Yield and Metabolite Production of Pelargonium sidoides DC. in Response to Irrigation and Nitrogen Management
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil Water Deficits and Water Use
2.2. Total Fresh and Dry Biomass Yield
2.3. Root Yield
2.4. Metabolomic Analysis
2.5. High-Performance Liquid Chromatography (HPLC) Analysis of Selected Coumarins
3. Materials and Methods
3.1. Study Area
3.2. Plant Material and Trial Design
3.3. Water and Nitrogen Treatments
3.4. Yield Data Collection and Statistical Analysis
3.5. Metabolomic Analysis
3.5.1. Sample Preparation and Extraction Method
3.5.2. Data Acquisition/Sample Analysis
3.5.3. Data Mining and Processing
3.5.4. Annotation
3.6. HPLC Analysis of Selected Coumarins
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2006, 58, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiasu, B.K.; Steyn, J.M.; Soundy, P. Rose-scented geranium (Pelargonium capitatum × P. radens) growth and essential oil yield response to different soil water depletion regimes. Agric. Water Manag. 2009, 96, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Bilibio, C.; Carvalho, J.A.; Hensel, O.; Richter, U. Effect of different levels of water deficit on rapeseed (Brassica napus L.) crop. Agrotec. Lavras. 2011, 35, 672–684. [Google Scholar] [CrossRef] [Green Version]
- Mofokeng, M.M.; Steyn, J.M.; Du Plooy, C.P.; Prinsloo, G.; Araya, H.T. Growth of Pelargonium sidoides DC. in response to water and nitrogen level. S. Afr. J. Bot. 2015, 100, 183–189. [Google Scholar] [CrossRef] [Green Version]
- White, A.G.; Davies-Coleman, M.T.; Ripley, B.S. Measuring and optimizing umckalin concentration in wild harvested and cultivated Pelargonium sidoides (Geraniaceae). S. Afr. J. Bot. 2008, 74, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Solecka, D. Role of phenylpropanoid compounds in plant response to different stress factors. Acta Physiol. Plant 1997, 19, 257–268. [Google Scholar] [CrossRef]
- Tugizama, F.; Piater, L.; Dubery, I. Plant metabolomics: A new frontier in phytochemical analysis. S. Afr. J. Sci. 2013, 109, 1–11. [Google Scholar] [CrossRef]
- Lewu, F.B.; Grierson, D.S.; Afolayan, A.J. The leaves of Pelargonium sidoides may substitute for its roots in the treatment of bacterial infections. Biol. Conserv. 2006, 128, 582–584. [Google Scholar] [CrossRef]
- Lewu, F.B.; Adebola, P.O.; Afolayan, A.J. Commercial harvesting of Pelargonium sidoides in the Eastern Cape, South Africa: Striking a balance between resource conservation and rural development. J. Arid Environ. 2007, 70, 380–388. [Google Scholar] [CrossRef]
- Street, R.A.; Prinsloo, G. Commercially important medicinal plants of South Africa: A review. J. Chem. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
- Mayet, M. Biopiracy under Fire: The Pelargonium Patent Hearing. A Briefing Paper by the African Centre for Biosafety; African Centre for Biosafety: Melville, South Africa, 2010. [Google Scholar]
- Van Niekerk, J.; Wynberg, R. The trade in Pelargonium sidoides: Rural livelihood relief or bounty for the ‘bio-buccaneers’? Dev. S. Afr. 2012, 29, 530–547. [Google Scholar] [CrossRef]
- Bladt, S.; Wagner, H. From the Zulu medicine to the European phytomedicine Umckaloabo®. Phytomedicine 2007, 14, 2–4. [Google Scholar] [CrossRef]
- Brendler, T.; van Wyk, B.-E. A historical, scientific and commercial perspective on the use of Pelargonium sidoides (Geraniaceae). J. Ethnopharmacol. 2008, 119, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, B.-E. A broad review of commercially important southern African medicinal plants. J. Ethnopharmacol. 2008, 119, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Assessment Report on Pelargonium sidoides DC. and/or Pelargonium reniforme Curt; European Medicines Agency: London, UK, 2011.
- Kayser, O.; Kolodziej, H. Highly oxygenated coumarins from Pelargonium sidoides. Phytochemistry 1995, 39, 1181–1185. [Google Scholar] [CrossRef]
- Gödecke, T.; Kaloga, M.; Kolodziej, H. A phenol glucoside, uncommon coumarins and flavonoids from Pelargonium sidoides DC. Z. Naturforsch. 2005, 60, 677–682. [Google Scholar] [CrossRef]
- Kolodziej, H. Fascinating metabolic pools of Pelargonium sidoides and Pelargonium reniforme, traditional and phytomedicinal sources of the herbal medicine Umckaloabo®. Phytomedicine 2007, 14, 9–17. [Google Scholar] [CrossRef]
- European Pharmacopoeia. Available online: https://theodora.com/drugs/eu/pelargonii_radix_herbal.html (accessed on 15 January 2020).
- Rao, B.R.R. Biomass and essential oil yields of rainfed palmarosa (Cymbopogon martinii (Roxb.) Wats. var. motia Burk.) supplied with different levels of organic manure and fertilizer nitrogen in semi-arid tropical climate. Ind. Crops Prod. 2001, 14, 171–178. [Google Scholar] [CrossRef]
- Ram, M.; Ram, D.; Roy, S.K. Influence of an organic mulching on fertilizer nitrogen use efficiency and herb and essential oil yields in geranium (Pelargonium graveolens). Bioresour. Technol. 2003, 87, 273–278. [Google Scholar] [CrossRef]
- Araya, H.T.; Soundy, P.; Steyn, J.M.; Teubes, C.; Learmonth, R.A.; Mojela, N. Response of herbage yield, essential oil yield and composition of South African rose-scented geranium (Pelargonium spp.) to conventional and organic nitrogen. J. Essent. Oil Res. 2006, 18, 111–115. [Google Scholar] [CrossRef]
- Moyo, M.; Aremu, A.O.; Gruz, J.; Šubrtova, M.; Szüčová, L.; Doležal, K.; Van Staden, J. Conservation strategy for Pelargonium sidoides DC: Phenolic profile and pharmacological activity of acclimatized plants derived from tissue culture. J. Ethnopharmacol. 2013, 149, 557–561. [Google Scholar] [CrossRef]
- Vandoorne, B.; Mathieu, A.-S.; Van Den Ende, W.; Vergauwen, R.; Perilleux, C.; Javaux, M.; Lutts, S. Water stress drastically reduces root growth and inulin yield in Cichrium intybus (var. sativum) independently of photosynthesis. J. Exp. Bot. 2012, 63, 4359–4373. [Google Scholar] [CrossRef] [PubMed]
- Bahreininejad, B.; Razmjoo, J.; Mirza, M. Influence of water stress on morpho-physiological and phytochemical traits in Thymus daenensis. Int. J. Plant Prod. 2013, 7, 151–166. [Google Scholar]
- Dubey, D.; Chaurasia, S.; Guleria, A.; Kumar, S.; Modi, D.J.; Misra, R.; Kumar, D. Metabolite assignment of ultrafiltered synovial fluid extracted from knee joints of reactive arthritis patients using high resolution NMR spectroscopy. Magn. Reson. Chem. 2018, 57, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.L.; Olival, L.; Perestrelo, R.; Silva, P.; Tomás, H.; Câmara, J.S. Untargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detection. Metabolites 2019, 9, 269. [Google Scholar] [CrossRef] [Green Version]
- Piang-Siong, W.; De Caro, P.; Lacaze-Dufaure, C.; Sing, A.S.C.; Hoareau, W. Effect of catalytic conditions on the synthesis of new aconitate esters. Ind. Crop Prod. 2012, 35, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Scott, G.M.; Amidon, T.E.; Kiemle, D.J.; Stipanovic, A.J. Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods. Bioresour. Technol. 2009, 100, 6398–6406. [Google Scholar] [CrossRef]
- Fathi, F.; Brun, A.; Rott, K.H.; Cobra, P.F.; Tonelli, M.; Eghbalnia, H.R.; Caviedes-Vidal, E.; Karasov, W.H.; Markley, J.L. NMR-based identification of metabolites in polar and non-polar extracts of Avian liver. Metabolites 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- KEGG: Kyoto Encyclopedia of Genes and Genomes. Available online: http://www.genome.jp/kegg (accessed on 27 May 2020).
- Oh, J.; Yoon, D.H.; Han, J.G.; Choi, H.K.; Sung, G.H. 1H NMR based metabolite profiling for optimizing the ethanol extraction of Wolfiporia cocos. Saudi J. Biol. Sci. 2018, 25, 1128–1134. [Google Scholar] [CrossRef]
- Nicholson, D. The 22nd edition of the IUBMB-Sigma-Nicholson Metabolic Pathways Chart. 2003. Available online: http://www.sigmaaldrich.com/life-science/metabolomics/learning-center/metabolic-pathways.html (accessed on 15 January 2020).
- Simon-Sakardi, L.; Kocsy, G.; Várhegyi, Á.; Galiba, G.; De Ronde, J.A. Stress induced changes in the free amino acid composition in transgenic soybean plants having increased proline content. Biol. Plant. 2006, 50, 793–796. [Google Scholar] [CrossRef]
- Singh, T.N.; Paleg, L.G.; Aspinall, D. Stress metabolism I: Nitrogen metabolism and growth in the barley plant during water stress. Aust. J. Biol. Sci. 1973, 26, 45–56. [Google Scholar] [CrossRef]
- Büssis, D.; Heineke, D. Acclimation of potato plants to polyethylene glycol-induced water deficit II, Contents and subcellular distribution of organic solutes. J. Exp. Bot. 1998, 49, 1361–1370. [Google Scholar] [CrossRef]
- Fukutoku, Y.; Yamada, Y. Diurnal changes in water potential and free amino acid content of water-stressed and non-stressed soybean plants. Soil Sci. Plant Nutr. 1981, 27, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, C.; Passarinho, J.A.; Ricardo, C.P. Effect of drought and re-watering on the metabolism of Lupinus albus organs. J. Plant Physiol. 2004, 161, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Bouché, N.; Fromm, H. GABA in plants: Just a metabolite? Trends Plant Sci. 2004, 9, 110–115. [Google Scholar] [CrossRef]
- Bown, A.W.; Shelp, B.J. Plant GABA: Not just a metabolite. Trends Plant Sci. 2016, 21, 811–813. [Google Scholar] [CrossRef]
- Gagné-Bourque, F.; Bertrand, A.; Claessens, A.; Aliferis, K.A.; Jabaji, S. Alleviation of drought stress and metabolic changes in Timothy (Phleum pretense L.) colonized with Bacillus subtilis B26. Front. Plant Sci. 2016, 7, 584. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Ruiz, R.; Martinez, F.; Knauf-Beiter, G. The effects of GABA in plants. Cogent Food Agric. 2019, 5, 1670553. [Google Scholar] [CrossRef]
- Winter, G.; Todd, C.D.; Trovato, M.; Forlani, G.; Funck, D. Physiological implications of arginine metabolism in plants. Front. Plant Sci. 2015, 6, 534. [Google Scholar] [CrossRef] [Green Version]
- Curtis, T.Y.; Bo, V.; Tucker, A.; Halford, N.G. Construction of a network describing asparagine metabolism in plants and its application to the identification of genes affecting asparagine metabolism in wheat under drought and nutritional stress. Food Energy Secur. 2018, 7. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Rahman, A.; Inafuku, M.; Oku, H.; Fujita, M. Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol. Mol. Biol. Plants 2018, 24, 993–1004. [Google Scholar] [CrossRef]
- Prinsloo, G.; Nogemane, N. The effect of season and water availability on chemical composition, secondary metabolites and biological activity in plants. Phytochem. Rev. 2018, 17, 889–902. [Google Scholar] [CrossRef]
- Evett, S. Field Estimation of Soil Water Content; International Atomic Energy Agency: Vienna, Austria, 2008; pp. 39–54. [Google Scholar]
- Anand, S.P.; Jeyachandran, R.; Nandagopalan, V. NMR spectral analysis on root extract of Zehneria scabra—A vital medicinal climber. J. Pharm. Sci. Res. 2011, 3, 1015–1018. [Google Scholar]
- Krishna, P.; Kruger, N.J.; Ratcliffe, R.G. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 2004, 56, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Mediani, A.; Abas, F.; Khatib, A.; Maulidiani, H.; Shaari, K.; Choi, Y.H.; Lajis, N.H. 1H-NMR based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. Food Res. Int. 2012, 49, 763–770. [Google Scholar] [CrossRef]
- Maree, J.E.; Viljoen, A.M. Phytochemical distinction between Pelargonium sidoides and Pelargonium reniforme—A quality control perspective. S. Afr. J. Bot. 2012, 82, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Human Metabolome Database. Available online: http://www.hmdb.ca (accessed on 27 May 2020).
- Chenomx. Available online: http://www.chenomx.com (accessed on 27 May 2020).
- Upadhyay, V.; Sharma, N.; Tiwari, A.K.; Joshi, M.H.; Malik, A.; Singh, B.; Kalakoti, B.S. Standardization of HPLC method of scopoletin in different extracts of Convolvulus pluricaulis. Int. J. Pharm. Sci. Drug Res. 2013, 5, 28–31. [Google Scholar]
Water Depletion Level | Irrigation Water Applied | Evapotranspiration (ET) | Total Fresh Biomass Yield | Total Dry Biomass Yield | Fresh Root Yield | Dry Root Yield | Average Dry Matter Content |
---|---|---|---|---|---|---|---|
% ADL * | mm | t ha−1 | % | ||||
30 | 466 | 431 | 27.30 a | 7.43 a | 19.77 a | 3.58 a | 27.24 a |
50 | 307 | 264 | 21.15 b | 5.20 b | 14.52 b | 2.51 b | 24.58 b |
70 | 256 | 237 | 19.22 b | 4.92 b | 14.05 b | 2.15 b | 25.57 ab |
LSD0.05 | - | - | 3.67 | 1.15 | 2.81 | 0.59 | 1.93 |
Treatment | 1H-NMR Chemical Shifts (ppm) | Reference Chemical Shifts (ppm) | References | Chenomx | Compound |
---|---|---|---|---|---|
Well-watered (30% ADL) | |||||
2.52 | 2.51 | [27,28] | 2.55 | Citric acid | |
2.68 | 2.66 | [27,28] | 2.70 | Citric acid | |
3.17 | 3.11 | [28] | 3.18 | Cis-aconitate | |
3.45 | 3.95 | [29] | 4.36 | Trans-aconitate | |
4.55 | 4.62 | [30] | 4.57 | Xylose | |
5.15 | 5.22 | [30] | 5.19 | Xylose | |
5.44 | 5.40 | [27] | 5.4 | Sucrose | |
5.96 | 5.72 | [28] | 5.95 | Cis-aconitate | |
6.64 | 6.92 | [29] | 6.60 | Trans-aconitate | |
Water-stressed (50% and 70% ADL) | |||||
1.64–1.72 | 1.66 | [31] | 1.61–1.75 | Arginine | |
1.88 | 1.91 | [31] | 1.89 | Arginine | |
1.88 | 1.90 | [32] | 1.88 | 4-aminobutyrate | |
2.28 | 2.30 | [33] | 2.29 | 4-aminobutyrate | |
2.82 | [31] | 2.85 | Asparagine | ||
2.92 | [31] | 2.94 | Asparagine | ||
2.99 | 3.02 | [33] | 3.00 | 4-aminobutyrate | |
3.22 | [31] | 3.23 | Arginine | ||
3.76 | [31] | 3.76 | Arginine | ||
3.95 | 4.00 | [31] | 3.99 | Asparagine |
Treatments | Esculin | Scopoletin | Umckalin |
---|---|---|---|
N * (kg ha−1) | mg 100 g−1 | ||
0 | 27.6 | 3.4 | 42.5 |
50 | 29.5 | 3.5 | 45.3 |
100 | 24.9 | 4.5 | 38.3 |
150 | 25.4 | 4.8 | 39.0 |
ADL * (% PAW) | mg 100 g−1 | ||
30 | 26.2 | 4.2 | 40.3 |
50 | 26.4 | 4.4 | 40.6 |
70 | 27.9 | 3.6 | 42.9 |
N x ADL | NS | NS | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mofokeng, M.M.; Prinsloo, G.; Araya, H.T.; du Plooy, C.P.; Sathekge, N.R.; Amoo, S.O.; Steyn, J.M. Yield and Metabolite Production of Pelargonium sidoides DC. in Response to Irrigation and Nitrogen Management. Metabolites 2020, 10, 219. https://doi.org/10.3390/metabo10060219
Mofokeng MM, Prinsloo G, Araya HT, du Plooy CP, Sathekge NR, Amoo SO, Steyn JM. Yield and Metabolite Production of Pelargonium sidoides DC. in Response to Irrigation and Nitrogen Management. Metabolites. 2020; 10(6):219. https://doi.org/10.3390/metabo10060219
Chicago/Turabian StyleMofokeng, Motiki M., Gerhard Prinsloo, Hintsa T. Araya, Christian P. du Plooy, Ntshakga R. Sathekge, Stephen O. Amoo, and J. Martin Steyn. 2020. "Yield and Metabolite Production of Pelargonium sidoides DC. in Response to Irrigation and Nitrogen Management" Metabolites 10, no. 6: 219. https://doi.org/10.3390/metabo10060219
APA StyleMofokeng, M. M., Prinsloo, G., Araya, H. T., du Plooy, C. P., Sathekge, N. R., Amoo, S. O., & Steyn, J. M. (2020). Yield and Metabolite Production of Pelargonium sidoides DC. in Response to Irrigation and Nitrogen Management. Metabolites, 10(6), 219. https://doi.org/10.3390/metabo10060219