | −16.7 |
C12:1 | 0.04 (0.03–0.05) | 0.03 (0.02–0.04) | 0.02 | −25.0 |
C18OH | 0.02 (0.01–0.02) | 0.01 (0.01–0.02) | 0.04 | −50.0 |
C18:2 | 0.22 (0.17–0.37) | 0.38 (0.23–0.52) | 0.006 | 72.7 |
ArgSuc | 0.21 (0.13–0.34) | 0.10 (0.08–0.13) | <0.0001 | −52.4 |
Females MLPI(71) | NPN(34) | PN(37) | p | % of Change |
Glu | 196.1 (142.8–261.3) | 156.9 (135.7–174.3) | 0.007 | −20.0 |
C5 | 0.16 (0.13–0.23) | 0.23 (0.17–0.33) | 0.005 | 43.8 |
C12 | 0.09 (0.07–0.11) | 0.14 (0.11–0.18) | <0.0001 | 55.6 |
C6DC | 0.02 (0.02–0.03) | 0.04 (0.03–0.04) | <0.0001 | 100.0 |
C14:1 | 0.10 (0.07–0.12) | 0.11 (0.09–0.14) | 0.04 | 10.0 |
C8DC | 0.03 (0.02–0.03) | 0.03 (0.2–0.03) | 0.005 | 0.0 |
C10:2 | 0.03 (0.02–0.04) | 0.04 (0.03–0.05) | 0.02 | 33.3 |
Males VPI(81) | NPN(30) | PN(51) | p | % of Change |
Phe | 40.6 (38.7–51.2) | 48.9 (40.1–54.1) | 0.03 | 20.4 |
C2 | 22.8 (19.4–31.3) | 20.0 (15.2–25.4) | 0.01 | −12.3 |
C8 | 0.10 (0.08–0.14) | 0.08 (0.06–0.11) | 0.04 | −20.0 |
C10:2 | 0.05 (0.03–0.06) | 0.04 (0.03–0.05) | 0.02 | −20.0 |
C14-OH | 0.02 (0.02–0.04) | 0.02 (0.02–0.03) | 0.02 | 0.0 |
Esterified | 33.0 (28.0–44.8) | 28.9 (23.0–35.5) | 0.03 | −12.4 |
Esterified/C0 | 1.12 (0.93–1.38) | 0.93 (0.80–1.03) | 0.001 | −17.0 |
Males MLPI(93) | NPN(49) | PN(44) | p | % of Change |
Asp | 19.9 (16.2–30.7) | 17.4 (12.2–23.6) | 0.04 | −12.6 |
Glu | 191.6 (149.9–258.2) | 149.0 (124.7–189.7) | 0.005 | −22.2 |
ArgSuc | 0.15 (0.10–0.27) | 0.11 (0.08–0.13) | 0.02 | −26.7 |
C5 | 0.17 (0.13–0.26) | 0.22 (0.18–0.25) | 0.03 | 29.4 |
C10:1 | 0.06 (0.05–0.08) | 0.08 (0.06–0.10) | 0.02 | 33.3 |
C10 | 0.06 (0.04–0.08) | 0.07 (0.06–0.09) | 0.007 | 16.7 |
C12 | 0.10 (0.07–0.12) | 0.15 (0.11–0.22) | <0.0001 | 50.0 |
C6DC | 0.02 (0.02–0.03) | 0.03 (0.02–0.04) | 0.0004 | 50.0 |
C14:1 | 0.10 (0.08–0.12) | 0.12 (0.10–0.16) | 0.002 | 20.0 |
Male MLPI (93) | No Caffeine (72) | Caffeine (n = 21) | p | % of Changes |
---|---|---|---|---|
Asp | 19.9 (15.5–28.2) | 15.4 (12.5–19.3) | 0.01 | −22.6 |
Gly | 246.1 (209.3–308.4) | 210.8 (190.1–251.3) | 0.03 | −14.3 |
C3 | 2.10 (1.41–3.00) | 2.79 (2.22–3.74) | 0.02 | 32.9 |
C5 | 0.20 (0.14–0.24) | 0.25 (0.18–0.37) | 0.03 | 25.0 |
C5OH | 0.11 (0.09–0.13) | 0.15 (0.13–0.17) | 0.0005 | 36.4 |
C14:2 | 0.05 (0.04–0.06) | 0.06 (0.05–0.09) | 0.01 | 20.0 |
C4-OH | 0.08 (0.06–0.09) | 0.10 (0.07–0.11) | 0.04 | 25.0 |
C8:1 | 0.08 (0.06–0.11) | 0.10 (0.07–0.15) | 0.04 | 25.0 |
Cluster 1 (57) | Cluster 2 (81) | Cluster 3 (63) | Cluster 4 (109) | p | |
---|---|---|---|---|---|
MLPI n (%) | 25/57 (47.4) | 0/81 (0.0) | 28/63 (44.4) | 108/109 (99.1) | <0.0001 |
Males, n (%) | 36/57 (63.2) | 35/81 (43.2) | 42/63 (66.7) | 60/109 (55.1) | 0.02 |
Caffeine n (%) | 6/57 (10.5) | 17/81 (21.0) | 63/63 (100.0) | 4/109 (3.7) | <0.0001 |
Variables | Median (25–75°) | Median (25–75°) | Median (25–75°) | Median (25–75°) | |
BW (g) | 1440 (1250–1550) | 1340 (1160–1455) | 1400 (1215–1614) | 1600 (1460–1700) | 0.0001 |
GA (weeks) | 31 (30–33) | 30 (29–31) | 31 (30–33) | 34 (33–35) | 0.0001 |
Ala | 150.801 (122.174–180.062) | 124.026 (99.062–148.067) | 126.591 (107.798–151.829) | 145.052 (109.841–172.662) | 0.0003 |
Val | 106.584 (83.963–136.743) | 104.994 (86.13–127.96) | 117.012 (102.017–136.597) | 106.837 (85.085–126.932) | 0.12 |
Xle | 107.413 (90.137–130.46) | 101.852 (88.065–117.632) | 110.647 (100.696–123.947) | 101.129 (83.692–128.112) | 0.24 |
Met | 17.539 (13.803–22.582) | 15.973 (10.929–20.85) | 16.195 (12.775–21.616) | 17.51 (12.73–22.8) | 0.33 |
Phe | 47.4 (41.375–51.744) | 45.185 (38.978–52.324) | 44.745 (40.114–55.226) | 44.545 (37.098–52.693) | 0.18 |
Tyr | 45.995 (28.449–74.207) | 48.375 (36.883–70.545) | 44.892 (30.827–67.913) | 43.727 (33.838–68.168) | 0.40 |
Asp | 17.735 (13.168–27.255) | 18.744 (13.32–24.069) | 19.077 (15.92–22.421) | 19.683 (16.534–27.125) | 0.46 |
Glu | 190.407 (148.687–223.336) | 144.804 (115.583–181.086) | 156.037 (134.021–191.755) | 168.567 (135.652–211.863) | 0.0006 |
Gly | 276.704 (232.942–332.976) | 240.244 (205.041–268.421) | 252.431 (209.438–284.445) | 247.257 (210.468–303.637) | 0.003 |
Orn | 26.499 (19.007–37.426) | 27.371 (22.179–35.831) | 28.965 (21.691–38.736) | 26.492 (21.807–43.237) | 0.66 |
Cit | 8.213 (6.04–10.569) | 7.493 (5.904–9.678) | 7.421 (5.945–9.477) | 7.265 (5.985–9.349) | 0.72 |
Arg | 5.952 (3.179–10.897) | 6.195 (4.163–8.947) | 7.518 (4.961–10.917) | 5.577 (3.655–8.814) | 0.24 |
ArgSuc | 0.117 (0.086–0.163) | 0.119 (0.092–0.182) | 0.131 (0.099–0.216) | 0.127 (0.093–0.217) | 0.45 |
C0 | 47.602 (41.255–65.436) | 27.103 (22.293–30.701) | 32.913 (26.103–40.13) | 29.325 (23.784–36.708) | 0.0001 |
C2 | 29.484 (24.923–35.353) | 18.261 (15.026–21.575) | 22.15 (18.455–26.398) | 20.587 (16.11–22.948) | 0.0001 |
C3 | 3.354 (2.605–4.471) | 2.275 (1.481–3.151) | 2.772 (2.112–3.836) | 1.977 (1.462–2.742) | 0.0001 |
C4 | 0.465 (0.341–0.687) | 0.326 (0.243–0.468) | 0.368 (0.248–0.5) | 0.269 (0.225–0.34) | 0.0001 |
C5 | 0.266 (0.208–0.432) | 0.223 (0.181–0.293) | 0.234 (0.199–0.278) | 0.183 (0.135–0.234) | 0.0001 |
C6 | 0.06 (0.047–0.075) | 0.042 (0.031–0.047) | 0.047 (0.041–0.061) | 0.04 (0.031–0.052) | 0.0001 |
C8 | 0.111 (0.077–0.143) | 0.076 (0.059–0.091) | 0.094 (0.07–0.123) | 0.07 (0.053–0.092) | 0.0001 |
C10 | 0.103 (0.072–0.155) | 0.06 (0.05–0.072) | 0.065 (0.052–0.085) | 0.059 (0.046–0.077) | 0.0001 |
C12 | 0.178 (0.13–0.252) | 0.092 (0.067–0.116) | 0.103 (0.076–0.141) | 0.106 (0.077–0.147) | 0.0001 |
C14 | 0.307 (0.255–0.352) | 0.145 (0.114–0.181) | 0.179 (0.131–0.252) | 0.153 (0.123–0.194) | 0.0001 |
C16 | 3.054 (2.725–3.523) | 1.226 (0.951–1.613) | 1.678 (1.362–2.351) | 1.549 (1.305–1.907) | 0.0001 |
C18 | 1.119 (0.96–1.31) | 0.628 (0.485–0.791) | 0.826 (0.631–1.001) | 0.663 (0.535–0.784) | 0.0001 |
C3DC | 0.043 (0.035–0.053) | 0.033 (0.024–0.04) | 0.037 (0.029–0.046) | 0.033 (0.026–0.041) | 0.0001 |
C4DC | 0.134 (0.1–0.176) | 0.101 (0.081–0.127) | 0.119 (0.088–0.146) | 0.111 (0.088–0.143) | 0.001 |
C5DC | 0.056 (0.04–0.074) | 0.041 (0.034–0.052) | 0.043 (0.035–0.058) | 0.043 (0.033–0.051) | 0.0001 |
C6DC | 0.03 (0.024–0.04) | 0.024 (0.017–0.034) | 0.026 (0.017–0.035) | 0.024 (0.019–0.036) | 0.005 |
C8DC | 0.038 (0.03–0.042) | 0.026 (0.021–0.033) | 0.027 (0.02–0.034) | 0.026 (0.021–0.032) | 0.0001 |
C10DC | 0.594 (0.511–0.703) | 0.256 (0.206–0.341) | 0.324 (0.256–0.466) | 0.313 (0.234–0.411) | 0.0001 |
C4OH | 0.106 (0.088–0.131) | 0.074 (0.06–0.093) | 0.09 (0.068–0.107) | 0.068 (0.053–0.082) | 0.0001 |
C5OH | 0.14 (0.113–0.167) | 0.116 (0.096–0.141) | 0.132 (0.104–0.158) | 0.104 (0.088–0.134) | 0.0001 |
C6OH | 0.037 (0.032–0.047) | 0.032 (0.021–0.039) | 0.035 (0.025–0.042) | 0.029 (0.023–0.035) | 0.0001 |
C12OH | 0.026 (0.019–0.038) | 0.018 (0.015–0.022) | 0.02 (0.016–0.024) | 0.019 (0.015–0.023) | 0.0001 |
C14OH | 0.031 (0.023–0.04) | 0.02 (0.016–0.025) | 0.02 (0.017–0.027) | 0.021 (0.016–0.027) | 0.0001 |
C16OH | 0.032 (0.025–0.04) | 0.02 (0.016–0.024) | 0.02 (0.017–0.027) | 0.018 (0.015–0.025) | 0.0001 |
C16:1OH | 0.061 (0.053–0.072) | 0.034 (0.027–0.043) | 0.041 (0.034–0.049) | 0.037 (0.03–0.046) | 0.0001 |
C18OH | 0.017 (0.013–0.025) | 0.014 (0.011–0.016) | 0.013 (0.011–0.017) | 0.013 (0.01–0.017) | 0.0001 |
C18:1OH | 0.03 (0.025–0.036) | 0.021 (0.016–0.024) | 0.023 (0.018–0.031) | 0.02 (0.017–0.025) | 0.0001 |
C5:1 | 0.032 (0.026–0.036) | 0.03 (0.022–0.038) | 0.029 (0.022–0.036) | 0.028 (0.02–0.035) | 0.11 |
C6:1 | 0.059 (0.044–0.086) | 0.044 (0.031–0.061) | 0.053 (0.041–0.068) | 0.049 (0.036–0.061) | 0.002 |
C8:1 | 0.099 (0.073–0.147) | 0.086 (0.061–0.129) | 0.101 (0.061–0.156) | 0.075 (0.057–0.107) | 0.004 |
C10:1 | 0.096 (0.07–0.137) | 0.068 (0.046–0.092) | 0.071 (0.054–0.109) | 0.066 (0.051–0.086) | 0.0001 |
C10:2 | 0.04 (0.031–0.054) | 0.038 (0.028–0.047) | 0.034 (0.029–0.046) | 0.033 (0.025–0.042) | 0.03 |
C12:1 | 0.056 (0.042–0.087) | 0.027 (0.024–0.035) | 0.033 (0.024–0.045) | 0.031 (0.024–0.038) | 0.0001 |
C14:1 | 0.166 (0.133–0.212) | 0.097 (0.071–0.115) | 0.115 (0.087–0.144) | 0.096 (0.074–0.12) | 0.0001 |
C14:2 | 0.064 (0.05–0.084) | 0.052 (0.041–0.064) | 0.057 (0.046–0.075) | 0.047 (0.038–0.058) | 0.0001 |
C16:1 | 0.257 (0.191–0.312) | 0.11 (0.083–0.131) | 0.118 (0.089–0.2) | 0.108 (0.088–0.141) | 0.0001 |
C18:1 | 1.72 (1.499–2.009) | 0.964 (0.769–1.304) | 1.326 (1.075–1.52) | 1.14 (0.958–1.316) | 0.0001 |
C18:2 | 0.339 (0.248–0.521) | 0.296 (0.198–0.452) | 0.32 (0.216–0.498) | 0.29 (0.186–0.376) | 0.03 |
Total esterified | 46.269 (38.999–80.999) | 26.523 (22.029–29.359) | 52.47 (35.969–71.096) | 36.111 (29.416–51.438) | 0.0001 |
Esterified/free | 0.878 (0.512–1.007) | 0.987 (0.815–1.157) | 0.093 (0.046–0.819) | 0.71 (0.047–0.989) | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caterino, M.; Ruoppolo, M.; Costanzo, M.; Albano, L.; Crisci, D.; Sotgiu, G.; Saderi, L.; Montella, A.; Franconi, F.; Campesi, I. Sex Affects Human Premature Neonates’ Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment. Metabolites 2021, 11, 158. https://doi.org/10.3390/metabo11030158
Caterino M, Ruoppolo M, Costanzo M, Albano L, Crisci D, Sotgiu G, Saderi L, Montella A, Franconi F, Campesi I. Sex Affects Human Premature Neonates’ Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment. Metabolites. 2021; 11(3):158. https://doi.org/10.3390/metabo11030158
Chicago/Turabian StyleCaterino, Marianna, Margherita Ruoppolo, Michele Costanzo, Lucia Albano, Daniela Crisci, Giovanni Sotgiu, Laura Saderi, Andrea Montella, Flavia Franconi, and Ilaria Campesi. 2021. "Sex Affects Human Premature Neonates’ Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment" Metabolites 11, no. 3: 158. https://doi.org/10.3390/metabo11030158
APA StyleCaterino, M., Ruoppolo, M., Costanzo, M., Albano, L., Crisci, D., Sotgiu, G., Saderi, L., Montella, A., Franconi, F., & Campesi, I. (2021). Sex Affects Human Premature Neonates’ Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment. Metabolites, 11(3), 158. https://doi.org/10.3390/metabo11030158