Effect of a Single Bout of Aerobic Exercise on Kynurenine Pathway Metabolites and Inflammatory Markers in Prostate Cancer Patients—A Pilot Randomized Controlled Trial
Abstract
:1. Introduction
2. Results
2.1. Participants’ Characteristics
2.2. Baseline Associations between KYN Pathway Outcomes and Inflammatory Markers
2.3. Intervention Effect on the KYN Pathway and Inflammatory Markers
3. Discussion
4. Materials and Methods
4.1. Baseline Testing
4.2. Intervention
4.3. Blood Sampling
4.4. Assessment of KYN Pathway Metabolites
4.5. Assessment of Inflammatory Markers
4.6. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prashanth, R. Epidemiology of prostate cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar]
- Bourke, L.; Smith, D.; Steed, L.; Hooper, R.; Carter, A.; Catto, J.; Albertsen, P.C.; Tombal, B.; Payne, H.A.; Rosario, D.J. Exercise for men with prostate cancer: A systematic review and meta-analysis. Eur. Urol. 2016, 69, 693–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keogh, J.W.; MacLeod, R.D. Body composition, physical fitness, functional performance, quality of life, and fatigue benefits of exercise for prostate cancer patients: A systematic review. J. Pain Symptom Manag. 2012, 43, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J. Physical activity and prostate cancer: An updated review. Sports Med. 2017, 47, 1055–1073. [Google Scholar] [CrossRef]
- Kenfield, S.A.; Stampfer, M.J.; Giovannucci, E.; Chan, J.M. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J. Clin. Oncol. 2011, 29, 726. [Google Scholar] [CrossRef]
- Pedersen, L.; Idorn, M.; Olofsson, G.H.; Lauenborg, B.; Nookaew, I.; Hansen, R.H.; Johannesen, H.H.; Becker, J.C.; Pedersen, K.S.; Dethlefsen, C. Voluntary running suppresses tumor growth through epinephrine-and Il-6-dependent Nk Cell mobilization and redistribution. Cell Metab. 2016, 23, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Hojman, P.; Gehl, J.; Christensen, J.F.; Pedersen, B.K. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018, 27, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar]
- Weinhold, M.; Shimabukuro-Vornhagen, A.; Franke, A.; Theurich, S.; Wahl, P.; Hallek, M.; Schmidt, A.; Schinköthe, T.; Mester, J.; von Bergwelt-Baildon, M.; et al. Physical exercise modulates the homeostasis of human regulatory T cells. J. Allergy Clin. Immunol. 2016, 137, 1607–1610. [Google Scholar] [CrossRef] [Green Version]
- Hojman, P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem. Soc. Trans. 2017, 45, 905–911. [Google Scholar] [CrossRef]
- Tilz, G.P.; Domej, W.; Diez-Ruiz, A.; Weiss, G.; Brezinschek, R.; Brezinschek, H.P.; Hüttl, E.; Pristautz, H.; Wachter, H.; Fuchs, D. Increased immune activation during and after physical exercise. Immunobiology 1993, 188, 194–202. [Google Scholar] [CrossRef]
- Sprenger, H.; Jacobs, C.; Nain, M.; Gressner, A.M.; Prinz, H.; Wesemann, W.; Gemsa, D. Enhanced release of cytokines, interleukin-2 receptors, and neopterin after long-distance running. Clin. Immunol. Immunopathol. 1992, 63, 188–195. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prendergast, G.C.; Malachowski, W.J.; Mondal, A.; Scherle, P.; Muller, A.J. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int. Rev. Cell Mol. Biol. 2018, 336, 175–203. [Google Scholar]
- Fujigaki, S.; Saito, K.; Sekikawa, K.; Tone, S.; Takikawa, O.; Fujii, H.; Wada, H.; Noma, A.; Seishima, M. Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an Ifn-gamma-independent mechanism. Eur. J. Immunol. 2001, 31, 2313–2318. [Google Scholar] [CrossRef]
- Werner, E.R.; Bitterlich, G.; Fuchs, D.; Hausen, A.; Reibnegger, G.; Szabo, G.; Dierich, M.P.; Wachter, H. Human macrophages degrade tryptophan upon induction by interferon-gamma. Life Sci. 1987, 41, 273–280. [Google Scholar] [CrossRef]
- Taylor, M.W.; Feng, G.S. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991, 5, 2516–2522. [Google Scholar] [CrossRef]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef] [Green Version]
- Guillemin, G.J.; Cullen, K.M.; Lim, C.K.; Smythe, G.A.; Garner, B.; Kapoor, V.; Takikawa, O.; Brew, B.J. Characterization of the kynurenine pathway in human neurons. J. Neurosci. 2007, 27, 12884–12892. [Google Scholar] [CrossRef] [Green Version]
- Guillemin, G.J.; Smythe, G.; Takikawa, O.; Brew, B.J. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 2005, 49, 15–23. [Google Scholar] [CrossRef]
- Salter, M.; Pogson, C.I. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem. J. 1985, 229, 499–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widner, B.; Werner, E.R.; Schennach, H.; Wachter, H.; Fuchs, D. Simultaneous measurement of serum tryptophan and kynurenine by hplc. Clin. Chem. 1997, 43, 2424–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joisten, N.; Kummerhoff, F.; Koliamitra, C.; Schenk, A.; Walzik, D.; Hardt, L.; Knoop, A.; Thevis, M.; Kiesl, D.; Metcalfe, A.J.; et al. Exercise and the kynurenine pathway: Current state of knowledge and results from a randomized cross-over study comparing acute effects of endurance and resistance training. Exerc. Immunol. Rev. 2020, 26, 24–42. [Google Scholar]
- Platten, M.; Nollen, E.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019, 18, 379–401. [Google Scholar] [CrossRef]
- Badawy, A.A. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int. J. Tryptophan Res. IJTR 2017, 10, 1178646917691938. [Google Scholar] [CrossRef] [Green Version]
- Fallarino, F.; Grohmann, U.; Vacca, C.; Bianchi, R.; Orabona, C.; Spreca, A.; Fioretti, M.C.; Puccetti, P. T Cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002, 9, 1069–1077. [Google Scholar] [CrossRef]
- Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 2010, 185, 3190–3198. [Google Scholar] [CrossRef] [Green Version]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013, 34, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Munn, D.H.; Shafizadeh, E.; Attwood, J.T.; Bondarev, I.; Pashine, A.; Mellor, A.L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 1999, 189, 1363–1372. [Google Scholar] [CrossRef]
- Mándi, Y.; Vécsei, L. The kynurenine system and immunoregulation. J. Neural Transm. 2012, 119, 197–209. [Google Scholar] [CrossRef]
- Feder-Mengus, C.; Wyler, S.; Hudolin, T.; Ruszat, R.; Bubendorf, L.; Chiarugi, A.; Pittelli, M.; Weber, W.P.; Bachmann, A.; Gasser, T.C.; et al. High expression of indoleamine 2,3-dioxygenase gene in prostate cancer. Eur. J. Cancer 2008, 44, 2266–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Théate, I.; van Baren, N.; Pilotte, L.; Moulin, P.; Larrieu, P.; Renauld, J.C.; Hervé, C.; Gutierrez-Roelens, I.; Marbaix, E.; Sempoux, C.; et al. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol. Res. 2015, 3, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallberg, E.; Wikstrom, P.; Bergh, A.; Ivars, F.; Leanderson, T. Indoleamine 2,3-dioxygenase (Ido) activity influence tumor growth in the tramp prostate cancer model. Prostate 2010, 70, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Smith, C.; James, B.D.; Sutanto-Ward, E.; George, C.P.; Bravo-Nuevo, A.; Muller, A.J. Ido1 is an integral mediator of inflammatory neovascularization. EBioMedicine 2016, 14, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Chang, M.Y.; Parker, K.H.; Beury, D.W.; DuHadaway, J.B.; Flick, H.E.; Boulden, J.; Sutanto-Ward, E.; Soler, A.P.; Laury-Kleintop, L.D.; et al. Ido is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2012, 2, 722–735. [Google Scholar] [CrossRef] [Green Version]
- Muller, A.J.; Sharma, M.D.; Chandler, P.R.; Duhadaway, J.B.; Everhart, M.E.; Johnson, B.A., 3rd; Kahler, D.J.; Pihkala, J.; Soler, A.P.; Munn, D.H.; et al. Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase. Proc. Natl. Acad. Sci. USA 2008, 105, 17073–17078. [Google Scholar] [CrossRef] [Green Version]
- Pilotte, L.; Larrieu, P.; Stroobant, V.; Colau, D.; Dolusic, E.; Frédérick, R.; de Plaen, E.; Uyttenhove, C.; Wouters, J.; Masereel, B.; et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA 2012, 109, 2497–2502. [Google Scholar] [CrossRef] [Green Version]
- Strasser, B.; Geiger, D.; Schauer, M.; Gatterer, H.; Burtscher, M.; Fuchs, D. Effects of exhaustive aerobic exercise on tryptophan-kynurenine metabolism in trained athletes. PLoS ONE 2016, 11, e0153617. [Google Scholar] [CrossRef]
- Bansi, J.; Koliamitra, C.; Bloch, W.; Joisten, N.; Schenk, A.; Watson, M.; Kool, J.; Langdon, D.; Dalgas, U.; Kesselring, J.; et al. Persons with secondary progressive and relapsing remitting multiple sclerosis reveal different responses of tryptophan metabolism to acute endurance exercise and training. J. Neuroimmunol. 2018, 314, 101–105. [Google Scholar] [CrossRef]
- Febbraio, M.A.; Pedersen, B.K. Muscle-derived interleukin-6: Mechanisms for activation and possible biological roles. FASEB J. 2002, 16, 1335–1347. [Google Scholar] [CrossRef]
- Zimmer, P.; Schmidt, M.E.; Prentzell, M.T.; Berdel, B.; Wiskemann, J.; Kellner, K.H.; Debus, J.; Ulrich, C.; Opitz, C.A.; Steindorf, K. Resistance exercise reduces kynurenine pathway metabolites in breast cancer patients undergoing radiotherapy. Front. Oncol. 2019, 9, 962. [Google Scholar] [CrossRef] [PubMed]
- Herrstedt, A.; Bay, M.L.; Simonsen, C.; Sundberg, A.; Egeland, C.; Thorsen-Streit, S.; Djurhuus, S.S.; Ueland, P.M.; Midttun, Ø.; Pedersen, B.K.; et al. Exercise-mediated improvement of depression in patients with gastro-esophageal junction cancer is linked to kynurenine metabolism. Acta Oncol. 2019, 58, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, D.J.; Nielsen, M.E.; Han, M.; Partin, A.W. Contemporary evaluation of the D’amico risk classification of prostate cancer. Urology 2007, 70, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.F.; Klein, S. Lipid metabolism during endurance exercise. Am. J. Clin. Nutr. 2000, 72, 558s–563s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badawy, A.A. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 2017, 112, 248–263. [Google Scholar] [CrossRef]
- Chaouloff, F.; Elghozi, J.L.; Guezennec, Y.; Laude, D. Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5-hydroxytryptamine metabolism of the rat. Br. J. Pharmacol. 1985, 86, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Melancon, M.O.; Lorrain, D.; Dionne, I.J. Exercise increases tryptophan availability to the brain in older men age 57–70 years. Med. Sci. Sports Exerc. 2012, 44, 881–887. [Google Scholar] [CrossRef]
- Ohta, M.; Hirai, N.; Ono, Y.; Ohara, M.; Saito, S.; Horiguchi, S.; Watanabe, M.; Tokashiki, A.; Kawai, A.; Andou, T.; et al. Clinical biochemical evaluation of central fatigue with 24-hour continuous exercise. Rinsho Byori 2005, 53, 802–809. [Google Scholar]
- Bohney, J.P.; Feldhoff, R.C. Effects of nonenzymatic glycosylation and fatty acids on tryptophan binding to human serum albumin. Biochem. Pharmacol. 1992, 43, 1829–1834. [Google Scholar] [CrossRef]
- Murakami, T.; Yoshinaga, M. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle. Biochem. Biophys. Res. Commun. 2013, 439, 449–452. [Google Scholar] [CrossRef]
- Schröcksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta 2006, 364, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Choi, S.A.; Na, J.; Pamungkas, A.D.; Jung, K.J.; Jee, S.H.; Park, Y.H. Noninvasive serum metabolomic profiling reveals elevated kynurenine pathway’s metabolites in humans with prostate cancer. J. Proteome Res. 2019, 18, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, D.; Song, P.; Zou, M.H. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. 2015, 20, 1116–1143. [Google Scholar]
- Koliamitra, C.; Javelle, F.; Joisten, N.; Shimabukuro-Vornhagen, A.; Bloch, W.; Schenk, A.; Zimmer, P. Do acute exercise-induced activations of the kynurenine pathway induce regulatory T-cells on the long-term? A theoretical frame work supported by pilot data. J. Sports Sci. Med. 2019, 18, 669–673. [Google Scholar] [PubMed]
- Czarkowska-Paczek, B.; Bartlomiejczyk, I.; Przybylski, J. The serum levels of growth factors: Pdgf, Tgf-Beta and Vegf are increased after strenuous physical exercise. J. Physiol. Pharmacol. 2006, 57, 189–197. [Google Scholar] [PubMed]
- Ahel, J.; Hudorović, N.; Vičić-Hudorović, V.; Nikles, H. Tgf-Beta in the natural history of prostate cancer. Acta Clin. Croat. 2019, 58, 128–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, E.; Yang, T.; Janulis, L.; Goodwin, S.; Kundu, S.D.; Karpus, W.J.; Lee, C. Down-regulation of Tgf-Beta1 production restores immunogenicity in prostate cancer cells. Br. J. Cancer 2000, 83, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Wikström, P.; Damber, J.; Bergh, A. Role of transforming growth factor-beta1 in prostate cancer. Microsc. Res. Tech. 2001, 52, 411–419. [Google Scholar] [CrossRef]
- Scharhag-Rosenberger, F.; Becker, T.; Streckmann, F.; Schmidt, K.; Berling, A.; Bernardi, A.; Engeroff, T.; Exner, A.K.; Gutekunst, K.; Hofmeister, D.; et al. Studien zu körperlichem training bei onkologischen patienten: Empfehlungen zu den erhebungsmethoden. Dtsch. Z. Sportmed. 2014, 65, 304–313. [Google Scholar] [CrossRef]
- Badawy, A.A.; Guillemin, G. The plasma [kynurenine]/[tryptophan] ratio and indoleamine 2,3-dioxygenase: Time for appraisal. Int. J. Tryptophan Res. IJTR 2019, 12, 1178646919868978. [Google Scholar] [CrossRef] [Green Version]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
Overall (N = 24) | Intervention group (n = 11) | Control group (n = 13) | p-Value | |
---|---|---|---|---|
Age [years] | 64.9 ± 8.4 | 64.6 ± 7.9 | 65.6 ± 7.8 | 0.927 |
BMI [kg/m²] | 26.3± 3.7 | 24.7 ± 2.9 | 27.6 ± 3.9 | 0.057 |
HRmax [bpm] | 145 ± 29 | 146 ± 33 | 142 ± 24 | 0.734 |
Max Power output [W] | 148 ± 40 | 148 ± 40 | 151 ± 44 | 0.994 |
VO2peak [ml/min/kg] | 25.5 ± 6.3 | 27.2 ± 6.3 | 25.5 ± 6.9 | 0.355 |
RQmax | 1.10 ± 0.06 | 1.12 ± 0.05 | 1.10 ± 0.6 | 0.337 |
Borgmax | 17 ± 2 | 17 ± 2 | 16 ± 2 | 0.515 |
Gleason score | 7 (n = 2) | 7 (n = 0) | 7 (n = 2) | 0.474 |
7a (n = 8) | 7a (n = 4) | 7a (n = 4) | ||
7b (n = 6) | 7b (n = 2) | 7b (n = 4) | ||
8 (n = 4) | 8 (n = 2) | 8 (n = 2) | ||
9 (n = 4) | 9 (n = 3) | 9 (n = 1) | ||
ISUP classification | 2 (n = 8) | 2 (n = 4) | 2 (n = 4) | 0.644 |
3 (n = 6) | 3 (n = 2) | 3 (n = 4) | ||
4 (n = 4) | 4 (n = 2) | 4 (n = 2) | ||
5 (n = 4) | 5 (n = 3) | 5 (n = 1) | ||
Missing (n = 2) | Missing (n = 0) | Missing (n = 2) | ||
PSA level [ng/mL] | 18.70 ± 29.04 | 14.10 ± 9.47 | 22.59 ± 38.80 | 0.488 |
Risk classification | High risk (n = 21) | High risk (n = 11) | High risk (n = 10) | 0.089 |
Intermediate risk (n = 3) | Intermediate risk (n = 0) | Intermediate risk (n = 3) | ||
Tumor state | cT2c (n = 1) | cT2c (n = 0) | cT2c (n = 1) | 0.549 |
pT2a (n = 2) | pT2a (n = 0) | pT2a (n = 2) | ||
pT2b (n = 1) | pT2b (n = 0) | pT2b (n = 1) | ||
pT2c (n = 11) | pT2c (n = 6) | pT2c (n = 5) | ||
pT3 (n = 1) | pT3 (n = 1) | pT3 (n = 0) | ||
pT3a (n = 4) | pT3a (n = 2) | pT3a (n = 2) | ||
pT3b (n = 4) | pT3b (n = 2) | pT3b (n = 2) |
Parameter | Group | Point in Time | ANCOVA Time | ANCOVA Interaction (Time × Group) | |||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | p | df | F | p | df | F | ||
TRP [µM] | IG | 51.2 ± 8.2 | 50.3 ± 8.0 | 0.073 | 1 | 3.626 | 0.019 | 1 | 6.608 |
KG | 68.1 ± 12.9 | 78.6 ± 13.0 | |||||||
KYN [µM] | IG | 1.3 ± 0.2 | 1.3 ± 0.1 | 0.594 | 1 | 0.295 | 0.523 | 1 | 0.425 |
KG | 1.5 ± 0.4 | 1.5 ± 0.4 | |||||||
QA [µM] | IG | 0.4 ± 0.05 | 0.5 ± 0.04 | 0.406 | 1 | 0.725 | 0.293 | 1 | 1.173 |
KG | 0.5 ± 0.13 | 0.5 ± 0.13 | |||||||
KA [µM] | IG | 0.03 ± 0.006 | 0.03 ± 0.006 | 0.724 | 1 | 0.129 | 0.614 | 1 | 0.265 |
KG | 0.03 ± 0.011 | 0.03 ± 0.011 | |||||||
KNY/TRP ratio | IG | 0.03 ± 0.006 | 0.03 ± 0.006 | 0.189 | 1 | 1.863 | <0.001 | 1 | 22.790 |
KG | 0.02 ± 0.006 | 0.02 ± 0.005 | |||||||
QA/KYN ratio | IG | 0.34 ± 0.03 | 0.34 ± 0.04 | 0.426 | 1 | 0.662 | 0.484 | 1 | 0.511 |
KG | 0.34 ± 0.04 | 0.35 ± 0.06 | |||||||
KA/KYN ratio | IG | 0.02 ± 0.004 | 0.02 ± 0.005 | 0.842 | 1 | 0.041 | 0.867 | 1 | 0.029 |
KG | 0.02 ± 0.004 | 0.02 ± 0.005 | |||||||
QA/KA ratio | IG | 16.8 ± 2.6 | 15.6 ± 2.3 | 0.509 | 1 | 0.456 | 0.747 | 1 | 0.107 |
KG | 16.6 ± 3.6 | 16.9 ± 4.5 | |||||||
IL-6 [pg/mL] | IG | 2.0 ± 1.3 | 2.8 ± 1.5 | 0.093 | 1 | 3.148 | 0.078 | 1 | 3.48 |
KG | 2.5 ± 2.2 | 2.6 ± 2.1 | |||||||
TGF-β [ng/mL] | IG | 30.5 ± 5.0 | 34.9 ± 10.1 | 0.028 | 1 | 5.735 | 0.017 | 1 | 6.906 |
KG | 27.8 ± 7.0 | 24.8 ± 34.9 | |||||||
TNF-α [pg/mL] | IG | 3.4 ± 1.1 | 3.7 ± 0.7 | 0.012 | 1 | 7.88 | 0.124 | 1 | 2.608 |
KG | 3.4 ± 1.2 | 3.3 ± 1.1 | |||||||
TNF-α/TGF-β ratio [x10−5] | IG | 10.6 ± 4.0 | 11.2 ± 3.2 | 0.004 | 1 | 9.914 | 0.585 | 1 | 0.457 |
KG | 13.1 ± 6.0 | 14.1 ± 5.4 | |||||||
IL-6/TGF-β ratio [x10−5] | IG | 6.0 ± 3.3 | 8.0 ± 3.7 | 0.627 | 1 | 0.293 | 0.967 | 1 | 0.003 |
KG | 10.2 ± 8.7 | 11.4 ± 10.9 |
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schenk, A.; Esser, T.; Knoop, A.; Thevis, M.; Herden, J.; Heidenreich, A.; Bloch, W.; Joisten, N.; Zimmer, P. Effect of a Single Bout of Aerobic Exercise on Kynurenine Pathway Metabolites and Inflammatory Markers in Prostate Cancer Patients—A Pilot Randomized Controlled Trial. Metabolites 2021, 11, 4. https://doi.org/10.3390/metabo11010004
Schenk A, Esser T, Knoop A, Thevis M, Herden J, Heidenreich A, Bloch W, Joisten N, Zimmer P. Effect of a Single Bout of Aerobic Exercise on Kynurenine Pathway Metabolites and Inflammatory Markers in Prostate Cancer Patients—A Pilot Randomized Controlled Trial. Metabolites. 2021; 11(1):4. https://doi.org/10.3390/metabo11010004
Chicago/Turabian StyleSchenk, Alexander, Tobias Esser, André Knoop, Mario Thevis, Jan Herden, Axel Heidenreich, Wilhelm Bloch, Niklas Joisten, and Philipp Zimmer. 2021. "Effect of a Single Bout of Aerobic Exercise on Kynurenine Pathway Metabolites and Inflammatory Markers in Prostate Cancer Patients—A Pilot Randomized Controlled Trial" Metabolites 11, no. 1: 4. https://doi.org/10.3390/metabo11010004
APA StyleSchenk, A., Esser, T., Knoop, A., Thevis, M., Herden, J., Heidenreich, A., Bloch, W., Joisten, N., & Zimmer, P. (2021). Effect of a Single Bout of Aerobic Exercise on Kynurenine Pathway Metabolites and Inflammatory Markers in Prostate Cancer Patients—A Pilot Randomized Controlled Trial. Metabolites, 11(1), 4. https://doi.org/10.3390/metabo11010004