1H-NMR-Based Analysis for Exploring Knee Synovial Fluid Metabolite Changes after Local Cryotherapy in Knee Arthritis Patients
Abstract
:1. Introduction
2. Results
2.1. Metabolite Identification in SF Samples
2.2. Effect of Local Cryotherapy on Metabolite Concentrations
2.3. Pathway Analysis
3. Discussion
4. Experimental Methods
4.1. Patients
4.2. Study Design and Patient Sample Collection
4.3. Sample Preparation for NMR Analysis
4.4. Proton NMR Spectroscopy
- (a)
- Instrument description: Spectra were obtained with a 11.75 Tesla spectrometer 500SB Bruker (Bruker BioSpin®, Wissenbourg, France)—spectrometer consoles were Avance I and Neo for organic extracts and aqueous samples, respectively. The magnet was equipped with a 5 mm broad band inverse (BBi) 1H/13C probe (Bruker BioSpin®, Wissenbourg, France). Tuning and matching were automated. Automated gradient shimming for Z coils were used and manual optimization were performed when needed. Spectrometer was controlled with TopSpin 4.0.8 software (Bruker BioSpin®, Wissenbourg, France).
- (b)
- Spectra acquisition parameters: Organic extracts were thermostated at 293 K without spinning. One-dimensional (1-D) 1H NMR spectra were obtained at 500.09 MHz using a 1-D experiment impulsion acquisition sequence (zg). Spectra were obtained in 9 min by accumulating 64 free induction decay (FID) and 4 dummy scans. Acquisition time was 5.45 s with a spectral width of 6 kHz collected in 64 K data points and an additional relaxation delay d1 of 2 s. The 90° pulse delay was 6.7 µs with power level at −1 dB. Receiver gain was set at 512 for each sample. Aqueous samples were thermostated at 293 K without spinning. One-dimensional (1-D) 1H NMR spectra were obtained at 500.09 MHz using a 1-D experiment impulsion acquisition sequence using a noesygppr1d pulse sequence (Bruker) with presaturation delay during relaxation delay (d1 = 5 s) and mixing time (d8 = 10 ms). Homospoil/gradient pulse p16 was 1 ms and delay for homospoil/gradient recovery was 200 µs. Spectra were obtained in 23 min and 20 s by accumulating 128 free induction decay (FID) and 4 dummy scans. Acquisition time was 5.57 s with a spectral width of 6 kHz collected in 64 K data points. The 90° pulse delay was 8 µs with power level at −11.78 dB. In addition, the residual water resonance was pre-saturated with a 44.19 dB field strength irradiation. Receiver gain was set at 32 for each sample.
- (c)
- Spectra processing parameters: Raw data were registered in MetaboLights database [70]. All spectra were processed with TopSpin 4.0.8 software (Bruker BioSpin®, Wissenbourg, France). Typical processing parameters were application of Fourier transform without line broadening or zero filling. Chemical shifts (δ in ppm) were reported relative to the signal of the TSP or TMS at 0 ppm. Phase correction and baseline correction were corrected manually when needed. Isolated signal integrations were performed relative to reference signal (TSP or TMS).
4.5. Data Processing and Statistical Analysis
4.5.1. Multivariate Analysis
4.5.2. Pathway Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Machin, A.R.; Babatunde, O.; Haththotuwa, R.; Scott, I.; Blagojevic-Bucknall, M.; Corp, N.; Chew-Graham, C.A.; Hider, S.L. The association between anxiety and disease activity and quality of life in rheumatoid arthritis: A systematic review and meta-analysis. Clin. Rheumatol. 2020, in press. [Google Scholar]
- Hirvonen, H.; Kautiainen, H.; Moilanen, E.; Mikkelsson, M.; Leirisalo-Repo, M. The effect of cryotherapy on total antioxidative capacity in patients with active seropositive rheumatoid arthritis. Rheumatol. Int. 2017, 37, 1481–1487. [Google Scholar] [CrossRef]
- Hitchon, C.A.; El-Gabalawy, H.S. Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 2004, 6, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.Z.; Gheita, T.A.; Kenawy, S.A.; Fahim, A.T.; El-Sorougy, I.M.; Abdou, M.S. Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: Relationship to disease manifestations and activity. Int. J. Rheum. Dis. 2011, 14, 325–331. [Google Scholar] [CrossRef]
- Vasanthi, P.; Nalini, G.; Rajasekhar, G. Status of oxidative stress in rheumatoid arthritis. Int. J. Rheum. Dis. 2009, 12, 29–33. [Google Scholar] [CrossRef]
- Guillot, X.; Tordi, N.; Laheurte, C.; Pazart, L.; Prati, C.; Saas, P.; Wendling, D. Local ice cryotherapy decreases synovial interleukin 6, interleukin 1β, vascular endothelial growth factor, prostaglandin-E2, and nuclear factor kappa B p65 in human knee arthritis: A controlled study. Arthritis Res. Ther. 2019, 21, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadoghi, P.; Hasenhütl, S.; Gruber, G.; Leitner, L.; Leithner, A.; Rumpold-Seitlinger, G.; Kastner, N.; Poolman, R.; Glehr, M. Impact of a new cryotherapy device on early rehabilitation after primary total knee arthroplasty (TKA): A prospective randomised controlled trial. Int. Orthop. 2018, 42, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A.; Dudzińska, W.; Bryczkowska, I.; Dołęgowska, B. Body Composition, Lipid Profile, Adipokine Concentration, and Antioxidant Capacity Changes during Interventions to Treat Overweight with Exercise Programme and Whole-Body Cryostimulation. Oxid. Med. Cell. Longev. 2015, 2015, 803197. [Google Scholar] [CrossRef] [PubMed]
- Dugué, B.; Smolander, J.; Westerlund, T.; Oksa, J.; Nieminen, R.; Moilanen, E.; Mikkelsson, M. Acute and long-term effects of winter swimming and whole-body cryotherapy on plasma antioxidative capacity in healthy women. Scand. J. Clin. Lab. Investig. 2005, 65, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Demoulin, C.; Vanderthommen, M. Cryotherapy in rheumatic diseases. Jt. Bone Spine 2012, 79, 117–118. [Google Scholar] [CrossRef]
- Albrecht, K.; Albert, C.; Lange, U.; Müller-Ladner, U.; Strunk, J. Different effects of local cryogel and cold air physical therapy in wrist rheumatoid arthritis visualised by power Doppler ultrasound. Ann. Rheum. Dis. 2009, 68, 1234–1235. [Google Scholar] [CrossRef] [PubMed]
- Jastrząbek, R.; Straburzyńska-Lupa, A.; Rutkowski, R.; Romanowski, W. Effects of different local cryotherapies on systemic levels of TNF-α, IL-6, and clinical parameters in active rheumatoid arthritis. Rheumatol. Int. 2013, 33, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Stålman, A.; Berglund, L.; Dungnerc, E.; Arner, P.; Felländer-Tsai, L. Temperature-sensitive release of prostaglandin E2 and diminished energy requirements in synovial tissue with postoperative cryotherapy: A prospective randomized study after knee arthroscopy. J. Bone Jt. Surg. Am. 2011, 93, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Algafly, A.A.; George, K.P. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br. J. Sports Med. 2007, 41, 365–369, discussion 369. [Google Scholar] [CrossRef]
- Bettoni, L.; Bonomi, F.G.; Zani, V.; Manisco, L.; Indelicato, A.; Lanteri, P.; Banfi, G.; Lombardi, G. Effects of 15 consecutive cryotherapy sessions on the clinical output of fibromyalgic patients. Clin. Rheumatol. 2013, 32, 1337–1345. [Google Scholar] [CrossRef]
- Hirvonen, H.E.; Mikkelsson, M.K.; Kautiainen, H.; Pohjolainen, T.H.; Leirisalo-Repo, M. Effectiveness of different cryotherapies on pain and disease activity in active rheumatoid arthritis. A randomised single blinded controlled trial. Clin. Exp. Rheumatol. 2006, 24, 295. [Google Scholar] [PubMed]
- Stanek, A.; Cholewka, A.; Gadula, J.; Drzazga, Z.; Sieron, A.; Sieron-Stoltny, K. Can whole-body cryotherapy with subsequent kinesiotherapy procedures in closed type cryogenic chamber improve BASDAI, BASFI, and some spine mobility parameters and decrease pain intensity in patients with ankylosing spondylitis? BioMed Res. Int. 2015, 2015, 404259. [Google Scholar] [CrossRef] [Green Version]
- Guillot, X.; Tordi, N.; Prati, C.; Verhoeven, F.; Pazart, L.; Wendling, D. Cryotherapy decreases synovial Doppler activity and pain in knee arthritis: A randomized-controlled trial. Jt. Bone Spine Rev. Rhum. 2017, 84, 477–483. [Google Scholar] [CrossRef]
- Guillot, X.; Martin, H.; Seguin-Py, S.; Maguin-Gaté, K.; Moretto, J.; Totoson, P.; Wendling, D.; Demougeot, C.; Tordi, N. Local cryotherapy improves adjuvant-induced arthritis through down-regulation of IL-6 / IL-17 pathway but independently of TNFα. PLoS ONE 2017, 12, e0178668. [Google Scholar] [CrossRef] [Green Version]
- Vignoli, A.; Ghini, V.; Meoni, G.; Licari, C.; Takis, P.G.; Tenori, L.; Turano, P.; Luchinat, C. High-Throughput Metabolomics by 1D NMR. Angew. Chem. Int. Ed. 2019, 58, 968–999. [Google Scholar] [CrossRef]
- Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, V.; Intini, N.; Mastrorilli, P.; Latronico, M.; Scapicchio, P.; Triggiani, M.; Bevilacqua, V.; Fanizzi, P.; Acquotti, D.; Airoldi, C.; et al. Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses. Anal. Chem. 2015, 87, 6709–6717. [Google Scholar] [CrossRef] [PubMed]
- Dubey, D.; Chaurasia, S.; Guleria, A.; Kumar, S.; Modi, D.R.; Misra, R.; Kumar, D. Metabolite assignment of ultrafiltered synovial fluid extracted from knee joints of reactive arthritis patients using high resolution NMR spectroscopy. Magn. Reson. Chem. MRC 2019, 57, 30–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.R.; Chokesuwattanaskul, S.; Phelan, M.M.; Welting, T.J.M.; Lian, L.-Y.; Peffers, M.J.; Wright, H.L. 1H NMR Metabolomics Identifies Underlying Inflammatory Pathology in Osteoarthritis and Rheumatoid Arthritis Synovial Joints. J. Proteome Res. 2018, 17, 3780–3790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hügle, T.; Kovacs, H.; Heijnen, I.A.F.M.; Daikeler, T.; Baisch, U.; Hicks, J.M.; Valderrabano, V. Synovial fluid metabolomics in different forms of arthritis assessed by nuclear magnetic resonance spectroscopy. Clin. Exp. Rheumatol. 2012, 30, 240–245. [Google Scholar] [PubMed]
- Damyanovich, A.Z.; Staples, J.R.; Marshall, K.W. 1H NMR investigation of changes in the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint denervation. Osteoarthr. Cartil. 1999, 7, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickiewicz, B.; Heard, B.J.; Chau, J.K.; Chung, M.; Hart, D.A.; Shrive, N.G.; Frank, C.B.; Vogel, H.J. Metabolic profiling of synovial fluid in a unilateral ovine model of anterior cruciate ligament reconstruction of the knee suggests biomarkers for early osteoarthritis. J. Orthop. Res. 2015, 33, 71–77. [Google Scholar] [CrossRef]
- Das, U.N. Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2006, 12, RA79–RA84. [Google Scholar] [PubMed]
- Kao, K.K.; Fink, M.P. The biochemical basis for the anti-inflammatory and cytoprotective actions of ethyl pyruvate and related compounds. Biochem. Pharmacol. 2010, 80, 151–159. [Google Scholar] [CrossRef]
- Wang, Q.; van Hoecke, M.; Tang, X.N.; Lee, H.; Zheng, Z.; Swanson, R.A.; Yenari, M.A. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiol. Dis. 2009, 36, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Herz, H.; Blake, D.R.; Grootveld, M. Multicomponent investigations of the hydrogen peroxide- and hydroxyl radical-scavenging antioxidant capacities of biofluids: The roles of endogenous pyruvate and lactate. Relevance to inflammatory joint diseases. Free Radic. Res. 1997, 26, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Grosser, N.; Oberle, S.; Berndt, G.; Erdmann, K.; Hemmerle, A.; Schröder, H. Antioxidant action of l-alanine: Heme oxygenase-1 and ferritin as possible mediators. Biochem. Biophys. Res. Commun. 2004, 314, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Baguet, A.; Koppo, K.; Pottier, A.; Derave, W. β-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur. J. Appl. Physiol. 2009, 108, 495–503. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell-Tormey, J.; Nathan, C.F.; Lanks, K.; DeBoer, C.J.; de la Harpe, J. Secretion of pyruvate. An antioxidant defense of mammalian cells. J. Exp. Med. 1987, 165, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Wojtecka-Lukasik, E.; Księżopolska-Orłowska, K.; Gaszewska, E.; Krasowicz-Towalska, O.; Rzodkiewicz, P.; Maślińska, D.; Szukiewicz, D.; Maśliński, S. Cryotherapy decreases histamine levels in the blood of patients with rheumatoid arthritis. Inflamm. Res. 2009, 59, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Felig, P.; Wahren, J. Amino acid metabolism in exercising man. J. Clin. Investig. 1971, 50, 2703–2714. [Google Scholar] [CrossRef] [Green Version]
- Ponist, S.; Drafi, F.; Kuncirova, V.; Mihalova, D.; Rackova, L.; Danisovic, L.; Ondrejickova, O.; Tumova, I.; Trunova, O.; Fedorova, T.; et al. Effect of Carnosine in Experimental Arthritis and on Primary Culture Chondrocytes. Oxid. Med. Cell. Longev. 2016, 2016, 8470589. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.M.; Decker, E.A. Endogenous skeletal muscle antioxidants. Crit. Rev. Food Sci. Nutr. 1994, 34, 403–426. [Google Scholar] [CrossRef]
- Harris, R.C.; Tallon, M.J.; Dunnett, M.; Boobis, L.; Coakley, J.; Kim, H.J.; Fallowfield, J.L.; Hill, C.A.; Sale, C.; Wise, J.A. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 2006, 30, 279–289. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Koldobski, A.; Kurella, E.; Maltseva, V.; Stvolinski, S. Natural histidine-containing dipeptide carnosine as a potent hydrophilic antioxidant with membrane stabilizing function. A biomedical aspect. Mol. Chem. Neuropathol. 1993, 19, 185–192. [Google Scholar] [CrossRef]
- Smith, A.E.; Walter, A.A.; Graef, J.L.; Kendall, K.L.; Moon, J.R.; Lockwood, C.M.; Fukuda, D.H.; Beck, T.W.; Cramer, J.T.; Stout, J.R. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J. Int. Soc. Sports Nutr. 2009, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, E.; O’Neill, L.A.J. Succinate: A metabolic signal in inflammation. Trends Cell Biol. 2014, 24, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Infantino, V.; Convertini, P.; Cucci, L.; Panaro, M.A.; Di Noia, M.A.; Calvello, R.; Palmieri, F.; Iacobazzi, V. The mitochondrial citrate carrier: A new player in inflammation. Biochem. J. 2011, 438, 433–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okutani, D.; Lodyga, M.; Han, B.; Liu, M. Src protein tyrosine kinase family and acute inflammatory responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 291, L129–L141. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Kobayashi, A. Tyrosine kinases in rheumatoid arthritis. J. Inflamm. Lond. Engl. 2011, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, H.; Engleka, K.; Mathern, P.; Hla, T.; Crofford, L.J.; Remmers, E.F.; Jelsema, C.L.; Goldmuntz, E.; Maciag, T.; Wilder, R.L. Coexpression of phosphotyrosine-containing proteins, platelet-derived growth factor-B, and fibroblast growth factor-1 in situ in synovial tissues of patients with rheumatoid arthritis and Lewis rats with adjuvant or streptococcal cell wall arthritis. J. Clin. Investig. 1993, 91, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.D.; Akama-Garren, E.H.; Stein, E.A.; Petralia, J.D.; Ruiz, P.J.; Edalati, A.; Lindstrom, T.M.; Robinson, W.H. Inhibition of epidermal growth factor receptor tyrosine kinase ameliorates collagen-induced arthritis. J. Immunol. 2012, 188, 3513–3521. [Google Scholar] [CrossRef] [Green Version]
- Swanson, C.; Paniagua, R.T.; Lindstrom, T.M.; Robinson, W.H. Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Jiravanichanun, N.; Mizuno, K.; Bächinger, H.P.; Okuyama, K. Threonine in Collagen Triple-helical Structure. Polym. J. 2006, 38, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wu, G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2017, 50, 1–10. [Google Scholar] [CrossRef]
- Calder, P.C. Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot. Essent. Fatty Acids 2006, 75, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C.; Grimble, R.F. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 2002, 56 (Suppl. S3), S14–S19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C.; Zurier, R.B. Polyunsaturated fatty acids and rheumatoid arthritis. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Navarini, L.; Afeltra, A.; Gallo Afflitto, G.; Margiotta, D.P.E. Polyunsaturated fatty acids: Any role in rheumatoid arthritis? Lipids Health Dis. 2017, 16, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, M.J.; Gibson, R.A.; Cleland, L.G. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 2000, 71, 343S–348S. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 2012, 107 (Suppl. S2), S171–S184. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta BBA 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Sierra, S.; Lara-Villoslada, F.; Comalada, M.; Olivares, M.; Xaus, J. Dietary eicosapentaenoic acid and docosahexaenoic acid equally incorporate as decosahexaenoic acid but differ in inflammatory effects. Nutrition 2008, 24, 245–254. [Google Scholar] [CrossRef]
- Olson, M.V.; Liu, Y.-C.; Dangi, B.; Paul Zimmer, J.; Salem, N.; Nauroth, J.M. Docosahexaenoic acid reduces inflammation and joint destruction in mice with collagen-induced arthritis. Inflamm. Res. 2013, 62, 1003–1013. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Bae, S.-C.; Song, G.-G. Omega-3 polyunsaturated fatty acids and the treatment of rheumatoid arthritis: A meta-analysis. Arch. Med. Res. 2012, 43, 356–362. [Google Scholar] [CrossRef]
- Goldberg, R.J.; Katz, J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain 2007, 129, 210–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-A.; Kong, C.-S.; Kim, S.-K. Effect of Sargassum thunbergii on ROS mediated oxidative damage and identification of polyunsaturated fatty acid components. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2010, 48, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Veselinovic, M.; Barudzic, N.; Vuletic, M.; Zivkovic, V.; Tomic-Lucic, A.; Djuric, D.; Jakovljevic, V. Oxidative stress in rheumatoid arthritis patients: Relationship to diseases activity. Mol. Cell. Biochem. 2014, 391, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef]
- Treuhaft, P.S.; MCCarty, D.J. Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum. 1971, 14, 475–484. [Google Scholar] [CrossRef]
- Song, Z.; Xu, Y.; Chen, Z.; Yang, J.; Li, X.; Zhang, Z. Quantification of lactate in synovia by microchip with contactless conductivity detection. Anal. Biochem. 2012, 434, 73–77. [Google Scholar] [CrossRef]
- Dechant, J.E.; Symm, W.A.; Nieto, J.E. Comparison of pH, Lactate, and Glucose Analysis of Equine Synovial Fluid using a Portable Clinical Analyzer with a Bench-Top Blood Gas Analyzer. Vet. Surg. 2011, 40, 811–816. [Google Scholar] [CrossRef]
- Henke, J.; Willker, W.; Engelmann, J.; Leibfritz, D. Combined extraction techniques of tumour cells and lipid/phospholipid assignment by two-dimensional NMR spectroscopy. Anticancer Res. 1996, 16, 1417–1427. [Google Scholar]
- Wu, H.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 2008, 372, 204–212. [Google Scholar] [CrossRef]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020, 48, 440–444. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37, D603–D610. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, P.; Vogel, T.; Malusek, A.; Lundquist, P.O.; Cohen, L.; Dahlqvist Leinhard, O. MDL–the magnetic resonance metabolomics database. In Proceedings of the ESMRMB 22nd Annual Meeting, Basel, Switzerland, 15–18 September 2005. [Google Scholar]
- Wevers, R.A.; Engelke, U.; Heerschap, A. High-resolution 1H-NMR spectroscopy of blood plasma for metabolic studies. Clin. Chem. 1994, 40, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.W.-M. Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog. Nucl. Magn. Reson. Spectrosc. 1996, 28, 161–219. [Google Scholar] [CrossRef]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience 2013, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinforma. 2019, 68, e86. [Google Scholar] [CrossRef]
Names | Peak Numbering on Spectra (Figure 1a,b) | HMBD ID | Chemical Structure | Chemical Shift for Signal Used (ppm); Multiplicity; Hydrogen Number |
---|---|---|---|---|
Valine | 1 | HMDB0000883 | 1.047; d; 3 | |
Ethanol | 2 | HMDB0000108 | 1.170; t; 3 | |
3-hydroxybutyrate | 3 | HMDB0000357 | 1.235; d; 3 | |
Threonine | 4 | HMDB0000167 | 1.329; d; 3 | |
Lactate | 5 | HMDB0000190 | 1.409; d; 3 | |
Alanine | 6 | HMDB0000161 | 1.514; d; 3 | |
n-butyrate | 7 | HMDB0000039 | 1.565; m; 2 | |
Acetate | 8 | HMDB0000042 | 1.798; s; 3 | |
N-acetylaspartyl glutamic acid | 9 | HMDB0001067 | 2.078; s; 3 | |
Methionine | 10 | HMDB0000696 | 2.121; s; 3 | |
Acetone | 11 | HMDB0001659 | 2.216; s; 6 | |
Acetoacetate | 12 | HMDB0000060 | 2.303; s; 3 | |
Pyruvate | 13 | HMDB0000243 | 2.384; s; 3 | |
Citrate | 14 | HMDB0000094 | 2.826; syst AB; 2 2.859; syst AB; 2 | |
Creatinine | 15 | HMDB0000562 | 3.055; s; 3 | |
Dimethylsulfone | 16 | HMDB0004983 | 3.127; s; 6 | |
Ethanolamine | 17 | HMDB0000149 | 3.140; t; 2 | |
Betaine | 18 | HMDB0000043 | 3.267; s; 9 | |
β-glucose | 19 | HMDB0000516 | 4.633; d; 1 | |
α-glucose | 20 | HMDB0003345 | 5.217; d; 1 | |
Tyrosine | 21 | HMDB0000158 | 6.889; d; 2 7.189; d; 2 |
Attribution | Peak Numbering on Spectra (Figure 1b) | Chemical Structure of Molecule or Group | Chemical Shift for Signal Used (In ppm); Multiplicity; Number of Hydrogens |
---|---|---|---|
Cholesterol HMDB0000067 | 1 | 0.679; s; 3 | |
Methyl group for fatty acyl chain with ω6 double bound | 2 | CH3-(CH2)4-CH= | 0.808; t; 3 |
Methyl group for fatty acyl chain | 3 | CH3-(CH2)n-CH2-COOR | 0.887; t; 3 |
Methyl group for fatty acyl chain with ω3 double bound | 4 | CH3-CH2-CH= | 1.008; t; 3 |
Methylene group next to double bound | 5 | -CH2-CH= | 1.996; m; 2 |
Methylene group next to carbonyl | 6 | -CH2-COOR | 2.255; m; 2 |
Methylene group between two double bound | 7 | -CH2-CH=CH- | 2.811; m; 2 |
Choline compounds | 8 | 3.318; s; 9 | |
Methylene groups of glycerol body | 9 | 4.123 and 4.166; AB syst; 2 4.372 and 4.398; AB syst; 2 | |
Methine group of glycerol body | 10 | 5.188; m; 1 | |
Hydrogen bounded to a carbon involved in a double bond | 11 | -CH=CH- | 5.368; m; 1 |
Names | Mean ± SD | Adjusted p Value | |
---|---|---|---|
D0 | D1 | ||
Valine | 0.32 ± 0.11 | 0.33 ± 0.10 | 0.17 |
Ethanol | 0.41 ± 0.40 | 0.47 ± 0.74 | 0.47 |
3-hydroxybutyrate | 0.20 ± 0.30 | 0.16 ± 0.15 | 0.67 |
Threonine | 0.18 ± 0.06 | 0.19 ± 0.06 | 0.02 |
Lactate | 4.40 ± 2.23 | 4.06 ± 1.72 | 0.12 |
Alanine | 0.40 ± 0.12 | 0.44 ± 0.14 | 0.01 |
n-butyrate | 0.11 ± 0.04 | 0.12 ± 0.04 | 0.28 |
Acetate | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.22 |
NAAG | 0.07 ± 0.03 | 0.07 ± 0.03 | 0.54 |
Methionine | 0.05 ± 0.02 | 0.06 ± 0.02 | 0.27 |
Acetone | 0.05 ± 0.10 | 0.06 ± 0.13 | 0.58 |
Acetoacetate | 0.10 ± 0.11 | 0.09 ± 0.07 | 0.21 |
Pyruvate | 0.10 ± 0.03 | 0.12 ± 0.04 | 0.02 |
Citrate | 0.05 ± 0.02 | 0.06 ± 0.02 | <0.01 |
Creatinine | 0.07 ± 0.04 | 0.08 ± 0.04 | 0.09 |
Dimethylsulfone | 0.04 ± 0.02 | 0.05 ± 0.02 | 0.40 |
Ethanolamine | 0.059 ± 0.07 | 0.06 ± 0.05 | 0.25 |
Betaine | 0.05 ± 0.02 | 0.05 ± 0.02 | 0.95 |
β-glucose | 3.41 ± 1.65 | 3.57 ± 1.84 | 0.17 |
α-glucose | 2.62 ± 1.25 | 2.71 ± 1.33 | 0.17 |
Tyrosine | 0.10 ± 0.03 | 0.08 ± 0.03 | <0.01 |
Names | Mean ± SD | Adjusted p Value | |
---|---|---|---|
D0 | D1 | ||
Cholesterol | 3.01 ± 3.68 | 2.57 ± 2.06 | 0.60 |
Methyl group for fatty acyl chain with ω6 double bound | 264.80 ± 369.90 | 224.20 ± 213.80 | 0.60 |
Methyl group for fatty acyl chain | 80.73 ± 101.30 | 72.97 ± 60.86 | 0.72 |
Methyl group for fatty acyl chain with ω3 double bound | 45.72 ± 60.04 | 38.84 ± 38.58 | 0.70 |
Methylene group next to double bound | 16.89 ± 16.38 | 17.14 ± 15.23 | 0.76 |
Methylene group next to carbonyl | 12.81 ± 3.84 | 13.37 ± 5.33 | 0.58 |
Methylene group between two double bound | 4.23 ± 4.47 | 5.92 ± 5.13 | 0.04 |
Choline compounds | 7.11 ± 5.08 | 7.89 ± 5.50 | 0.45 |
Methylene groups of glycerol body | 1.93 ± 0.97 | 2.15 ± 1.03 | 0.22 |
Methine group of glycerol body | 1.21 ± 1.91 | 1.00 ± 1.45 | 0.86 |
Hydrogen bounded to a carbon involved in a double bond | 11.76 ± 7.35 | 12.28 ± 7.28 | 0.67 |
Names | Mean ± SD | Adjusted p Value | Mean ± SD | Adjusted p Value | ||
---|---|---|---|---|---|---|
Men (n = 22) | Women (n = 24) | Local Ice (n = 30) | CO2 (n = 16) | |||
Valine | 0.006 ± 0.055 | 0.018 ± 0.062 | 0.478 | 0.018 ± 0.062 | 0.002 ± 0.050 | 0.355 |
Ethanol | 0.035 ± 0.760 | 0.081 ± 0.437 | 0.183 | 0.171 ± 0.700 | −0.151 ± 0.295 | 0.133 |
3-hydroxybutyrate | −0.002 ± 0.146 | −0.069 ± 0.379 | 0.752 | −0.043 ± 0.344 | −0.025 ± 0.156 | 0.354 |
Threonine | 0.010 ± 0.030 | 0.014 ± 0.037 | 0.677 | 0.013 ± 0.038 | 0.011 ± 0.027 | 0.861 |
Lactate | −0.501 ± 1.821 | −0.189 ± 0.860 | 0.819 | −0.245 ± 0.898 | −0.513 ± 2.059 | >0.999 |
Alanine | 0.029 ± 0.093 | 0.050 ± 0.107 | 0.703 | 0.053 ± 0.094 | 0.016 ± 0.110 | 0.086 |
n-butyrate | 0.014 ± 0.032 | −0.001 ± 0.033 | 0.137 | 0.007 ± 0.031 | 0.004 ± 0.038 | 0.738 |
Acetate | 0.002 ± 0.016 | 0.003 ± 0.009 | 0.649 | 0.004 ± 0.014 | 0.000 ± 0.011 | 0.363 |
NAAG | −0.005 ± 0.026 | 0.007 ± 0.017 | 0.036 | 0.003 ± 0.020 | −0.002 ± 0.019 | 0.392 |
Methionine | 0.002 ± 0.022 | 0.005 ± 0.017 | 0.539 | 0.004 ± 0.021 | 0.004 ± 0.017 | 0.624 |
Acetone | 0.021 ± 0.072 | −0.007 ± 0.022 | 0.066 | 0.005 ± 0.054 | 0.009 ± 0.052 | 0.758 |
Acetoacetate | −0.001 ± 0.041 | −0.028 ± 0.140 | 0.439 | −0.018 ± 0.127 | −0.010 ± 0.039 | 0.882 |
Pyruvate | 0.011 ± 0.036 | 0.012 ± 0.026 | 0.921 | 0.011 ± 0.028 | 0.013 ± 0.035 | 0.803 |
Citrate | 0.010 ± 0.010 | 0.007 ± 0.016 | 0.426 | 0.009 ± 0.017 | 0.008 ± 0.012 | 0.458 |
Creatinine | 0.000 ± 0.018 | 0.013 ± 0.026 | 0.054 | 0.011 ± 0.025 | 0.001 ± 0.019 | 0.160 |
Dimethylsulfone | 0.003 ± 0.027 | 0.003 ± 0.009 | 0.310 | 0.003 ± 0.020 | 0.001 ± 0.019 | 0.811 |
Ethanolamine | 0.003 ± 0.067 | −0.001 ± 0.019 | 0.424 | 0.002 ± 0.056 | −0.002 ± 0.030 | 0.614 |
Betaine | 0.001 ± 0.011 | −0.001 ± 0.009 | 0.498 | −0.001 ± 0.009 | 0.002 ± 0.010 | 0.403 |
β-glucose | 0.286 ± 1.230 | 0.039 ± 1.640 | 0.973 | 0.285 ± 1.620 | −0.067 ± 1.058 | 0.146 |
α-glucose | 0.217 ± 0.100 | −0.030 ± 1.181 | 0.478 | 0.017 ± 1.180 | −0.061 ± 0.917 | 0.244 |
Tyrosine | −0.010 ± 0.0151 | −0.016 ± 0.021 | 0.210 | −0.016 ± 0.017 | −0.008 ± 0.022 | 0.110 |
Names | Mean ± SD | Adjusted p Value | Mean ± SD | Adjusted p Value | ||
---|---|---|---|---|---|---|
Men (n = 22) | Women (n = 22) | Local Ice (n = 29) | CO2 (n = 15) | |||
Cholesterol | 0.16 ± 3.09 | −1.03 ± 5.01 | 0.95 | −0.81 ± 4.98 | 0.28 ± 1.66 | 0.38 |
Methyl group for fatty acyl chain with ω6 double bound | 51.87 ± 310.90 | −133.10 ± 497.30 | 0.45 | −70.63 ± 517.70 | 17.45 ± 36.89 | 0.21 |
Methyl group for fatty acyl chain | 21.11 ± 86.53 | −36.62 ± 133.70 | 0.19 | −13.64 ± 141.50 | 3.62 ± 19.80 | 0.70 |
Methyl group for fatty acyl chain with ω3 double bound | 7.87 | −21.62 ± 81.04 | 0.67 | −11.28 ± 87.92 | 1.63 ± 14.50 | 0.73 |
Methylene group next to double bound | 5.41 ± 15.64 | −4.61 ± 18.36 | 0.09 | −2.14 ± 20.48 | 4.61 ± 8.75 | 0.12 |
Methylene group next to carbonyl | 0.35 ± 5.34 | 0.77 ± 5.89 | 0.92 | −0.58 ± 5.79 | 2.75 ± 4.48 | 0.042 |
Methylene group between two double bound | 3.68 ± 5.68 | 0.62 ± 5.39 | 0.11 | 1.49 ± 6.29 | 3.22 ± 4.18 | 0.33 |
Choline compounds | 1.68 ± 5.76 | −0.16 ± 6.33 | 0.33 | −0.00 ± 6.81 | 2.41 ± 3.79 | 0.15 |
Methylene groups of glycerol body | 0.279 ± 1.10 | 0.17 ± 1.26 | 0.76 | 0.17 ± 1.33 | 0.33 ± 0.82 | 0.62 |
Methine group of glycerol body | −0.36 ± 1.96 | −0.06 ± 0.79 | 0.67 | −0.03 ± 0.69 | −0.56 ± 2.38 | 0.34 |
Hydrogen bounded to a carbon involved in a double bond | 1.72 ± 8.54 | −0.61 ± 8.58 | 0.38 | 0.58 ± 9.47 | 0.43 ± 6.77 | 0.95 |
Metabolites | Pathway Analysis | |||
---|---|---|---|---|
Total Number | Detected | p-Value | Impact | |
Synthesis and degradation of ketone bodies | 5 | 2 | 0.373 | 0.60 |
Phenylalanine, tyrosine and tryptophan biosynthesis | 4 | 1 | 0.003 | 0.50 |
Pyruvate metabolism | 22 | 3 | 0.360 | 0.35 |
Tyrosine metabolism | 42 | 3 | 0.016 | 0.14 |
Citrate cycle (TCA cycle) | 20 | 2 | 0.164 | 0.14 |
Glycolysis / Gluconeogenesis | 26 | 5 | 0.766 | 0.13 |
Butanoate metabolism | 15 | 3 | 0.552 | 0.11 |
Cysteine and methionine metabolism | 33 | 2 | 0.573 | 0.10 |
Glycine, serine and threonine metabolism | 33 | 3 | 0.682 | 0.05 |
Alanine, aspartate and glutamate metabolism | 28 | 4 | 0.324 | 0.05 |
Glyoxylate and dicarboxylate metabolism | 32 | 3 | 0.225 | 0.03 |
Galactose metabolism | 27 | 1 | 0.605 | 0.03 |
Glycerophospholipid metabolism | 36 | 1 | 0.958 | 0.01 |
Ubiquinone and other terpenoid-quinone biosynthesis | 9 | 1 | 0.003 | 0.00 |
Phenylalanine metabolism | 10 | 1 | 0.003 | 0.00 |
Aminoacyl-tRNA biosynthesis | 48 | 5 | 0.064 | 0.00 |
Arginine and proline metabolism | 38 | 1 | 0.297 | 0.00 |
Selenocompound metabolism | 20 | 1 | 0.318 | 0.00 |
Pantothenate and CoA biosynthesis | 19 | 1 | 0.320 | 0.00 |
Valine, leucine and isoleucine degradation | 40 | 2 | 0.364 | 0.00 |
Fructose and mannose metabolism | 20 | 1 | 0.605 | 0.00 |
Amino sugar and nucleotide sugar metabolism | 37 | 1 | 0.605 | 0.00 |
Valine, leucine and isoleucine biosynthesis | 8 | 2 | 0.609 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douzi, W.; Guillot, X.; Bon, D.; Seguin, F.; Boildieu, N.; Wendling, D.; Tordi, N.; Dupuy, O.; Dugué, B. 1H-NMR-Based Analysis for Exploring Knee Synovial Fluid Metabolite Changes after Local Cryotherapy in Knee Arthritis Patients. Metabolites 2020, 10, 460. https://doi.org/10.3390/metabo10110460
Douzi W, Guillot X, Bon D, Seguin F, Boildieu N, Wendling D, Tordi N, Dupuy O, Dugué B. 1H-NMR-Based Analysis for Exploring Knee Synovial Fluid Metabolite Changes after Local Cryotherapy in Knee Arthritis Patients. Metabolites. 2020; 10(11):460. https://doi.org/10.3390/metabo10110460
Chicago/Turabian StyleDouzi, Wafa, Xavier Guillot, Delphine Bon, François Seguin, Nadège Boildieu, Daniel Wendling, Nicolas Tordi, Olivier Dupuy, and Benoit Dugué. 2020. "1H-NMR-Based Analysis for Exploring Knee Synovial Fluid Metabolite Changes after Local Cryotherapy in Knee Arthritis Patients" Metabolites 10, no. 11: 460. https://doi.org/10.3390/metabo10110460
APA StyleDouzi, W., Guillot, X., Bon, D., Seguin, F., Boildieu, N., Wendling, D., Tordi, N., Dupuy, O., & Dugué, B. (2020). 1H-NMR-Based Analysis for Exploring Knee Synovial Fluid Metabolite Changes after Local Cryotherapy in Knee Arthritis Patients. Metabolites, 10(11), 460. https://doi.org/10.3390/metabo10110460