Gut Microbiota Is the Key to the Antidepressant Effect of Chaihu-Shu-Gan-San
Abstract
:1. Introduction
2. Results
2.1. The Effect of CSGS against Depression-Like Behavioral Disorders Weakened after Antibiotic Treatment
2.2. The Effect of CSGS against Hippocampal Neurotransmitter Levels Alteration Weakened after Antibiotic Treatment
2.3. The Changes of Gut Microbiota in Depression Rats Treated with CSGS after Administration of Antibiotics
2.4. Association of CSGS Effects with the Hippocampus Metabolites Related to Gut Microbiota
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Animal Experiments
4.3. Sample Collection and Preparation
4.4. Gut Microbiota Analysis
4.5. Metabolic Profiling
4.6. Data Processing and Statistical Analysis
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
CSGS | Chaihu-Shu-Gan-San |
CVS | chronic variable stress |
TCM | Traditional Chinese medicine |
OTU | Operational taxonomic unit |
ESI | electrospray ionization source |
PCA | principal component analysis |
OPLS-DA | orthogonal to partial least squares-discriminate analysis |
VIP | variable importance of project |
PCoA | principal coordinate analysis |
References
- Paykel, E.S. Depression: Major problem for public health. Epidemiologia e Psichiatria Sociale 2006, 15, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulconbridge, L.F.; Wadden, T.A.; Berkowitz, R.I.; Sarwer, D.B.; Womble, L.G.; Hesson, L.A.; Stunkard, A.J.; Fabricatore, A.N. Changes in symptoms of depression with weight loss: Results of a randomized trial. Obesity 2009, 17, 1009–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Borre, Y.; C, O.B.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, M.S.; Katz, E.G.; Blacketer, C. Microbiome-Gut-Brain Axis: Probiotics and Their Association with Depression. J. Neuropsychiatry Clin. Neurosci. 2017, 29, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Jia, H.; Zhou, C.; Yang, Y.; Zhao, Y.; Yang, M.; Zou, Z. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J. Pharm. Biomed. Anal. 2017, 138, 231–239. [Google Scholar] [CrossRef]
- Xu, J.; Lian, F.; Zhao, L.; Zhao, Y.; Chen, X.; Zhang, X.; Guo, Y.; Zhang, C.; Zhou, Q.; Xue, Z.; et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 2015, 9, 552–562. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, C.S.; Lu, C.C.; Martel, J.; Ko, Y.F.; Ojcius, D.M.; Tseng, S.F.; Wu, T.R.; Chen, Y.Y.; Young, J.D.; et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 2015, 6, 7489. [Google Scholar] [CrossRef] [Green Version]
- Qin, F.; Liu, J.Y.; Yuan, J.H. Chaihu-Shugan-San, an oriental herbal preparation, for the treatment of chronic gastritis: A meta-analysis of randomized controlled trials. J. Ethnopharmacol. 2013, 146, 433–439. [Google Scholar] [CrossRef]
- Su, Z.H.; Li, S.Q.; Zou, G.A.; Yu, C.Y.; Sun, Y.G.; Zhang, H.W.; Gu, Y.; Zou, Z.M. Urinary metabonomics study of anti-depressive effect of Chaihu-Shu-Gan-San on an experimental model of depression induced by chronic variable stress in rats. J. Pharm. Biomed. Anal. 2011, 55, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.M.; Yu, M.; Ma, L.Y.; Zhang, H.W.; Zou, Z.M. Chaihu-Shu-Gan-San regulates phospholipids and bile acid metabolism against hepatic injury induced by chronic unpredictable stress in rat. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1064, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.H.; Jia, H.M.; Zhang, H.W.; Feng, Y.F.; An, L.; Zou, Z.M. Hippocampus and serum metabolomic studies to explore the regulation of Chaihu-Shu-Gan-San on metabolic network disturbances of rats exposed to chronic variable stress. Mol. Biosyst. 2014, 10, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The Central Nervous System and the Gut Microbiome. Cell 2016, 167, 915–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Guo, K.; Zeng, L.; Zeng, B.; Huo, R.; Luo, Y.; Wang, H.; Dong, M.; Zheng, P.; Zhou, C.; et al. Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers. Transl. Psychiatry 2018, 8, 34. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, X.; Zhang, J.; Chen, Y. Treatment of depression with Chai Hu Shu Gan San: A systematic review and meta-analysis of 42 randomized controlled trials. BMC Complement. Altern. Med. 2018, 18, 66. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Li, L.; Liu, X.J.; Cai, X.; Sun, M.Z.; He, J.F.; Zeng, G.; Huang, H.Y. Effect of Chaihu-Shugan-San on the mRNA expression of the 5-HT1A receptor and cellular proliferation in the hippocampus of epileptic rats with depression. Exp. Ther. Med. 2016, 11, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Q.; Li, C.F.; Chen, S.J.; Liang, W.N.; Wang, M.; Wang, S.S.; Dong, S.Q.; Yi, L.T.; Li, C.D. The antidepressant-like effects of Chaihu Shugan San: Dependent on the hippocampal BDNF-TrkB-ERK/Akt signaling activation in perimenopausal depression-like rats. Biomed. Pharmacother. 2018, 105, 45–52. [Google Scholar] [CrossRef]
- Dehhaghi, M.; Kazemi Shariat Panahi, H.; Guillemin, G.J. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. IJTR 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Yun, X.; Zhang, Q.; Lv, M.; Deng, H.; Deng, Z.; Yu, Y. In vitro reconstitution of the biosynthetic pathway of 3-hydroxypicolinic acid. Org. Biomol. Chem. 2019, 17, 454–460. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, L.; Lan, X.; Cohen, D.; Zhang, Y.; Ravindran, A.V.; Yuan, S.; Zheng, P.; Coghill, D.; Yang, L.; et al. Polyunsaturated fatty acids metabolism, purine metabolism and inosine as potential independent diagnostic biomarkers for major depressive disorder in children and adolescents. Mol. Psychiatry 2018. [Google Scholar] [CrossRef] [PubMed]
- Lalles, J.P. Microbiota-host interplay at the gut epithelial level, health and nutrition. J. Anim. Sci. Biotechnol. 2016, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016, 167, 1469–1480.e1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome 2017, 5, 10. [Google Scholar] [CrossRef]
- Xu, J.; Chen, H.B.; Li, S.L. Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Med. Res. Rev. 2017, 37, 1140–1185. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Fu, J.; Ma, S.R.; Peng, R.; Yu, J.B.; Cong, L.; Pan, L.B.; Zhang, Z.G.; Tian, H.; Che, C.T.; et al. Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. Theranostics 2018, 8, 5945–5959. [Google Scholar] [CrossRef]
- Zheng, X.; Xie, G.; Zhao, A.; Zhao, L.; Yao, C.; Chiu, N.H.; Zhou, Z.; Bao, Y.; Jia, W.; Nicholson, J.K.; et al. The footprints of gut microbial-mammalian co-metabolism. J. Proteome Res. 2011, 10, 5512–5522. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.; Howes, C.G.; VanInsberghe, D.; Yu, H.; Bachar, D.; Christen, R.; Henrik Nilsson, R.; Hallam, S.J.; Mohn, W.W. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J. 2012, 6, 2199–2218. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [Green Version]
No. | Metabolites | RT (min) | m/z | Adduction | Delta (mDa) | M vs. C | A vs. M | CSGS vs. M | A_CSGS vs. M |
---|---|---|---|---|---|---|---|---|---|
H1 | Gamma-Aminobutyric acid ES- | 0.58 | 124.0282 | [M + Na − 2H]− | <0.01 | ↓ b | ↑ a | ↑ b | ↑ b |
H2 | l-Phenylalanine ES− | 0.59 | 146.0665 | [M + H2O − H]− | 0.01 | ↓ b | ↑ a | ↑ b | ↑ b |
H3 | Glycine ES+ | 0.75 | 76.0217 | [M + H]+ | 0.02 | ↓ b | — | ↑ b | — |
H4 | 3-Hydroxypicolinic acid ES+ | 0.76 | 162.0220 | [M + Na]+ | 0.01 | ↓ b | ↓ b | ↑ a | — |
H5 | Cysteinyl-Tryptophan ES− | 0.79 | 306.0925 | [M − H]- | <0.01 | ↓ b | — | ↑ b | — |
H6 | Pipecolic acid ES− | 1.24 | 128.0562 | [M − H]− | 0.02 | ↓ b | — | ↑ b | ↑ b |
H7 | Adenine ES+ | 1.25 | 136.0616 | [M+H]+ | <0.01 | ↓ b | ↑ a | — | — |
H8 | Inosine ES− | 1.28 | 267.0915 | [M − H]− | 0.02 | ↑ b | ↓ b | ↓ b | — |
H9 | Myristic acid ES+ | 3.51 | 246.2427 | [M + NH4]+ | <0.01 | ↑ b | — | — | — |
H10 | Tetradecanoylcarnitine ES+ | 4.89 | 372.3101 | [M + H]+ | <0.01 | ↓ b | — | ↑ a | — |
H11 | l-Lactic acid ES+ | 5.00 | 91.0540 | [M + H]+ | 0.02 | ↑ b | — | ↓ a | — |
H12 | 13-HDoHE ES+ | 5.68 | 332.3308 | [M + NH4]+ | 0.04 | ↑ b | ↓ a | — | — |
H13 | LysoPC(16:0) ES+ | 5.95 | 496.3401 | [M + H]+ | <0.01 | ↑ b | — | ↓ a | — |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Jia, H.-M.; Zhang, T.; Shang, H.; Zhang, H.-W.; Ma, L.-Y.; Zou, Z.-M. Gut Microbiota Is the Key to the Antidepressant Effect of Chaihu-Shu-Gan-San. Metabolites 2020, 10, 63. https://doi.org/10.3390/metabo10020063
Yu M, Jia H-M, Zhang T, Shang H, Zhang H-W, Ma L-Y, Zou Z-M. Gut Microbiota Is the Key to the Antidepressant Effect of Chaihu-Shu-Gan-San. Metabolites. 2020; 10(2):63. https://doi.org/10.3390/metabo10020063
Chicago/Turabian StyleYu, Meng, Hong-Mei Jia, Tao Zhang, Hai Shang, Hong-Wu Zhang, Li-Yan Ma, and Zhong-Mei Zou. 2020. "Gut Microbiota Is the Key to the Antidepressant Effect of Chaihu-Shu-Gan-San" Metabolites 10, no. 2: 63. https://doi.org/10.3390/metabo10020063
APA StyleYu, M., Jia, H. -M., Zhang, T., Shang, H., Zhang, H. -W., Ma, L. -Y., & Zou, Z. -M. (2020). Gut Microbiota Is the Key to the Antidepressant Effect of Chaihu-Shu-Gan-San. Metabolites, 10(2), 63. https://doi.org/10.3390/metabo10020063