A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower
Abstract
:1. Introduction
2. Botanical and Morphological Characteristics
3. Safflower Chemical Composition
3.1. Lipophilic Compounds
3.1.1. Fatty Acids
3.1.2. Tocopherols
3.1.3. Carotenoids
3.1.4. Phytosterols
3.2. Hydrophilic Compounds
3.2.1. Flavonoids
3.2.2. Saponins
3.3. Other Compounds
4. Organ-Specific Safflower Pharmacological Compounds
5. Safflower Pharmacological Activity
5.1. Anti-Inflammatory Effects
5.2. Anti-Cancer Effects
5.3. Antioxidant Effects
5.4. Vascular Effects
5.5. Osteoporosis Effects
5.6. Brain and Liver Disease Effects
5.7. Cell Proliferation and Inhibition Effects
5.8. Other Effects
6. Materials and Methods
7. Conclusion and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knowles, P.F. Safflower. In Oil Crops of the World; Downey, R.K., Robbelen, G., Ashri, A., Eds.; McGraw-Hill Education: New York, NY, USA, 1989; pp. 363–374. [Google Scholar]
- Weiss, E.A. Safflower. In Oilseed Crops, 1st ed.; Blackwell Sciences Ltd.: Victoria, Australia, 2000; pp. 93–129. [Google Scholar]
- Furuya, T.; Orihara, Y.; Hayashi, C. Triterpenoids from Eucalyptus perriniana cultured cells. Phytochemistry 1987, 26, 715–719. [Google Scholar] [CrossRef]
- Carvalho, I.S.; Miranda, I.; Pereira, H. Evaluation of oil composition of some crops suitable for human nutrient. Ind. Crop. Prod. 2006, 24, 75–78. [Google Scholar] [CrossRef]
- Işigigür, A.; Karaosmanoglu, F.; Aksoy, H.A.; Işiǧigür, A.; Karaosmanoǧlu, F. Characteristics of safflower seed oils of turkish origin. J. Am. Oil Chem. Soc. 1995, 72, 1223–1225. [Google Scholar] [CrossRef]
- Li, D.; Mundel, H.H. Safflower Carthamus tinctorius L. In Promoting the Conservation and Use of Underutilized and Neglected Crops. 7; Institute of Plant Genetics and Crop Plant Research: Rome, Italy; International Plant Genetic Resources Institute: Gatersleben, Germany, 1996. [Google Scholar]
- Kulkarni, D.N.; Revanwar, S.M.; Kulkarni, K.D.; Deshpande, H.W. Extraction and uses of natural pigments from safflower florests. In Proceedings of the 4th International Safflower Conference, Bari, Italy, 2–7 June 1996; pp. 365–368. [Google Scholar]
- Mohammadi, M.; Tavakoli, A. Effect of harvest time of spring safflower (Carthamus tinctorius L.) florets on the production of red and yellow pigments. Qual. Assur. Saf. Crop. 2015, 7, 581–588. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization Corporate Statistical Database. Production Quantities of Safflower Seed and Plantains for 2018. Food and Agriculture Organization (FAO) of United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 2 May 2020).
- Golkar, P.; Arzani, A.; Rezaei, A.M. Determining relationships among seed yield, yield components and morpho-phenological traits using multivariate analyses in safflower (Carthamus tinctorius L.). Ann. Biol. Res. 2011, 2, 162–169. [Google Scholar]
- Steberl, K.; Hartung, J.; Munz, S.; Graeff-Hönninger, S. Effect of Row Spacing, Sowing Density, and Harvest Time on Floret Yield and Yield Components of Two Safflower Cultivars Grown in Southwestern Germany. Agronomy 2020, 10, 664. [Google Scholar] [CrossRef]
- Golkar, P. Breeding improvements in safflower (Carthamus tinctorius L.): A review. Aust. J. Crop Sci. 2014, 8, 1079–1085. [Google Scholar]
- Misra, B.B.; Langefeld, C.D.; Olivier, M.; Cox, L.A. Integrated omics: Tools, advances and future approaches. J. Mol. Endocrinol. 2019, 62, R21–R45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, S.; Choudhary, R.C.; Kumara Swamy, R.V.K.; Saharan, V.; Joshi, A.; Munot, J. Assessment of genetic diversity in safflower (Carthamus tinctorius L.) genotypes through morphological and SSR marker. J. Pharmacogn. Phtochem. 2017, 6, 2723–2731. [Google Scholar]
- Markley, N.; Nykiforuk, C.; Boothe, J.; Moloney, M. Producing proteins using transgenic oilbody–Oleosin technology. Biopharm. Int. 2006, 19, 34–57. [Google Scholar]
- Liu, X.; Dong, Y.; Yao, N.; Zhang, Y.; Wang, N.; Cui, X.; Li, X.; Wang, Y.; Wang, F.; Yang, J.; et al. De Novo Sequencing and Analysis of the Safflower Transcriptome to Discover Putative Genes Associated with Safflor Yellow in Carthamus tinctorius L. Int. J. Mol. Sci. 2015, 16, 25657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Z.; Huhman, D.; Sumner, L.W. Mass Spectrometry Strategies in Metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Mosa, K.A.; Ji, L.; Kage, U.; Dhokane, D.; Karre, S.; Madalageri, D.; Pathania, N. Metabolomics-Assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit. Rev. Food Sci. Nutr. 2017, 58, 1791–1807. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.R.; Zhao, M.B.; Tu, P.F. Simultaneous determination of four nucleosides in Carthamus tinctorius L. and Safflower injection using high performance liquid chromatography. J. Chin. Pharm. Sci. 2009, 18, 326–330. [Google Scholar]
- Chakradhari, S.; Perkons, I.; Mišina, I.; Sipeniece, E.; Radziejewska-Kubzdela, E.; Grygier, A.; Rudzińska, M.; Patel, K.S.; Radzimirska-Graczyk, M.; Górnaś, P. Profiling of the bioactive components of safflower seeds and seed oil: Cultivated (Carthamus tinctorius L.) vs. wild (Carthamus oxyacantha M. Bieb.). Eur. Food Res. Technol. 2019, 246, 449–459. [Google Scholar] [CrossRef]
- Emongor, V. Safflower (Carthamus tinctorius L.) the Underutilized and Neglected Crop: A Review. Asian J. Plant Sci. 2010, 9, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Delshad, E.; Yousefi, M.; Sasannezhad, P.; Rakhshandeh, H.; Ayati, Z. Medical uses of Carthamus tinctorius L. (Safflower): A comprehensive review from Traditional Medicine to Modern Medicine. Electron. Physician 2018, 10, 6672–6681. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.I.; Lyra, D.-A.; Farooq, M.; Nikoloudakis, N.; Khalid, N. Salt and drought stresses in safflower: A review. Agron. Sustain. Dev. 2015, 36, 4. [Google Scholar] [CrossRef] [Green Version]
- Harrathi, J.; Hosni, K.; Karray-Bouraoui, N.; Attia, H.; Marzouk, B.; Magné, C.; Lachaâl, M. Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiol. Plant. 2011, 34, 129–137. [Google Scholar] [CrossRef]
- La Bella, S.; Tuttolomondo, T.; Lazzeri, L.; Matteo, R.; Leto, C.; Licata, M. An agronomic evaluation of new safflower (Carthamus tinctorius L.) germplasm for seed and oil yields under Mediterraean climate conditions. Agronomy 2019, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Anjani, K.; Yadav, P. High yielding-High oleic non-Genetically modified Indian safflower cultivars. Ind. Crop. Prod. 2017, 104, 7–12. [Google Scholar] [CrossRef]
- Ҫamaş, N.; Ҫirak, C.; Esendal, E. Seed yield, oil content and fatty acid composition of safflower (Carthamus tinctorius L.) grown in northern Turkey conditions. J. Fac. Agric. OMU 2007, 22, 98–104. [Google Scholar]
- Baydar, H.; Turgut, I. Variation of fatty acid composition according to some morphological and physiological properties and ecological regions in oilseed plants. Turk. J. Agric. For. 1999, 23, 81–86. [Google Scholar]
- Liu, L.; Guan, L.-L.; Yang, Y.-X. A Review of fatty acids and genetic characterization of safflower (Carthamus tinctorius L.) seed oil. Org. Chem. Curr. Res. 2016, 5, 160–163. [Google Scholar] [CrossRef]
- Velasco, L.; Fernandez–Martinez, J.M. Breeding for oil quality in safflower. In Proceedings of the 5th International Safflower Conference, Williston, ND, USA; Sidney, MT, USA, 23–27 July 2001; Bergman, J.W., Mündel, H.H., Eds.; Department of Plant Pathology, North Dakota State University: Fargo, ND, USA, 2001; pp. 133–137. [Google Scholar]
- Martínez, J.M.F.; Del Rio, M.; De Haro, A. Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 1993, 69, 115–122. [Google Scholar] [CrossRef]
- Sabzalian, M.R.; Saeidi, G.; Mirlohi, A. Oil Content and Fatty Acid Composition in Seeds of Three Safflower Species. J. Am. Oil Chem. Soc. 2008, 85, 717–721. [Google Scholar] [CrossRef]
- Gecgel, U.; Demirci, M.; Esendal, E.; Tasan, M. Fatty Acid Composition of the Oil from Developing Seeds of Different Varieties of Safflower (Carthamus tinctorius L.). J. Am. Oil Chem. Soc. 2006, 84, 47–54. [Google Scholar] [CrossRef]
- Katkade, M.B.; Syed, H.M.; Andhale, R.R.; Sontakke, M.D. Fatty acid profile and quality assessment of safflower (Carthamus tinctorius) oil. Int. J. Pharmacog. Phytochem. 2018, 7, 3581–3585. [Google Scholar]
- Johnson, R.C.; Kisha, T.J.; Evans, M.A. Characterizing Safflower Germplasm with AFLP Molecular Markers. Crop Sci. 2007, 47, 1728–1736. [Google Scholar] [CrossRef] [Green Version]
- Velasco, L.; Martínez, J.M.F.; Perez, M.J.G.-M. Identification and genetic characterization of a safflower mutant with a modified tocopherol profile. Plant Breed. 2005, 124, 459–463. [Google Scholar] [CrossRef]
- Nikabadi, S.; Soleimani, A.; Dehdashti, S.; Yazdanibakhsh, M. Effect of sowing dates on yield and yield components of spring safflower (Carthamus tinctorius L.) in Isfahan region. Pak. J. Biol. Sci. 2008, 11, 1953–1956. [Google Scholar] [CrossRef] [Green Version]
- Asgarpanah, J.; Kazemivash, N. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin. J. Integr. Med. 2013, 19, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, X.; Dai, Z.; Zhang, Y.; Liang, H.; Lin, R. Study on chemical constituents of Carthamus tinctorius. Chin. Med. Herb. 2012, 35, 1616–1619. [Google Scholar]
- Ji, Y.; Guo, S.; Wang, B.; Yu, M. Extraction and determination of flavonoids in Carthamus tinctorius. Open Chem. 2018, 16, 1129–1133. [Google Scholar] [CrossRef]
- Yang, D.; Ma, Y. Effect of Safflower on electrical activity of uterine smooth muscle in rats. J. Gansu Coll. Trad. Chin. Med. 2010, 17, 13. [Google Scholar]
- Maneesai, P.; Prasarttong, P.; Bunbupha, S.; Kukongviriyapan, U.; Kukongviriyapan, V.; Tangsucharit, P.; Prachaney, P.; Pakdeechote, P. Synergistic antihypertensive effect of Carthamus tinctorius L. extract and captopril in ʟ–NAME–induced hypertensive rats via restoration of eNOS and AT1R expression. Nutrients 2016, 8, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadava, R.; Chakravarti, N. Anti-Inflammatory activity of a new triterpenoid saponin from carthamus tinctorius linn. J. Enzym. Inhib. Med. Chem. 2008, 23, 543–548. [Google Scholar] [CrossRef]
- Angelova, V.R.; Akova, V.I.; Ivanov, K.I. The effect of organic amendments on the chemical composition of safflower (Carthamus tinctorius L.) meal. J. Int. Sci. Publ. Ecol. Saf. 2014, 8, 441–453. [Google Scholar]
- Yoo, H.H.; Park, J.H.; Kwon, S.W. An Anti-Estrogenic Lignan Glycoside, Tracheloside, from Seeds ofCarthamus tinctorius. Biosci. Biotechnol. Biochem. 2006, 70, 2783–2785. [Google Scholar] [CrossRef] [Green Version]
- Aydeniz, B.; Guneser, O.; Yilmaz, E. Physico-chemical, Sensory and Aromatic Properties of Cold Press Produced Safflower Oil. J. Am. Oil Chem. Soc. 2013, 91, 99–110. [Google Scholar] [CrossRef]
- Knowles, P.F.; Ashri, A. Evolution of Crop Plants, 2nd ed.; Smartt, J., Simmonds, N.W., Eds.; Longman: Harlow, UK, 1995; pp. 47–50. [Google Scholar]
- Zhang, H.L.; Nagatsu, S.; Watanabe, T.; Sakakibara, J.; Okuyama, H. Antioxidative compounds isolated from safflower (Carthamus tinctorious L.) oil cake. Chem. Pharma. Bull. 1997, 45, 1910–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dajue, I.L.; Munde, H.H. (Eds.) Safflower. In Carthamus Tinctorius; International Plant Genetic Resources Institute: Rome, Italy, 1996; p. 10. [Google Scholar]
- Yu, Z.; Gao, X.; Zhao, Y.; Bi, K.-S. HPLC determination of safflor yellow A and three active isoflavones from TCM Naodesheng in rat plasma and tissues and its application to pharmacokinetic studies. Biomed. Chromatogr. 2007, 21, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Singh, P.; Bhagyawant, S.S.; Srivastava, N. Anti–Nutritional factors in safflower (Carthamus tinctorius l.) seeds and their pharmaceutical applications. Int. J. Recent Sci. Res. 2018, 9, 28859–28864. [Google Scholar]
- Huang, Y.; Hwang, J.; Lee, P.; Ke, F.; Huang, J.; Huang, C.; Kandaswami, E.M., Jr.; Lee, M. Effects of Luteolin and Quercetin inhibitors of tyrosine kinase on cell growth and metastasis–Associated properties in A43Al cells over expressing epidermal growth factor receptors. Braz. J. Pharmacol. 1999, 128, 999–1010. [Google Scholar] [CrossRef]
- Duarte, J.; Pérez-Palencia, R.; Vargas, F.; Ocete, M.A.; Perez-Vizcaino, F.; Zarzuelo, A.; Tamargo, J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol. 2001, 133, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Dajas, F.; Rivera, F.; Blasina, F.; Arredondo, F.; Echeverry, C.; Lafon, L.; Morquio, A.; Heizen, H. Cell culture protection andin vivo neuroprotective capacity of flavonoids. Neurotox. Res. 2003, 5, 425–432. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J. Update on Uses and Properties of Citrus Flavonoids: New Findings in Anticancer, Cardiovascular, and Anti-inflammatory Activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [Google Scholar] [CrossRef]
- Lin, C.W.; Hou, W.C.; Shen, S.C.; Juan, S.H.; Ko, C.H.; Wang, L.M.; Chen, Y.C. Quercetin inhibition of tumor invasion via suppressing PKC/ERK/AP–1–dependent matrix metalloproteinase–9 activation in breast carcinoma cells. Carcinogenesis 2008, 29, 1807–1815. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Wen, H.; Sun, X.; Wang, Y. Hydroxysafflor Yellow A Inhibits TNF-α-Induced Inflammation of Human Fetal Lung Fibroblasts via NF-κB Signaling Pathway. Evid. Based Complement. Altern. Med. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zheng, M.; Pan, R.; Zang, B.; Gao, J.; Ma, H.; Jin, M. Hydroxysafflor yellow A (HSYA) targets the platelet-activating factor (PAF) receptor and inhibits human bronchial smooth muscle activation induced by PAF. Food Funct. 2019, 10, 4661–4673. [Google Scholar] [CrossRef]
- Zheng, M.; Guo, X.; Pan, R.; Gao, J.; Zang, B.; Jin, M. Hydroxysafflor Yellow A Alleviates Ovalbumin-Induced Asthma in a Guinea Pig Model by Attenuateing the Expression of Inflammatory Cytokines and Signal Transduction. Front. Pharmacol. 2019, 10, 328. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.Y.; Ma, J.Q.; Duan, Y.Y.; Sun, Y.; Yu, S.; Li, B.; Zhang, G.M. Carthamin yellow protects the heart against ischemia/reperfusion injury with reduced reactive oxygen species release and inflammatory response. J. Cardiovasc. Pharm. 2019, 74, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Deng, Y.; Yuan, H.; Sun, Y. Safflower Yellow B Protects Brain against Cerebral Ischemia Reperfusion Injury through AMPK/NF-kB Pathway. Evid. Based Complement. Altern. Med. 2019, 2019, 7219740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Ding, Y.-X.; He, J.; Ma, C.-J.; Zhao, Y.; Wang, Z.; Han, B. Hydroxysafflor Yellow A Attenuates Lipopolysaccharide-Induced Neurotoxicity and Neuroinflammation in Primary Mesencephalic Cultures. Molecules 2018, 23, 1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Song, L.; Pan, R.; Gao, J.; Zang, B.-X.; Jin, M. Hydroxysafflor Yellow A Alleviates Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Mice. Biol. Pharm. Bull. 2017, 40, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-W.; Li, Y.-H.; Zhang, H.; Zhao, Y.-F.; Ding, Z.-B.; Yu, J.-Z.; Liu, C.-Y.; Liu, J.-C.; Jiang, W.-J.; Feng, Q.-J.; et al. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells. Int. J. Immunopathol. Pharmacol. 2015, 29, 54–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.-H.; Moon, Y.-S.; Park, T.S.; Son, J.-H. Serotonins of safflower seeds play a key role in anti-inflammatory effect in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Plant. Biotechnol. 2015, 42, 364–369. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.X.; Fu, J.H.; Zhang, Q.; Wang, J.Q. Effect of hydroxysafflower yellow A on myocardial apoptosis after acute myocardial infarction in rats. Genet. Mol. Res. 2015, 14, 3133–3141. [Google Scholar] [CrossRef]
- Jiang, S.; Shi, Z.; Li, C.; Ma, C.; Bai, X.; Wang, C. Hydroxysafflor yellow A attenuates ischemia/reperfusion-induced liver injury by suppressing macrophage activation. Int. J. Clin. Exp. Pathol. 2014, 7, 2595–2608. [Google Scholar]
- Li, J.; Zhang, S.; Lu, M.; Chen, Z.; Chen, C.; Han, L.; Zhang, M.; Xu, Y. Hydroxysafflor yellow A suppresses inflammatory responses of BV2 microglia after oxygen–glucose deprivation. Neurosci. Lett. 2013, 535, 51–56. [Google Scholar] [CrossRef]
- Yu, L.; Chen, C.; Wang, L.-F.; Kuang, X.; Liu, K.; Zhang, H.; Du, J.-R. Neuroprotective Effect of Kaempferol Glycosides against Brain Injury and Neuroinflammation by Inhibiting the Activation of NF-κB and STAT3 in Transient Focal Stroke. PLoS ONE 2013, 8, e55839. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, L.; Fu, Y.; Han, J.; Xu, Y.; Liang, H.; Cheng, Y. Capacity of HSYA to inhibit nitrotyrosine formation induced by focal ischemic brain injury. Nitric Oxide 2013, 35, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, L.; Jin, M.; Zang, B.-X. Hydroxysafflor yellow A alleviates early inflammatory response of bleomycin-induced mice lung injury. Biol. Pharm. Bull. 2012, 35, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Yang, L.; Xu, Y.-W.; Liang, H.; Han, J.; Zhao, R.-J.; Cheng, Y. Neuroprotection of hydroxysafflor yellow A in the transient focal ischemia: Inhibition of protein oxidation/nitration, 12/15-lipoxygenase and blood–brain barrier disruption. Brain Res. 2012, 1473, 227–235. [Google Scholar] [CrossRef]
- Wang, C.-C.; Choy, C.-S.; Liu, Y.-H.; Cheah, K.-P.; Li, J.-S.; Wang, J.T.-J.; Yu, W.-Y.; Lin, C.-W.; Cheng, H.-W.; Hu, C.-M. Protective effect of dried safflower petal aqueous extract and its main constituent, carthamus yellow, against lipopolysaccharide-induced inflammation in RAW264.7 macrophages. J. Sci. Food Agric. 2010, 91, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-Y.; Pei, C.-Q.; Zang, B.-X.; Wang, L.; Jin, M. The ability of hydroxysafflor yellow a to attenuate lipopolysaccharide-induced pulmonary inflammatory injury in mice. Phytother. Res. 2010, 24, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, L.; Wang, Z.-H.; Tian, J.-W.; Fu, F.-H.; Liu, K.; Li, C.-L. Therapeutic effects of hydroxysafflor yellow A on focal cerebral ischemic injury in rats and its primary mechanisms. J. Asian Nat. Prod. Res. 2005, 7, 607–613. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Song, H.; Xiong, Y.; Liu, D.; Bai, X. Hydroxysafflor yellow A suppresses angiogenesis of hepatocellular carcinoma through inhibition of p38 MAPK phosphorylation. Biomed. Pharmacother. 2019, 109, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Feng, C.; Wang, J.; Chen, Z.; Wei, P.; Fan, A.; Wang, X.; Yu, X.; Ge, D.; Xie, H.; et al. Hydroxylsafflower yellow A regulates the tumor immune microenvironment to produce an anticancer effect in a mouse model of hepatocellular carcinoma. Oncol. Lett. 2019, 17, 3503–3510. [Google Scholar]
- Qu, C.; Zhu, W.; Dong, K.; Pan, Z.; Chen, Y.; Chen, X.; Liu, X.; Xu, W.; Lin, H.; Zheng, Q.; et al. Inhibitory Effect of Hydroxysafflor Yellow B on the Proliferation of Human Breast Cancer MCF-7 Cells. Recent Pat. Anti-Cancer Drug Discov. 2019, 14, 187–197. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, M.J.; Yang, C.Y.; Yokozawa, T.; Shin, Y.S. Safflower seed extract synergizes the therapeutic effect of cisplatin and reduces cisplatin-induced nephrotoxicity in human colorectal carcinoma RKO cells and RKO-transplanted mice. Drug Discov. Ther. 2019, 13, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.; Wu, R.; Li, Y.; Zhang, L.; Tang, X.; Tu, J.; Zhou, W.; Wang, J.; Shou, Q. Safflower Yellow Prevents Pulmonary Metastasis of Breast Cancer by Inhibiting Tumor Cell Invadopodia. Am. J. Chin. Med. 2016, 44, 1491–1506. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Zeng, H.; Ye, Y.; Liu, L.; Li, S.; Zhang, J.; Luo, R. Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cells. Mol. Med. Rep. 2015, 11, 4611–4616. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, J.; Zhu, J.; Wang, N.; Chen, S.; Bai, X. Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice. Eur. J. Pharmacol. 2015, 754, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, M.; Fattahi, M.; Hoormand, M.; Milanian, I.; Rahbar, N.; Mahmoudian, M. A study on the teratogenic and cytotoxic effects of safflower extract. J. Ethnopharmacol. 2000, 73, 453–459. [Google Scholar] [CrossRef]
- Wu, S.; Yue, Y.; Tian, H.; Li, Z.; Li, X.; He, W.; Ding, H. Carthamus red from Carthamus tinctorius L. exerts antioxidant and hepatoprotective effect against CCl4-induced liver damage in rats via the Nrf2 pathway. J. Ethnopharmacol. 2013, 148, 570–578. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Lee, Y.-J.; Kim, J.-D.; Kang, S.-N.; Lee, S.-K.; Jang, J.-Y.; Lee, H.-K.; Lim, J.-H.; Lee, O. Phenolic Composition, Antioxidant Activity and Anti-Adipogenic Effect of Hot Water Extract from Safflower (Carthamus tinctorius L.) Seed. Nutrients 2013, 5, 4894–4907. [Google Scholar] [CrossRef]
- Cho, S.-H.; Jang, J.-H.; Yoon, J.Y.; Han, C.-D.; Choi, Y.; Choi, S.-W. Effects of a safflower tea supplement on antioxidative status and bone markers in postmenopausal women. Nutr. Res. Pr. 2011, 5, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Koyama, N.; Kuribayashi, K.; Seki, T.; Kobayashi, K.; Furuhata, Y.; Suzuki, K.; Arisaka, H.; Nakano, T.; Amino, Y.; Ishii, K. Serotonin Derivatives, Major Safflower (Carthamus tinctoriusL.) Seed Antioxidants, Inhibit Low-Density Lipoprotein (LDL) Oxidation and Atherosclerosis in Apolipoprotein E-Deficient Mice. J. Agric. Food Chem. 2006, 54, 4970–4976. [Google Scholar] [CrossRef]
- Bunbupha, S.; Wunpathe, C.; Maneesai, P.; Berkban, T.; Kukongviriyapan, U.; Kukongviriyapan, V.; Prachaney, P.; Pakdeechote, P. Carthamus tinctorius L. extract improves hemodynamic and vascular alterations in a rat model of renovascular hypertension through Ang II–AT1R–NADPH oxidase pathway. Ann. Anat. 2018, 216, 82–89. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Mei, X.; Zhang, X. Hydroxysafflor yellow A attenuates left ventricular remodeling after pressure overload-induced cardiac hypertrophy in rats. Pharm. Biol. 2013, 52, 31–35. [Google Scholar] [CrossRef]
- Liu, L.; Tao, W.; Pan, W.; Li, L.; Yu, Q.; Zhang, D.; Jiang, J. Hydroxysafflor Yellow A Promoted Bone Mineralization and Inhibited Bone Resorption Which Reversed Glucocorticoids-Induced Osteoporosis. BioMed Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-O.; Park, Y.-S.; Lee, J.-H.; Seo, J.-B.; Koo, K.-I.; Jeong, S.-C.; Jin, S.-D.; Lee, Y.-H.; Eom, H.-S.; Yun, I. Effect of extracts from safflower seeds on osteoblast differentiation and intracellular calcium ion concentration in MC3T3-E1 cells. Nat. Prod. Res. 2007, 21, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Kim, S.M.; Lee, J.I.; Chon, S.K.; Choi, S.J.; Choi, I.H.; Kim, N.S. Effects of Safflower Seed Oil in Osteoporosis Induced-Ovariectomized Rats. Am. J. Chin. Med. 2006, 34, 601–612. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Kim, C.-S.; Jhon, G.-J.; Moon, I.-S.; Choi, S.-H.; Cho, K.-S.; Chai, J.-K.; Kim, C.-K. The Effect of Safflower Seed Extract on Periodontal Healing of 1-Wall Intrabony Defects in Beagle Dogs. J. Periodontol. 2002, 73, 1457–1466. [Google Scholar] [CrossRef]
- Kim, J.H.; He, M.T.; Kim, M.J.; Yang, C.Y.; Shin, Y.S.; Yokozawa, T.; Park, C.H.; Cho, E.J. Safflower (Carthamus tinctorius L.) seed attenuates memory impairment induced by scopolamine in mice via regulation of cholinergic dysfunction and oxidative stress. Food Funct. 2019, 10, 3650–3659. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Z.; Zhai, W.; Pang, J.; Mo, Y.; Yang, G.; Qu, Z.; Hu, Y. Safflower yellow attenuates learning and memory deficits in amyloid β-induced Alzheimer’s disease rats by inhibiting neuroglia cell activation and inflammatory signaling pathways. Metab. Brain Dis. 2019, 34, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-M.; Zhang, H.; Zhou, Z.-J.; Ruan, Y.-Y.; Pang, J.; Zhang, L.; Zhai, W.; Hu, Y.-L. Effects of safflower yellow on beta-amyloid deposition and activation of astrocytes in the brain of APP/PS1 transgenic mice. Biomed. Pharmacother. 2018, 98, 553–565. [Google Scholar] [CrossRef]
- Dong, H.; Liu, Y.; Zou, Y.; Li, C.; Li, L.; Li, X.; Zhao, X.; Zhou, L.; Liu, J.; Niu, Y. Alteration of the ERK5 pathway by hydroxysafflor yellow A blocks expression of MEF2C in activated hepatic stellate cellsin vitro: Potential treatment for hepatic fibrogenesis. Pharm. Biol. 2013, 52, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zheng, D.-Y.; Liu, S.; Meng, Y.; Xu, H.-Y.; Zhang, Q.; Gong, J.; Xia, Z.-L.; Chen, L.-B.; Li, H.-Y. Hydroxysafflor Yellow A Attenuates Lymphostatic Encephalopathy-induced Brain Injury in Rats. Phytother. Res. 2012, 26, 1500–1506. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Dong, H.; Zhao, X.; Zhou, L.; Li, X.; Liu, J.; Niu, Y. Hydroxysafflor yellow A protects against chronic carbon tetrachloride-induced liver fibrosis. Eur. J. Pharmacol. 2011, 660, 438–444. [Google Scholar] [CrossRef]
- Pan, R.; Zhang, Y.; Zang, B.; Tan, L.; Jin, M. Hydroxysafflor yellow A inhibits TGF-β1-induced activation of human fetal lung fibroblastsin vitro. J. Pharm. Pharmacol. 2016, 68, 1320–1330. [Google Scholar] [CrossRef]
- Zhu, H.-J.; Wang, L.-J.; Wang, X.-Q.; Pan, H.; Li, N.-S.; Yang, H.-B.; Jin, M.; Zang, B.-X.; Gong, F. Hydroxysafflor yellow A (HYSA) inhibited the proliferation and differentiation of 3T3-L1 preadipocytes. Cytotechnology 2015, 67, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Wang, L.-J.; Wang, X.-Q.; Pan, H.; Li, N.-S.; Yang, H.; Jin, M.; Zang, B.-X.; Gong, F. Hormone-sensitive lipase is involved in the action of hydroxysafflor yellow A (HYSA) inhibiting adipogenesis of 3T3-L1cells. Fitoterapia 2014, 93, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Long, L.; Zhang, N.; Liu, Y. Inhibitory effects of hydroxysafflor yellow A on PDGF-BB-induced proliferation and migration of vascular smooth muscle cells via mediating Akt signaling. Mol. Med. Rep. 2014, 10, 1555–1560. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tian, X.; Cui, M.; Zhao, S. Safflower Yellow Inhibits Angiotensin II–Induced Adventitial Fibroblast Proliferation and Migration. J. Pharmacol. Sci. 2014, 126, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; He, Y.; Yang, M.; Sun, H.; Zhang, S.; Wang, C. Safflor yellow B suppresses angiotensin II–mediated human umbilical vein cell injury via regulation of Bcl–2/p22(phox) expression. Toxicol. Appl. Pharmacol. 2013, 273, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, T.; Suzuki, K.; Arisaka, H.; Murata, T.; Ozaki, H.; Koyama, N. Effect of N-(p-coumaroyl)serotonin and N-feruloylserotonin, major anti-atherogenic polyphenols in safflower seed, on vasodilation, proliferation and migration of vascular smooth muscle cells. Mol. Nutr. Food Res. 2011, 55, 1561–1571. [Google Scholar] [CrossRef]
- Takii, T.; Hayashi, M.; Hiroma, H.; Chiba, T.; Kawashima, S.; Zhang, H.L.; Nagatsu, A.; Sakakibara, J.; Onozaki, K. Serotonin derivative, N-(p-Coumaroyl)serotonin, isolated from safflower (Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF). J. Biochem. 1999, 125, 910–915. [Google Scholar] [CrossRef]
- Ide, T.; Origuchi, I. Physiological effects of an oil rich in γ-linolenic acid on hepatic fatty acid oxidation and serum lipid levels in genetically hyperlipidemic mice. J. Clin. Biochem. Nutr. 2019, 64, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Junlatat, J.; Sripanidkulchai, B. Hair Growth-Promoting Effect of Carthamus tinctorius Floret Extract. Phytother. Res. 2013, 28, 1030–1036. [Google Scholar] [CrossRef]
- Kong, S.-Z.; Shi, X.-G.; Feng, X.-X.; Li, W.-J.; Liu, W.-H.; Chen, Z.-W.; Xie, J.-H.; Lai, X.-P.; Zhang, S.-X.; Zhang, X.-J.; et al. Inhibitory Effect of Hydroxysafflor Yellow A on Mouse Skin Photoaging Induced by Ultraviolet Irradiation. Rejuvenation Res. 2013, 16, 404–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgary, S.; Rahimi, P.; Mahzouni, P.; Madani, H. Antidiabetic effect of hydroalcoholic extract of Carthamus tinctorius L. in alloxan-Induced diabetic rats. J. Res. Med. Sci. 2012, 17, 386–392. [Google Scholar] [PubMed]
- Liu, Z.; Li, C.; Li, M.; Li, D.; Liu, K. The subchronic toxicity of hydroxysafflor yellow A of 90 days repeatedly intraperitoneal injections in rats. Toxicology 2004, 203, 139–143. [Google Scholar] [CrossRef]
- Koyama, N.; Suzuki, K.; Furukawa, Y.; Arisaka, H.; Seki, T.; Kuribayashi, K.; Ishii, K.; Sukegawa, E.; Takahashi, M. Effects of safflower seed extract supplementation on oxidation and cardiovascular risk markers in healthy human volunteers. Br. J. Nutr. 2008, 101, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, J.S.; Han, J.Y.; Kim, J.H.; Hwang, J.-K. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol. Pharm. Bull. 2004, 27, 1976–1978. [Google Scholar] [CrossRef] [Green Version]
Source | Chemical Compound/Extract | Model | Effect | Reference |
---|---|---|---|---|
Anti-Inflammatory Effect | ||||
Flower | Hydroxysafflor yellow A | Human (MRC-5 Cell) | Inhibits TNF-α-induced inflammation of human fetal lung fibroblasts | [57] |
Flower | Hydroxysafflor yellow A | Human (bronchial smooth muscle cell) | Inhibits pro-inflammatory platelet-activating factor (PAF)-induced activation of human bronchial smooth muscle cells | [58] |
Flower | Hydroxysafflor yellow A | Guinea pig | Alleviates ovalbumin-induced asthma | [59] |
Flower | Carthamin yellow | Rat | Reduces ischemia-reperfusion injury | [60] |
Flower | Hydroxysafflor yellow B | Rat (PC12 cell) | Protects brain against cerebral ischemia reperfusion injury | [61] |
Flower | Hydroxysafflor yellow A | Mouse (primary mesencephalic cultures) | Attenuates lipopolysaccharide-induced neurotoxicity and neuroinflammation | [62] |
Flower | Hydroxysafflor yellow A | Mouse | Alleviates lipopolysaccharide-induced acute respiratory distress syndrome | [63] |
Flower | Safflower yellow | Mouse (BV-2 microglia cell) | Regulates microglia polarization and inhibits inflammatory response in LPS-stimulated BV2 cells | [64] |
Seed | Acacetin, cosmosiin, N-feruloyl serotonin, and N-(p-coumaroyl) serotonin | Mouse (RAW 264.7 macrophages cell) | Anti-inflammatory effect in lipopolysaccharide-stimulated RAW 264.7 macrophages | [65] |
Flower | Hydroxysafflor yellow A | Rat | Protective effects against myocardial ischemia | [66] |
Flower | Hydroxysafflor yellow A | Mouse | Attenuates ischemia/reperfusion-induced liver injury | [67] |
Flower | Hydroxysafflor yellow A | Mouse (BV-2 microglia cell) | Suppresses inflammatory responses of BV2 microglia | [68] |
Flower | Kaempferol-3-O-rutinoside and Kaempferol-3-O-glucoside | Rat | Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation | [69] |
Flower | Hydroxysafflor yellow A | Rat | Attenuates brain ischemic injury | [70] |
Flower | Hydroxysafflor yellow A | Mouse | Alleviates early inflammatory response of bleomycin-induced mice lung injury | [71] |
Flower | Hydroxysafflor yellow A | Rat | Neuroprotection of hydroxysafflor yellow A in the transient focal ischemia | [72] |
Flower | Safflower petal aqueous extracts & Carthamus yellow | Mouse (RAW264.7 cell) | Anti-inflammatory effect in lipopolysaccharide-stimulated RAW 264.7 macrophages | [73] |
Flower | Hydroxysafflor yellow A | Mouse | Attenuates lipopolysaccharide-induced pulmonary inflammatory injury | [74] |
Flower | Hydroxysafflor yellow A | Rat | Effects on focal cerebral ischemic injury | [75] |
Anti-Cancer Effect | ||||
Flower | Hydroxysafflor yellow A | Mouse & human (HepG2 cell) | Suppresses angiogenesis of hepatocellular carcinoma | [76] |
Flower | Hydroxysafflor yellow A | Mouse | Anti-cancer effect in a mouse model of hepatocellular carcinoma | [77] |
Flower | Hydroxysafflor yellow B | Human (breast cancer MCF-7 cell) | Effect on proliferation of cancer cells | [78] |
Seed | Seed extract | Human colorectal carcinoma RKO cell and RKO-transplanted mouse | Synergizes the therapeutic effect of cisplatin and reduces cisplatin-induced nephrotoxicity | [79] |
Flower | Safflower yellow | Human (COS7, MDA-MB-435s and MCF7 cell) & mouse | Prevents pulmonary metastasis of breast cancer | [80] |
Flower | Safflower polysaccharide | Human (breast cancer cell, MCF-7) | Inhibits the proliferation and metastasis of breast cancer cell | [81] |
Flower | Hydroxysafflor yellow A | Mouse | Inhibits angiogenesis of hepatocellular carcinoma | [82] |
Flower | Carthami flos | Rat | Teratogenic and cytotoxic effect | [83] |
Antioxidant Effect | ||||
Flower | Carthamus red | Rat | Exerts antioxidant and hepatoprotective effects against CCl(4)-induced liver damage | [84] |
Seed | Seed extract | Mouse (3T3-L1 cell) | Antioxidant activity and anti-adipogenic effect | [85] |
Seed | Seed granular tea | Human | Antioxidant and potential bone protecting effects in postmenopausal women | [86] |
Seed | Seed extract | Human | Affects markers of oxidative stress, inflammation, and aortic stiffness | [87] |
Vascular Effect | ||||
Flower | Carthamus tinctorius L. extract | Rat | Ameliorates hemodynamic alteration and vascular remodeling | [88] |
Flower | Hydroxysafflor yellow A | Rat | Effects on hypertensive ventricular remodeling | [89] |
Osteoporosis Effect | ||||
Flower | Hydroxysafflor yellow A | Zebrafish | Promotes bone mineralization and inhibits bone resorption which reverses glucocorticoids-induced osteoporosis | [90] |
Seed | Seed crude and aqueous extract | Mouse (MCT3T3-E1 cell) | Effect on osteoblast differentiation and intracellular calcium ion concentration | [91] |
Seed | Seed oil | Rat | Improves osteoporosis-induced ovariectomized rats | [92] |
Seed | Seed extract | Dog | Stimulates periodontal regeneration | [93] |
Brain and Liver Disease Effect | ||||
Seed | Seed extract | Mouse | Attenuates memory impairment induced by scopolamine | [94] |
Flower | Safflower yellow | Rat | Attenuates learning and memory deficits in amyloid β-induced Alzheimer’s disease | [95] |
Flower | Safflower yellow | Mouse | Neuroprotective effects on animal models of vascular dementia and Alzheimer’s diseases | [96] |
Flower | Hydroxysafflor yellow A | Rat (Hepatic stellate cell) | Potential treatment for hepatic fibrogenesis | [97] |
Flower | Hydroxysafflor yellow A | Rat | Attenuates lymphostatic encephalopathy-induced brain injury | [98] |
Flower | Hydroxysafflor yellow A | Rat | Protects against chronic carbon tetrachloride-induced liver fibrosis | [99] |
Cell Proliferation and Inhibition Effect | ||||
Flower | Hydroxysafflor yellow A | Human (MRC-5 cell) | Inhibits TGF-β1-induced activation of human fetal lung fibroblasts | [100] |
Flower | Hydroxysafflor yellow A | Mouse (3T3-L1 preadipocyte) | Inhibits the proliferation and differentiation of 3T3-L1 preadipocytes | [101] |
Flower | Hydroxysafflor yellow A | Mouse (3T3-L1 preadipocyte) | Inhibits the proliferation and adipogenesis of 3T3-L1 preadipocytes | [102] |
Flower | Hydroxysafflor yellow A | Rat | Inhibitory effects of HSYA on PDGF-BB-induced proliferation and migration of vascular smooth muscle cells | [103] |
Flower | Safflower yellow | Rat | Inhibits angiotensin II-induced adventitial fibroblast proliferation and migration. | [104] |
Flower | Safflower yellow B | Human (umbilical vein endothelial cell) | Protects endothelial cells from Ang II-induced cell damage | [105] |
Seed | N-(p-coumaroyl) serotonin and N-feruloylserotonin | Rat (vascular smooth muscle cell) | Inhibits platelet-derived growth factor-BB-evoked proliferation and migration of the vascular smooth muscle cells | [106] |
Seed | N-(p-Coumaroyl) serotonin | Human (lung fibroblast cell line TIG-1, MRC-5, MRC-9) and mouse (fibroblast cell line 3T3) | Grows the proliferation of normal human and mouse fibroblasts | [107] |
Other Effects | ||||
Seed | γ- Linoleic acid | Mouse | Affects hepatic fatty acid metabolism, and serum lipid levels in genetically hyperlipidemic mice deficient in apolipoprotein E expression | [108] |
Flower | Floret extract | Mouse & Human (dermal papilla cells and HaCaT) | Hair growth-promoting effect | [109] |
Flower | Hydroxysafflor yellow A | Mouse | Protective effect of skin photoaging induced by ultraviolet irradiation | [110] |
Flower | Flower extract | Rat | Effect on treatment of diabetes | [111] |
Flower | Hydroxysafflor yellow A | Rat | Subchronic toxicity of hydroxysafflor yellow A | [112] |
Seed | Seed extract | Mouse | Inhibits low-density lipoprotein (LDL) oxidation and attenuate atherosclerotic lesion development | [113] |
Seed | Seed extract | Streptomyces bikiniensis and mouse (B16 melanoma cell) | Melanogenesis inhibitory activity | [114] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, V.; Lee, S.-K.; Yeo, Y.; Hahn, B.-S. A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower. Metabolites 2020, 10, 253. https://doi.org/10.3390/metabo10060253
Mani V, Lee S-K, Yeo Y, Hahn B-S. A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower. Metabolites. 2020; 10(6):253. https://doi.org/10.3390/metabo10060253
Chicago/Turabian StyleMani, Vimalraj, Seon-Kyeong Lee, Yunsoo Yeo, and Bum-Soo Hahn. 2020. "A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower" Metabolites 10, no. 6: 253. https://doi.org/10.3390/metabo10060253
APA StyleMani, V., Lee, S. -K., Yeo, Y., & Hahn, B. -S. (2020). A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower. Metabolites, 10(6), 253. https://doi.org/10.3390/metabo10060253