Serum Metabolite Biomarkers for Predicting Residual Feed Intake (RFI) of Young Angus Bulls
Abstract
:1. Introduction
2. Results
2.1. The Serum Metabolome of Beef Cattle
2.2. Univariate Statistical Analysis of Bovine Serum Metabolites
2.3. Multivariate Analysis of Bovine Serum Metabolites
2.4. Biomarkers for Bovine RFI
3. Discussion
3.1. Comparison with Literature-Reported Biomarkers of Bovine RFI
3.2. Candidate Serum Biomarkers of Bovine RFI
3.3. Metabolite Markers and Their Role in RFI Biochemistry
4. Materials and Methods
4.1. Ethics Approvals
4.2. Animals and Experimental Design
4.3. Measurement of Phenotypic RFI Values for the Angus Bull Cohort
4.4. Sample Collection
4.5. Metabolomics Tests
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Basarab, J.A.; Price, M.A.; Aalhus, J.L.; Okine, E.K.; Snelling, W.M.; Lyle, K.L. Residual feed intake and body composition in young growing cattle. Can. J. Anim. Sci. 2003, 83, 189–204. [Google Scholar] [CrossRef]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Wang, Z.; Nkrumah, J.D.; Li, C.; Basarab, J.A.; Goonewardene, L.A.; Okine, E.K.; Crews, D.H.; Moore, S.S. Test duration for growth, feed intake, and feed efficiency in beef cattle using the GrowSafe System. J. Anim. Sci. 2006, 84, 2289–2298. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K. Dietary mitigation of enteric methane from cattle. Cab Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 35. [Google Scholar] [CrossRef]
- Steinfeld, H.; Wassenaar, T. The Role of Livestock Production in Carbon and Nitrogen Cycles. Annu. Rev. Environ. Resour. 2007, 32, 271–294. [Google Scholar] [CrossRef] [Green Version]
- Basarab, J.A.; Beauchemin, K.A.; Baron, V.S.; Ominski, K.H.; Guan, L.L.; Miller, S.P.; Crowley, J.J. Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production. Animal 2013, 7, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Arthur, P.F.; Archer, J.A.; Johnston, D.J.; Herd, R.M.; Richardson, E.C.; Parnell, P.F. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J. Anim. Sci. 2001, 79, 2805–2811. [Google Scholar] [CrossRef] [Green Version]
- Nkrumah, J.D.; Crews, D.H.; Basarab, J.A.; Price, M.A.; Okine, E.K.; Wang, Z.; Li, C.; Moore, S.S. Genetic and phenotypic relationships of feeding behavior and temperament with performance, feed efficiency, ultrasound, and carcass merit of beef cattle. J. Anim. Sci. 2007, 85, 2382–2390. [Google Scholar] [CrossRef]
- Fitzsimons, C.; Kenny, D.A.; Deighton, M.H.; Fahey, A.G.; McGee, M. Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake. J. Anim. Sci. 2013, 91, 5789–5800. [Google Scholar] [CrossRef] [Green Version]
- Karisa, B.K.; Thomson, J.; Wang, Z.; Li, C.; Montanholi, Y.R.; Miller, S.P.; Moore, S.S.; Plastow, G.S. Plasma metabolites associated with residual feed intake and other productivity performance traits in beef cattle. Livest. Sci. 2014, 165, 200–211. [Google Scholar] [CrossRef]
- Kelly, A.K.; McGee, M.; Crews, D.H.; Fahey, A.G.; Wylie, A.R.; Kenny, D.A. Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers. J. Anim. Sci. 2010, 88, 109–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroutan, A.; Fitzsimmons, C.; Mandal, R.; Piri-Moghadam, H.; Zheng, J.; Guo, A.C.; Li, C.; Guan, L.L.; Wishart, D.S. The bovine metabolome. Metabolites 2020, 10, 233. [Google Scholar] [CrossRef]
- Yin, P.; Lehmann, R.; Xu, G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal. Bioanal. Chem. 2015, 407, 4879–4892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artegoitia, V.M.; Middleton, J.L.; Harte, F.M.; Campagna, S.R.; de Veth, M.J. Choline and choline metabolite patterns and associations in blood and milk during lactation in dairy cows. PLoS ONE 2014, 9, e103412. [Google Scholar] [CrossRef] [Green Version]
- Clemmons, B.A.; Mihelic, R.I.; Beckford, R.C.; Powers, J.B.; Melchior, E.A.; McFarlane, Z.D.; Cope, E.R.; Embree, M.M.; Mulliniks, J.T.; Campagna, S.R.; et al. Serum metabolites associated with feed efficiency in black angus steers. Metabolomics 2017, 13, 147. [Google Scholar] [CrossRef]
- Jorge-Smeding, E.; Renand, G.; Centeno, D.; Pétéra, M.; Durand, S.; Polakof, S.; Cantalapiedra-Hijar, G. Metabolomics Reveals Changes in Urea Cycle Associated to Residual Feed Intake in Growing Heifers. In Energy and Protein Metabolism and Nutrition; Wageningen Academic: Wageningen, The Netherlands, 2019; pp. 231–232. [Google Scholar]
- Basarab, J.A.; Beauchemin, K.A.; Baron, V.S.; Ominski, K.H.; Guan, L.L.; Miller, S.P.; Crowley, J.J. Residual feed intake (RFI): An indirect approach for reducing GHG emissions. In Proceedings of the Greenhouse Gases & Animal Agriculture Conference, Dublin, Ireland, 23–26 June 2013. [Google Scholar]
- Tatum, J.D. Animal Age, Physiological Maturity, and Associated Effects on Beef Tenderness. 2011. Available online: https://www.beefresearch.org/CMDocs/BeefResearch/PE_White_%20Papers/Animal_Age.pdf (accessed on 10 June 2020).
- Elolimy, A.; Alharthi, A.; Zeineldin, M.; Parys, C.; Loor, J.J. Residual feed intake divergence during the preweaning period is associated with unique hindgut microbiome and metabolome profiles in neonatal Holstein heifer calves. J. Anim. Sci. Biotechnol. 2020, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, K.A.; Pryce, J.E.; Spelman, R.J.; Davis, S.R.; Wales, W.J.; Waghorn, G.C.; Williams, Y.J.; Marett, L.C.; Hayes, B.J. Holstein-Friesian calves selected for divergence in residual feed intake during growth exhibited significant but reduced residual feed intake divergence in their first lactation. J. Dairy Sci. 2014, 97, 1427–1435. [Google Scholar] [CrossRef] [Green Version]
- Beef Cattle Research Council. Available online: https://www.beefresearch.ca/research-topic.cfm/castration-67 (accessed on 10 June 2020).
- Hamilton, T. Beef Bull Fertility. 2015. Available online: http://www.omafra.gov.on.ca/english/livestock/beef/facts/06-015.htm (accessed on 10 June 2020).
- Hall, J.B. The Cow-Calf Manager. 2004. Available online: https://www.sites.ext.vt.edu/newsletter-archive/livestock/aps-04_03/aps-315.html (accessed on 10 June 2020).
- Yang, Y.; Sadri, H.; Prehn, C.; Adamski, J.; Rehage, J.; Danicke, S.; Saremi, B.; Sauerwein, H. Acylcarnitine profiles in serum and muscle of dairy cows receiving conjugated linoleic acids or a control fat supplement during early lactation. J. Dairy Sci. 2019, 102, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Lake, A.D.; Novak, P.; Shipkova, P.; Aranibar, N.; Robertson, D.G.; Reily, M.D.; Lehman-McKeeman, L.D.; Vaillancourt, R.R.; Cherrington, N.J. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 2015, 47, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Kirchberg, F.F.; Harder, U.; Weber, M.; Grote, V.; Demmelmair, H.; Peissner, W.; Rzehak, P.; Xhonneux, A.; Carlier, C.; Ferre, N.; et al. Dietary protein intake affects amino acid and acylcarnitine metabolism in infants aged 6 months. J. Clin. Endocrinol. Metab. 2015, 100, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridi, R.; Latini, A.; Braum, C.A.; Zorzi, G.K.; Moacir, W.; Lissi, E.; Dutra-Filho, C.S. Evaluation of the mechanisms involved in leucine-induced oxidative damage in cerebral cortex of young rats. Free Radic. Res. 2005, 39, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gauster, M.; Rechberger, G.; Sovic, A.; Horl, G.; Steyrer, E.; Sattler, W.; Frank, S. Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. J. Lipid Res. 2005, 46, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.T.; Tran, K.; Pierce, G.N.; Chan, A.C.; O, K.; Choy, P.C. Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells. J. Biol. Chem. 1998, 273, 6830–6836. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.A.; Kim, J.A.; Park, M.H.; Jung, S.C.; Suh, S.H.; Pang, M.G.; Kim, Y.J. Lysophosphatidylcholine induces endothelial cell injury by nitric oxide production through oxidative stress. J. Matern. Fetal Neonatal Med. 2009, 22, 325–331. [Google Scholar] [CrossRef]
- Li, B.; Tian, S.; Liu, X.; He, C.; Ding, Z.; Shan, Y. Sulforaphane protected the injury of human vascular endothelial cell induced by LPC through up-regulating endogenous antioxidants and phase II enzymes. Food Funct. 2015, 6, 1984–1991. [Google Scholar] [CrossRef]
- Zou, Y.; Kim, D.H.; Jung, K.J.; Heo, H.S.; Kim, C.H.; Baik, H.S.; Yu, B.P.; Yokozawa, T.; Chung, H.Y. Lysophosphatidylcholine enhances oxidative stress via the 5-lipoxygenase pathway in rat aorta during aging. Rejuvenation Res. 2009, 12, 15–24. [Google Scholar] [CrossRef]
- Lehmann, R.; Franken, H.; Dammeier, S.; Rosenbaum, L.; Kantartzis, K.; Peter, A.; Zell, A.; Adam, P.; Li, J.; Xu, G.; et al. Circulating lysophosphatidylcholines are markers of a metabolically benign nonalcoholic fatty liver. Diabetes Care 2013, 36, 2331–2338. [Google Scholar] [CrossRef] [Green Version]
- Stiuso, P.; Scognamiglio, I.; Murolo, M.; Ferranti, P.; De Simone, C.; Rizzo, M.R.; Tuccillo, C.; Caraglia, M.; Loguercio, C.; Federico, A. Serum oxidative stress markers and lipidomic profile to detect NASH patients responsive to an antioxidant treatment: A pilot study. Oxidative Med. Cell. Longev. 2014, 2014, 169216. [Google Scholar] [CrossRef]
- Casal, A.; Garcia-Roche, M.; Navajas, E.A.; Cassina, A.; Carriquiry, M. Differential hepatic oxidative status in steers with divergent residual feed intake phenotype. Animal 2020, 14, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Herd, R.M.; Arthur, P.F. Physiological basis for residual feed intake. J. Anim. Sci. 2009, 87, 64. [Google Scholar] [CrossRef] [PubMed]
- Richardson, E.C.; Herd, R.M.; Oddy, V.H.; Thompson, J.M.; Archer, J.A.; Arthur, P.F. Body composition and implications for heat production of Angus steer progeny of parents selected for and against residual feed intake. Aust. J. Exp. Agric. 2001, 41, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Alhasawi, A.; Castonguay, Z.; Appanna, N.D.; Auger, C.; Appanna, V.D. Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens. Microbiol. Res. 2015, 171, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.C.; Alhasawi, A.; Auger, C.; Omri, A.; Appanna, V.D. The role of formate in combatting oxidative stress. Antonie Van Leeuwenhoek 2016, 109, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kadarmideen, H.N. Metabolomics analyses in high-low feed efficient dairy cows reveal novel biochemical mechanisms and predictive biomarkers. Metabolites 2019, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Harper, A.E.; Miller, R.H.; Block, K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984, 4, 409–454. [Google Scholar] [CrossRef]
- Monirujjaman, M.; Ferdouse, A. Metabolic and Physiological Roles of Branched-Chain Amino Acids. Adv. Mol. Biol. 2014, 2014, 364976. [Google Scholar] [CrossRef] [Green Version]
- Freund, H.R.; Hanani, M. The metabolic role of branched-chain amino acids. Nutrition 2002, 18, 287–288. [Google Scholar] [CrossRef]
- Kimball, S.R.; Jefferson, L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 2006, 136, 227S–231S. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zemel, M.B. Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids 2007, 42, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Canadian Council on Animal Care (CCAC). Guide to the Care and Use of Experimental Animals; CCAC: Ottawa, ON, Canada, 1993. [Google Scholar]
- Johnson, C.; Fitzsimmons, C.; Colazo, M.; Li, C.; Kastelic, J.; Thundathil, J. Impacts of residual feed intake and pre-natal diet on reproductive potential of bulls. Anim. Prod. Sci. 2019, 59, 1827–1836. [Google Scholar] [CrossRef]
- Mao, F.; Chen, L.; Vinsky, M.; Okine, E.; Wang, Z.; Basarab, J.; Crews, D.H.; Li, C. Phenotypic and genetic relationships of feed efficiency with growth performance, ultrasound, and carcass merit traits in Angus and Charolais steers. J. Anim. Sci. 2013, 91, 2067–2076. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, A.; Goldansaz, S.A.; Lipfert, M.; Wishart, D.S. Protocols for NMR analysis in livestock metabolomics. Methods Mol. Biol. 2019, 1996, 311–324. [Google Scholar] [PubMed]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical composition of commercial cow’s milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef] [PubMed]
- Magan, J.B.; O’Callaghan, T.F.; Zheng, J.; Zhang, L.; Mandal, R.; Hennessy, D.; Fenelon, M.A.; Wishart, D.S.; Kelly, A.L.; McCarthy, N.A. Impact of bovine diet on metabolomic profile of skim milk and whey protein ingredients. Metabolites 2019, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Minerbi, A.; Gonzalez, E.; Brereton, N.J.B.; Anjarkouchian, A.; Dewar, K.; Fitzcharles, M.A.; Chevalier, S.; Shir, Y. Altered microbiome composition in individuals with fibromyalgia. Pain 2019, 160, 2589–2602. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metab. 2013, 1, 92–107. [Google Scholar]
Metabolite | Platform | HRFI (µM) | LRFI (µM) | Fold Change (HRFI/LRFI) | Log2 Fold Change (HRFI/LRFI) |
---|---|---|---|---|---|
AMINO ACIDS | |||||
Alanine | LC-MS/MS & NMR | 236 ± 29 1 | 245 ± 30 | 0.96 | −0.05 |
Arginine | LC-MS/MS & NMR | 218 ± 32 | 218 ± 35 | 1.00 | 0.00 |
Asparagine | LC-MS/MS & NMR | 26 ± 4 | 24 ± 3 | 1.08 | 0.12 |
Aspartate | LC-MS/MS & NMR | 26 ± 12 | 22 ± 10 | 1.18 | 0.24 |
Beta-alanine | NMR | 8 ± 1 | 8 ± 1 | 0.99 | −0.02 |
Citrulline | LC-MS/MS & NMR | 93 ± 15 | 81 ± 14 | 1.15 | 0.20 |
Creatine | LC-MS/MS & NMR | 194 ± 31 | 199 ± 23 | 0.97 | −0.04 |
Glutamate | LC-MS/MS & NMR | 93 ± 22 | 89 ± 15 | 1.04 | 0.06 |
Glutamine | LC-MS/MS & NMR | 330 ± 52 | 330 ± 22 | 1.00 | 0.00 |
Glycine * | LC-MS/MS & NMR | 377 ± 66 | 429 ± 52 | 0.88 | −0.19 |
Histidine | LC-MS/MS | 78 ± 12 | 79 ± 8 | 0.99 | −0.02 |
Isoleucine | LC-MS/MS & NMR | 156 ± 15 | 150 ± 11 | 1.04 | 0.06 |
Leucine * | LC-MS/MS & NMR | 221 ± 25 | 197 ± 15 | 1.12 | 0.17 |
Lysine | LC-MS/MS & NMR | 91 ± 18 | 84 ± 9 | 1.08 | 0.12 |
Methionine | LC-MS/MS & NMR | 33 ± 5 | 34 ± 3 | 0.97 | −0.04 |
Ornithine | LC-MS/MS & NMR | 60 ± 13 | 63 ± 12 | 0.95 | −0.07 |
Phenylalanine | LC-MS/MS & NMR | 72 ± 7 | 69 ± 7 | 1.04 | 0.06 |
Proline | LC-MS/MS & NMR | 105 ± 15 | 101 ± 16 | 1.04 | 0.06 |
Serine * | LC-MS/MS & NMR | 91 ± 13 | 76 ± 10 | 1.20 | 0.26 |
Threonine | LC-MS/MS & NMR | 76 ± 12 | 72 ± 13 | 1.06 | 0.08 |
Tryptophan | LC-MS/MS | 47 ± 7 | 47 ± 6 | 1.00 | 0.00 |
Tyrosine | LC-MS/MS & NMR | 91 ± 12 | 90 ± 6 | 1.01 | 0.02 |
Valine | LC-MS/MS & NMR | 367 ± 33 | 338 ± 28 | 1.09 | 0.12 |
BIOGENIC AMINES | |||||
Acetyl-ornithine | LC-MS/MS | 3.3 ± 0.71 | 2.8 ± 0.74 | 1.18 | 0.24 |
Asymmetric-dimethylarginine | LC-MS/MS | 1.15 ± 0.21 | 1.06 ± 0.11 | 1.08 | 0.12 |
Carnosine | LC-MS/MS | 31 ± 16 | 29 ± 6 | 1.07 | 0.10 |
Creatinine | LC-MS/MS & NMR | 109 ± 18 | 118 ± 16 | 0.92 | −0.11 |
Kynurenine | LC-MS/MS | 7.3 ± 1.2 | 7.6 ± 2.4 | 0.96 | −0.06 |
Methionine-sulfoxide | LC-MS/MS | 1.2 ± 0.3 | 1.2 ± 0.3 | 1.00 | 0.00 |
Methylhistidine | LC-MS/MS | 15 ± 2 | 14 ± 2 | 1.07 | 0.10 |
Putrescine | LC-MS/MS | 0.035 ± 0.021 | 0.041 ± 0.014 | 0.85 | −0.23 |
Sarcosine | LC-MS/MS & NMR | 2.79 ± 0.73 | 3.08 ± 0.74 | 0.90 | −0.15 |
Serotonin | LC-MS/MS | 8 ± 3 | 10 ± 4 | 0.80 | −0.32 |
Spermidine | LC-MS/MS | 0.21 ± 0.01 | 0.18 ± 0.01 | 1.17 | 0.22 |
Spermine | LC-MS/MS | 0.21 ± 0.14 | 0.12 ± 0.04 | 1.75 | 0.81 |
Taurine | LC-MS/MS & NMR | 80 ± 25 | 81 ± 10 | 0.99 | −0.02 |
Total-dimethylarginine | LC-MS/MS | 2.1 ± 0.3 | 2.1 ± 0.3 | 1.00 | 0.00 |
Trans-hydroxyproline | LC-MS/MS | 24 ± 5 | 27 ± 4 | 0.89 | −0.17 |
Trimethylamine-N-oxide | LC-MS/MS | 5 ± 1 | 7 ± 4 | 0.71 | −0.49 |
CARBOHYDRATES | |||||
Glucose | LC-MS/MS & NMR | 3860 ± 490 | 4115 ± 326 | 0.94 | −0.09 |
ORGANIC ACIDS | |||||
3-hydroxybutyrate | NMR | 375 ± 164 | 287 ± 94 | 1.31 | 0.39 |
Acetate | NMR | 452 ± 228 | 329 ± 123 | 1.37 | 0.46 |
Alpha-aminoadipate | LC-MS/MS | 1.25 ± 0.54 | 1.31 ± 0.44 | 0.95 | −0.07 |
Ascorbate (Vitamin C) | NMR | 11 ± 3 | 10 ± 3 | 1.10 | 0.14 |
Formate * | NMR | 82 ± 13 | 72 ± 3 | 1.14 | 0.19 |
Fumarate | NMR | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.00 | 0.00 |
Lactate | NMR | 4488 ± 1761 | 5393 ± 2341 | 0.83 | −0.27 |
Pyruvate | NMR | 142 ± 27 | 162 ± 54 | 0.88 | −0.19 |
MISCELANEOUS | |||||
Acetone | NMR | 71 ± 27 | 69 ± 12 | 1.03 | 0.04 |
Betaine | LC-MS/MS & NMR | 169 ± 27 | 168 ± 37 | 1.01 | 0.01 |
Choline | LC-MS/MS & NMR | 20 ± 4 | 22 ± 4 | 0.91 | −0.14 |
Ethanol | NMR | 7.8 ± 1.2 | 8.1 ± 1.4 | 0.96 | −0.05 |
Glycerol | NMR | 312 ± 41 | 318 ± 36 | 0.98 | −0.03 |
Isopropanol | NMR | 2.27 ± 0.82 | 2.54 ± 0.34 | 0.92 | −0.12 |
Methanol | NMR | 32 ± 5 | 31 ± 3 | 1.03 | 0.05 |
Myo-inositol | NMR | 43 ± 12 | 48 ± 8 | 0.90 | −0.16 |
Urea | NMR | 1389 ± 266 | 1220 ± 289 | 1.14 | 0.19 |
Uridine | NMR | 3.1 ± 0.71 | 2.8 ± 0.52 | 1.11 | 0.15 |
PHOSPHATIDYLCHOLINES, ACYL-ALKYL | |||||
PC ae (36:0) | LC-MS/MS | 1.68 ± 0.41 | 1.64 ± 0.41 | 1.02 | 0.03 |
PC ae (40:6) | LC-MS/MS | 0.47 ± 0.13 | 0.44 ± 0.04 | 1.07 | 0.10 |
PHOSPHATIDYLCHOLINES, DIACYL | |||||
PC aa (32:2) | LC-MS/MS | 4.3 ± 1.3 | 3.8 ± 1.1 | 1.13 | 0.18 |
PC aa (36:6) | LC-MS/MS | 0.7 ± 0.2 | 0.6 ± 0.2 | 1.17 | 0.22 |
PC aa (36:0) | LC-MS/MS | 6.05 ± 1.4 | 6.18 ± 1.4 | 0.98 | −0.03 |
PC aa (38:6) | LC-MS/MS | 1.007 ± 0.284 | 0.901 ± 0.194 | 1.12 | 0.16 |
PC aa (38:0) | LC-MS/MS | 0.801 ± 0.162 | 0.831 ± 0.161 | 0.96 | −0.05 |
PC aa (40:6) | LC-MS/MS | 1.6 ± 0.4 | 1.7 ± 0.4 | 0.96 | −0.05 |
PC aa (40:2) | LC-MS/MS | 0.367 ± 0.061 | 0.376 ± 0.061 | 0.95 | −0.08 |
PC aa (40:1) | LC-MS/MS | 0.209 ± 0.034 | 0.214 ± 0.044 | 0.98 | −0.03 |
LYSOPHOSPHATIDYLCHOLINES, ACYL C | |||||
LysoPC(14:0) | LC-MS/MS | 0.83 ± 0.12 | 0.77 ± 0.11 | 1.08 | 0.11 |
LysoPC(16:1) | LC-MS/MS | 0.63 ± 0.14 | 0.63 ± 0.11 | 1.00 | 0.00 |
LysoPC(16:0) | LC-MS/MS | 20 ± 4 | 19 ± 3 | 1.05 | 0.07 |
LysoPC(17:0) | LC-MS/MS | 2.83 ± 0.61 | 2.86 ± 0.41 | 0.99 | −0.02 |
LysoPC(18:2) | LC-MS/MS | 16 ± 4 | 14 ± 2 | 1.14 | 0.19 |
LysoPC(18:1) | LC-MS/MS | 6.5 ± 1.4 | 6.4 ± 1.1 | 1.02 | 0.02 |
LysoPC(18:0) | LC-MS/MS | 29 ± 6 | 30 ± 3 | 0.97 | −0.05 |
LysoPC(20:4) | LC-MS/MS | 0.51 ± 0.14 | 0.44 ± 0.11 | 1.17 | 0.23 |
LysoPC(20:3) | LC-MS/MS | 1.7 ± 0.4 | 1.6 ± 0.3 | 1.06 | 0.09 |
LysoPC(24:0) | LC-MS/MS | 0.051 ± 0.014 | 0.051 ± 0.011 | 1.00 | 0.00 |
LysoPC(26:1) | LC-MS/MS | 0.109 ± 0.051 | 0.095 ± 0.042 | 1.15 | 0.20 |
LysoPC(26:0) | LC-MS/MS | 0.9 ± 0.3 | 0.6 ± 0.3 | 1.50 | 0.58 |
LysoPC(28:1) | LC-MS/MS | 0.349 ± 0.122 | 0.266 ± 0.064 | 1.30 | 0.37 |
LysoPC(28:0) * | LC-MS/MS | 0.322 ± 0.121 | 0.228 ± 0.044 | 1.41 | 0.50 |
SPHINGOMYELINS | |||||
SM(16:1) | LC-MS/MS | 6 ± 1 | 5 ± 1 | 1.10 | 0.13 |
SM(16:0) | LC-MS/MS | 69 ± 10 | 65 ± 9 | 1.06 | 0.09 |
SM(18:1) | LC-MS/MS | 11 ± 3 | 9 ± 2 | 1.22 | 0.29 |
SM(18:0) | LC-MS/MS | 12 ± 1 | 11 ± 2 | 1.09 | 0.13 |
SM(20:2) * | LC-MS/MS | 1.2 ± 0.3 | 0.9 ± 0.2 | 1.33 | 0.42 |
HYDROXYSPHINGOMYELINS | |||||
SM(14:1(OH)) | LC-MS/MS | 5.6 ± 1.2 | 5.1 ± 1.1 | 1.10 | 0.13 |
SM(16:1(OH)) | LC-MS/MS | 9 ± 1 | 8 ± 2 | 1.13 | 0.17 |
SM(22:2(OH)) | LC-MS/MS | 5 ± 1 | 4 ± 1 | 1.10 | 0.13 |
SM(22:1(OH)) | LC-MS/MS | 9.3 ± 1.4 | 8.8 ± 1.4 | 1.06 | 0.08 |
SM(24:1(OH)) | LC-MS/MS | 1.9 ± 0.4 | 1.9 ± 0.4 | 1.00 | 0.00 |
ACYLCARNITINES | |||||
C0 (Carnitine) * | LC-MS/MS | 8 ± 2 | 7 ± 1 | 1.16 | 0.22 |
C2 (Acetylcarnitine) | LC-MS/MS | 1.84 ± 0.81 | 1.54 ± 0.44 | 1.19 | 0.25 |
C3:1 (Propenoylcarnitine) | LC-MS/MS | 0.028 ± 0.004 | 0.029 ± 0.004 | 0.97 | −0.05 |
C3 (Propionylcarnitine) * | LC-MS/MS | 0.22 ± 0.052 | 0.18 ± 0.014 | 1.22 | 0.29 |
C4:1 (Butenylcarnitine) | LC-MS/MS | 0.017 ± 0.002 | 0.017 ± 0.002 | 1.00 | 0.00 |
C4 (Butyrylcarnitine) * | LC-MS/MS | 0.197 ± 0.041 | 0.143 ± 0.034 | 1.38 | 0.46 |
C3-OH (Hydroxypropionylcarnitine) | LC-MS/MS | 0.027 ± 0.004 | 0.028 ± 0.004 | 0.96 | −0.05 |
C5:1 (Tiglylcarnitine) | LC-MS/MS | 0.023 ± 0.004 | 0.023 ± 0.004 | 1.00 | 0.00 |
C5 (Valerylcarnitine) | LC-MS/MS | 0.11 ± 0.034 | 0.08 ± 0.014 | 1.38 | 0.46 |
C4-OH (C3-DC) (Hydroxybutyrylcarnitine) | LC-MS/MS | 0.041 ± 0.004 | 0.042 ± 0.004 | 0.98 | −0.03 |
C6:1 (Hexenoylcarnitine) | LC-MS/MS | 0.023 ± 0.004 | 0.023 ± 0.004 | 1.00 | 0.00 |
C6 (C4:1-DC) (Hexanoylcarnitine) | LC-MS/MS | 0.053 ± 0.014 | 0.049 ± 0.011 | 1.08 | 0.11 |
C5-OH (C3-DC-M) (hydroxyvalerylcarnitine) | LC-MS/MS | 0.038 ± 0.004 | 0.036 ± 0.004 | 1.06 | 0.08 |
C5:1-DC (Glutaconylcarnitine) | LC-MS/MS | 0.018 ± 0.003 | 0.018 ± 0.003 | 1.00 | 0.00 |
C5-DC (C6-OH)(Glutarylcarnitine) | LC-MS/MS | 0.028 ± 0.004 | 0.027 ± 0.004 | 1.04 | 0.05 |
C8 (Octanoylcarnitine) | LC-MS/MS | 0.019 ± 0.011 | 0.018 ± 0.004 | 1.06 | 0.08 |
C5-M-DC (methylglutarylcarnitine) | LC-MS/MS | 0.019 ± 0.002 | 0.019 ± 0.003 | 1.00 | 0.00 |
C9 (Nonaylcarnitine) | LC-MS/MS | 0.022 ± 0.002 | 0.021 ± 0.003 | 1.05 | 0.07 |
C7-DC (Pimelylcarnitine) | LC-MS/MS | 0.037 ± 0.042 | 0.026 ± 0.031 | 1.42 | 0.51 |
C10:2 (Decadienylcarnitine) | LC-MS/MS | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.89 | −0.18 |
C10:1 (Decenoylcarnitine) | LC-MS/MS | 0.172 ± 0.032 | 0.163 ± 0.034 | 1.06 | 0.08 |
C10 (Decanoylcarnitine) | LC-MS/MS | 0.19 ± 0.04 | 0.18 ± 0.03 | 1.06 | 0.08 |
C12:1 (Dodecenoylcarnitine) | LC-MS/MS | 0.085 ± 0.013 | 0.081 ± 0.014 | 1.05 | 0.07 |
C12 (Dodecanoylcarnitine) | LC-MS/MS | 0.038 ± 0.011 | 0.035 ± 0.003 | 1.09 | 0.12 |
C14:2 (Tetradecadienylcarnitine) | LC-MS/MS | 0.036 ± 0.004 | 0.033 ± 0.004 | 1.09 | 0.13 |
C14:1 (Tetradecenoylcarnitine) | LC-MS/MS | 0.06 ± 0.01 | 0.05 ± 0.01 | 1.13 | 0.17 |
C14 (Tetradecanoylcarnitine) | LC-MS/MS | 0.018 ± 0.011 | 0.015 ± 0.004 | 1.20 | 0.26 |
C12-DC (Dodecanedioylcarnitine) | LC-MS/MS | 0.018 ± 0.002 | 0.019 ± 0.003 | 0.95 | −0.08 |
C14:2-OH (Hydroxytetradecadienylcarnitine) | LC-MS/MS | 0.0079 ± 0.0021 | 0.0075 ± 0.0011 | 1.05 | 0.07 |
C14:1-OH (Hydroxytetradecenoylcarnitine) | LC-MS/MS | 0.008 ± 0.002 | 0.009 ± 0.001 | 0.89 | −0.17 |
C16:2 (Hexadecadienylcarnitine) | LC-MS/MS | 0.012 ± 0.002 | 0.012 ± 0.002 | 1.00 | 0.00 |
C16:1 (Hexadecenoylcarnitine) | LC-MS/MS | 0.026 ± 0.004 | 0.025 ± 0.002 | 1.04 | 0.06 |
C16 (Hexadecanoylcarnitine) | LC-MS/MS | 0.021 ± 0.011 | 0.019 ± 0.004 | 1.11 | 0.14 |
C16:2-OH (Hydroxyhexadecadienylcarnitine) | LC-MS/MS | 0.005 ± 0.001 | 0.006 ± 0.001 | 0.83 | −0.26 |
C16:1-OH (Hydroxyhexadecenoylcarnitine) | LC-MS/MS | 0.018 ± 0.003 | 0.019 ± 0.004 | 0.95 | −0.08 |
C16-OH (Hydroxyhexadecanoylcarnitine) | LC-MS/MS | 0.007 ± 0.001 | 0.008 ± 0.001 | 0.88 | −0.19 |
C18:2 (Octadecadienylcarnitine) | LC-MS/MS | 0.006 ± 0.001 | 0.007 ± 0.001 | 0.86 | −0.22 |
C18:1 (Octadecenoylcarnitine) | LC-MS/MS | 0.014 ± 0.003 | 0.016 ± 0.003 | 0.88 | −0.19 |
C18 (Octadecanoylcarnitine) | LC-MS/MS | 0.022 ± 0.011 | 0.021 ± 0.004 | 1.10 | 0.14 |
C18:1-OH (Hydroxyoctadecenoylcarnitine) | LC-MS/MS | 0.009 ± 0.001 | 0.008 ± 0.001 | 1.13 | 0.17 |
METAL IONS | |||||
Sodium (Na) | ICP-MS | 132919 ± 12091 | 134408 ± 16387 | 0.99 | −0.02 |
Magnesium (Mg) | ICP-MS | 920 ± 77 | 948 ± 104 | 0.97 | −0.04 |
Phosphorus (P) | ICP-MS | 1315 ± 193 | 1271 ± 111 | 1.03 | 0.05 |
Potassium (K) | ICP-MS | 4283 ± 428 | 4315 ± 341 | 0.99 | −0.01 |
Calcium (Ca) | ICP-MS | 2251 ± 232 | 2193 ± 211 | 1.03 | 0.04 |
Iron (Fe) | ICP-MS | 49 ± 14 | 57 ± 10 | 0.86 | −0.22 |
Copper (Cu) | ICP-MS | 8 ± 2 | 9 ± 2 | 0.89 | −0.17 |
Zinc (Zn) | ICP-MS | 13 ± 2 | 12 ± 1 | 1.05 | 0.07 |
Selenium (Se) | ICP-MS | 1.4 ± 0.2 | 1.3 ± 0.2 | 1.08 | 0.11 |
Rubidium (Rb) | ICP-MS | 1.8 ± 0.2 | 1.8 ± 0.2 | 1.00 | 0.00 |
Strontium (Sr) | ICP-MS | 0.94 ± 0.14 | 0.98 ± 0.04 | 0.96 | −0.06 |
Cesium (Cs) * | ICP-MS | 0.0016 ± 0.0002 | 0.0019 ± 0.0003 | 0.84 | −0.25 |
Barium (Ba) | ICP-MS | 0.19 ± 0.04 | 0.21 ± 0.02 | 0.90 | −0.14 |
Metabolite | This Study | Fitzsimons et al., 2013 (Olympus Chemistry Analyzer) | Karisa et al., 2014_Discovery Population (NMR) | Karisa et al., 2014_Validation Population (NMR) | Jorge-Smeding et al., 2019 (LC-MS/MS) |
---|---|---|---|---|---|
Glucose * | L 1 | H 2 | |||
Urea | H | H | |||
Creatinine | L | L | L | ||
Creatine * | L | H (Glutamine overlap) | H (Glutamine overlap) | ||
Carnitine | H | H | H (Glutamine overlap) | H (Glutamine overlap) | |
Formate | H | H | L | ||
Hydroxyisobutyrate | ND 3 | H | H (Glucose overlap) | ||
Tyrosine | H | H | H | ||
Glycine | L | L | H | ||
Pantothenate | ND | ||||
Hippurate | ND | H (Glutamine overlap) | L (Glutamine overlap) | ||
Threonine | H | H | |||
Acetate * | H | L | |||
Phenylalanine | H | H | |||
Lysine | H | H | |||
Citrate | ND | H | |||
Betaine | H | H | |||
Glutamate * | H | L | |||
Valine | H | H | H | ||
Choline * | L | H | |||
Histidine | L | L | |||
Uridine | H | H | |||
2-methylamine | ND | L | |||
3-methylamine | ND | L | |||
2-hydroxybutyrate | ND | H | |||
3-hydroxybutyrate * | H | L | |||
4-hydroxybutyrate | ND | H (Acetone overlap) | |||
Succinate | ND | L (Mis-match) | |||
Oxo-butyrate | ND | L (Mis-match) | |||
Trans-4-hydroxy-L-proline | ND | L | |||
Proline | H | H | |||
Allantonin | ND | H (Mis-match) | |||
Glutamine | H = L | L (Overlap with glutamate, creatine, carnitine, hippurate) | |||
Aspartate | H | H | |||
Ornitine * | L | H | |||
Fumarate | H = L | L | |||
Lysine | H | H |
Diet Composition | Value |
---|---|
DM 1% (actual) | 56.10 |
CP 2 (%DM) | 14 |
ADF 3 (%DM) | 25.25 |
NDF 4 (%DM) | 40.50 |
TDN 5 (%DM) | 69.60 |
Ca (%DM) | 0.94 |
P (%DM) | 0.34 |
Mg (%DM) | 0.23 |
K (%DM) | 1.38 |
Na (%DM) | 0.13 |
Fe (PPM) | 336 |
Mn (PPM) | 70 |
Zn (PPM) | 61 |
Cu (PPM) | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foroutan, A.; Fitzsimmons, C.; Mandal, R.; Berjanskii, M.V.; Wishart, D.S. Serum Metabolite Biomarkers for Predicting Residual Feed Intake (RFI) of Young Angus Bulls. Metabolites 2020, 10, 491. https://doi.org/10.3390/metabo10120491
Foroutan A, Fitzsimmons C, Mandal R, Berjanskii MV, Wishart DS. Serum Metabolite Biomarkers for Predicting Residual Feed Intake (RFI) of Young Angus Bulls. Metabolites. 2020; 10(12):491. https://doi.org/10.3390/metabo10120491
Chicago/Turabian StyleForoutan, Aidin, Carolyn Fitzsimmons, Rupasri Mandal, Mark V. Berjanskii, and David S. Wishart. 2020. "Serum Metabolite Biomarkers for Predicting Residual Feed Intake (RFI) of Young Angus Bulls" Metabolites 10, no. 12: 491. https://doi.org/10.3390/metabo10120491
APA StyleForoutan, A., Fitzsimmons, C., Mandal, R., Berjanskii, M. V., & Wishart, D. S. (2020). Serum Metabolite Biomarkers for Predicting Residual Feed Intake (RFI) of Young Angus Bulls. Metabolites, 10(12), 491. https://doi.org/10.3390/metabo10120491