Combination Effect of Antituberculosis Drugs and Ethanolic Extract of Selected Medicinal Plants against Multi-Drug Resistant Mycobacterium tuberculosis Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Extraction
2.3. Mycobacterium Strain
2.4. Preliminary Study
2.5. Drug–Extract Combination Assay
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- WHO. Global Tuberculosis Report; WHO Press: Geneva, Sweden, 2014; pp. 13–15. [Google Scholar]
- Center of Data and Information of Ministry of Health of Republic of Indonesia. Tuberkulosis: Temukan, Obati Sampai Sembuh; Center of Data and Information Press: Jakarta, Indonesia, 2015; pp. 2–7. [Google Scholar]
- Brennan, J.P.; Young, D.B.; Robertson, B.D. Handbook of Antituberculosis Agents; Elsevier: New York, NY, USA, 2008; pp. 85–170. [Google Scholar]
- Rachmawaty, F.J. Antimycobacterial Activity of Ethanolic Extract and Essential oil of Red Betel Leaves (Piper crocatum) against Mycobacterium tuberculosis in Vitro and in Vivo. Ph.D. Thesis, Faculty of Medicine of Gadjah Mada University, Yogyakarta, Indonesia, 2014. [Google Scholar]
- Rostinawati, T. Antibacterial Activity of Ethanolic Extract and Water Extract of Roselle Petals (Hibiscus sabdariffa L.) against Mycobacterium tuberculosis Labkes-026 (MDR) Strain and Mycobacterium tuberculosis H37Rv Strain in Vitro. Master’s Thesis, Faculty of Pharmacy Padjadjaran University, Bandung, Indonesia, 1 March 2008. [Google Scholar]
- Lakshmanan, D.; Werngren, J.; Jose, L.; Suja, K.P.; Nair, M.S.; Varma, R.L.; Mundayoor, S.; Hoffner, S.; Kumar, R.A. Ethyl-p-methoxycinnamate isolated from a traditional anti-tuberculosis medicinal herb inhibits drug resistant strains of Mycobacterium tuberculosis in vitro. Fitoterapia 2011, 82, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Thakur, B.; Singh, P.; Singh, H.B.; Sharma, V.D.; Katoch, V.M.; Chauhan, S.V. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J. Med. Res. 2010, 131, 809–813. [Google Scholar] [PubMed]
- Boogard, J.V.D.; Kibiki, G.S.; Kisanga, E.R.; Boeree, M.J.; Aarnoutse, R.E. Minireview: New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development. Antimicrob. Agents Chemother. 2009, 53, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Lougheed, K.E.A.; Taylor, D.L.; Osborne, S.A; Bryans, J.S.; Buxton, R.S. New anti-tuberculosis agents amongst known drugs. Tuberculosis 2009, 89, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Umar, M.I.; Asmawi, M.Z.; Sadikun, A.; Altaf, R.; Iqbal, M.A. Phytochemistry and medicinal properties of Kaempferia galanga L. (Zingiberaceae) extracts. Afr. J. Pharm. Pharmacol. 2011, 5, 1638–1647. [Google Scholar] [CrossRef]
- Umar, M.I.; Asmawi, M.Z.; Sadikun, A.; Majid, A.M.; Al-Suede, F.S.; Hassan, L.E.; Altaf, R.; Ahamed, M.B. Ethyl-p-methoxycinnamate isolated from Kaempferia galanga inhibits inflammation by suppressing interleukin-1, tumor necrosis factor-α, and angiogenesis by blocking endothelial functions. Clinics 2014, 69, 134–144. [Google Scholar] [CrossRef]
- Candrasari, A.; Romas, M.A.; Hasbi, M.; Astuti, O.R. Antimicrobial activity testing of ethanolic extract of red betel leaves (Piper crocatum Ruiz & Pav.) against Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 11229, and Candida albicans ATCC 10231 in vitro. Biomedika 2012, 4, 9–16. [Google Scholar]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.—A phytochemical and pharmacological review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Sindi, H.A.; Marshall, L.J.; Morgan, M.R.A. Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chem. 2014, 164, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, M.; Khatiwada, J.; Johnson, J.U.; Davis, S.; Williams, L.L. Determination of antimicrobial activity of sorrel (Hibiscus sabdariffa) on Escherichia coli O157:H7 isolated from food, veterinary, and clinical samples. J. Med. Food 2011, 14, 950–956. [Google Scholar] [CrossRef] [PubMed]
Standard Drug | Standard Drug Stock Concentration (µg/mL) | Drug Stock Volume (mL) | Extract Stock Concentration (µg/mL) | Extract Stock Volume (mL) | Media Volume (mL) | Total Volume (mL) | Final Drug:Extract Ratio Concentration |
---|---|---|---|---|---|---|---|
Rifampicin | 120 | 20.00 | 30,000 | 2.000 | 38.00 | 60 | 40:1000 |
Isoniazid | 120 | 0.10 | 30,000 | 2.000 | 57.90 | 60 | 0.2:1000 |
Ethambutol | 120 | 1.00 | 30,000 | 2.000 | 57.00 | 60 | 2:1000 |
Streptomycin | 120 | 2.00 | 30,000 | 2.000 | 56.00 | 60 | 4:1000 |
Rifampicin | 60 | 20.00 | 15,000 | 2.000 | 38.00 | 60 | 20:500 |
Isoniazid | 60 | 0.10 | 15,000 | 2.000 | 57.90 | 60 | 0.1:500 |
Ethambutol | 60 | 1.00 | 15,000 | 2.000 | 57.00 | 60 | 1:500 |
Streptomycin | 60 | 2.00 | 15,000 | 2.000 | 56.00 | 60 | 2:500 |
Standard Drug | Standard Drug Stock Concentration (µg/mL) | Drug Stock Volume (mL) | Extract Stock Concentration (µg/mL) | Extract Stock Volume (mL) | Media Volume (mL) | Total Volume (mL) | Final Drug:Extract Ratio Concentration |
---|---|---|---|---|---|---|---|
Rifampicin | 120 | 20.00 | 30,000 | 1.00 | 39.00 | 60 | 40:500 |
Isoniazid | 120 | 0.10 | 30,000 | 1.00 | 58.90 | 60 | 0.2:500 |
Ethambutol | 120 | 1.00 | 30,000 | 1.00 | 58.00 | 60 | 2:500 |
Streptomycin | 120 | 2.00 | 30,000 | 1.00 | 57.00 | 60 | 4:500 |
Rifampicin | 60 | 20.00 | 15,000 | 1.00 | 39.00 | 60 | 20:250 |
Isoniazid | 60 | 0.10 | 15,000 | 1.00 | 58.90 | 60 | 0.1:250 |
Ethambutol | 60 | 1.00 | 15,000 | 1.00 | 58.00 | 60 | 1:250 |
Streptomycin | 60 | 2.00 | 15,000 | 1.00 | 57.00 | 60 | 2:250 |
Botanical Name | Concentration (µg/mL) | Mycobacterium tuberculosis Strain | |||||||
---|---|---|---|---|---|---|---|---|---|
HEa Resistant | RSb Resistant | ||||||||
1 | 2 | Mean CFUc | Mean % Inhibition | 1 | 2 | Mean CFUc | Mean % Inhibition | ||
Control (-) | - | 0 | 0 | 0 ± 0 | - | 0 | 0 | 0 ± 0 | - |
Control (+) | - | 390 | 176 | 283 ± 107 | - | 216 | 375 | 295 ± 80 | - |
Hibiscus sabdariffa L. | 50 | 81 | 60 | 71 ± 10 | 73 ± 7 | 131 | 109 | 120 ± 11 | 55 ± 16 |
100 | 64 | 56 | 60 ± 4 | 76 ± 8 | 101 | 105 | 103 ± 2 | 63 ± 9 | |
250 | 71 | 82 | 76 ± 6 | 68 ± 14 | 134 | 151 | 143 ± 9 | 49 ± 11 | |
500 | 72 | 76 | 74 ± 2 | 69 ± 12 | 132 | 112 | 122 ± 10 | 54 ± 16 | |
750 | 84 | 82 | 83 ± 1 | 66 ± 12 | 105 | 105 | 105 ± 0 | 62 ± 10 | |
1000 | 11 | 44 | 27 ± 17 | 86 ± 11 | 134 | 117 | 126 ± 9 | 53 ± 15 | |
Kaempferia galanga L. | 50 | 85 | 43 | 64 ± 21 | 77 ± 1 | 176 | 63 | 120 ± 56 | 51 ± 32 |
100 | 62 | 33 | 47 ± 15 | 83 ± 1 | 129 | 115 | 122 ± 7 | 55 ± 14 | |
250 | 24 | 9 | 17 ± 7 | 94 ± 0 | 16 | 15 | 16 ± 1 | 94 ± 2 | |
500 | 6 | 0 | 3 ± 3 | 99 ± 1 | 0 | 0 | 0 ± 0 | 100 ± 0 | |
750 | 0 | 0 | 0 ± 0 | 100 ± 0 | 0 | 0 | 0 ± 0 | 100 ± 0 | |
1000 | 0 | 0 | 0 ± 0 | 100 ± 0 | 0 | 0 | 0 ± 0 | 100 ± 0 | |
Piper crocatum N.E. Br. | 50 | 41 | 41 | 41 ± 0 | 83 ± 6 | 144 | 144 | 144 ± 0 | 47 ± 14 |
100 | 53 | 65 | 59 ± 6 | 75 ± 12 | 125 | 153 | 139 ± 14 | 51 ± 8 | |
250 | 54 | 56 | 55 ± 1 | 77 ± 9 | 116 | 124 | 120 ± | 57 ± 10 | |
500 | 38 | 51 | 44 ± 6 | 81 ± 10 | 148 | 159 | 154 ± 5 | 44 ± 13 | |
750 | 56 | 46 | 51 ± 5 | 80 ± 6 | 149 | 165 | 157 ± 8 | 43 ± 12 | |
1000 | 39 | 38 | 38 ± 0 | 84 ± 6 | 152 | 152 | 152 ± 0 | 44 ± 15 |
Standard Drugs | Extract | Concentration in Combination (µg/mL) | Mycobacterium tuberculosis Strain | |||||||
---|---|---|---|---|---|---|---|---|---|---|
HE Resistant | RS Resistant | |||||||||
1 | 2 | Mean CFU | Mean % Inhibition | 1 | 2 | Mean CFU | Mean % Inhibition | |||
Control (+) | - | - | 128 | 188 | 158 ± 30 | - | 173 | 179 | 176 ± 3 | - |
Rifampicin | - | - | 0 | 0 | 0 | 100 ± 0 | 148 | 118 | 133 ± 15 | 24 ± 10 |
H. sabdariffa | 40:1000 | 0 | 0 | 0 | 100 ± 0 | 0 | 0 | 0 | 100 ± 0 | |
P. crocatum | 40:1000 | 0 | 0 | 0 | 100 ± 0 | 0 | 0 | 0 | 100 ± 0 | |
K. galanga | 40:500 | 0 | 0 | 0 | 100 ± 0 | 0 | 0 | 0 | 100 ± 0 | |
H. sabdariffa | 20:500 | 0 | 0 | 0 | 100 ± 0 | 0 | 0 | 0 | 100 ± 0 | |
P. crocatum | 20:500 | 0 | 0 | 0 | 100 ± 0 | 0 | 0 | 0 | 100 ± 0 | |
K. galanga | 20:250 | 0 | 0 | 0 | 100 ± 0 | 0 | 0 | 0 | 100 ± 0 | |
Streptomycin | - | 0 | 0 | 0 | 100 ± 0 | 128 | 222 | 175 ± 47 | 1 ± 1 | |
H. sabdariffa | 4:1000 | 0 | 0 | 0 | 100 ± 0 | 141 | 129 | 135 ± 6 | 23 ± 5 | |
P. crocatum | 4:1000 | 0 | 0 | 0 | 100 ± 0 | 127 | 117 | 122 ± 5 | 31 ± 4 | |
K. galanga | 4:500 | 0 | 0 | 0 | 100 ± 0 | 98 | 58 | 78 ± 20 | 55 ± 12 | |
H. sabdariffa | 2:500 | 0 | 0 | 0 | 100 ± 0 | 121 | 103 | 112 ± 9 | 36 ± 6 | |
P. crocatum | 2:500 | 0 | 0 | 0 | 100 ± 0 | 79 | 79 | 79 ± 0 | 55 ± 1 | |
K. galanga | 2:250 | 0 | 0 | 0 | 100 ± 0 | 52 | 124 | 88 ± 36 | 50 ± 20 | |
Ethambutol | - | - | 181 | 130 | 156 ± 26 | 1 ± 3 | 0 | 0 | 0 | 100 ± 0 |
H. sabdariffa | 2:1000 | 123 | 121 | 122 ± 1 | 20 ± 16 | 0 | 0 | 0 | 100 ± 0 | |
P. crocatum | 2:1000 | 88 | 88 | 88 ± 0 | 42 ± 11 | 0 | 0 | 0 | 100 ± 0 | |
K. galanga | 2:500 | 48 | 17 | 33 ± 15 | 76 ± 14 | 0 | 0 | 0 | 100 ± 0 | |
H. sabdariffa | 1:500 | 130 | 26 | 78 ± 52 | 55 ± 24 | 0 | 0 | 0 | 100 ± 0 | |
P. crocatum | 1:500 | 98 | 93 | 96 ± 3 | 37 ± 14 | 0 | 0 | 0 | 100 ± 0 | |
K. galanga | 1:250 | 140 | 86 | 113 ± 7 | 29 ± 4 | 0 | 0 | 0 | 100 ± 0 | |
Isoniazid | - | - | 223 | 181 | 202 ± 21 | 0 ± 0 | 0 | 0 | 0 | 100 ± 0 |
H. sabdariffa | 0.2:1000 | 133 | 137 | 135 ± 2 | 15 ± 12 | 0 | 0 | 0 | 100 ± 0 | |
P. crocatum | 0.2:1000 | 109 | 103 | 106 ± 3 | 30 ± 15 | 0 | 0 | 0 | 100 ± 0 | |
K. galanga | 0.2:500 | 74 | 84 | 79 ± 5 | 50 ± 7 | 0 | 0 | 0 | 100 ± 0 | |
H. sabdariffa | 0.1:500 | 140 | 129 | 135 ± 5 | 20 ± 11 | 0 | 0 | 0 | 100 ± 0 | |
P. crocatum | 0.1:500 | 101 | 109 | 105 ± 4 | 32 ± 10 | 0 | 0 | 0 | 100 ± 0 | |
K. galanga | 0.1:250 | 80 | 84 | 82 ± 2 | 46 ± 9 | 0 | 0 | 0 | 100 ± 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauziyah, P.N.; Sukandar, E.Y.; Ayuningtyas, D.K. Combination Effect of Antituberculosis Drugs and Ethanolic Extract of Selected Medicinal Plants against Multi-Drug Resistant Mycobacterium tuberculosis Isolates. Sci. Pharm. 2017, 85, 14. https://doi.org/10.3390/scipharm85010014
Fauziyah PN, Sukandar EY, Ayuningtyas DK. Combination Effect of Antituberculosis Drugs and Ethanolic Extract of Selected Medicinal Plants against Multi-Drug Resistant Mycobacterium tuberculosis Isolates. Scientia Pharmaceutica. 2017; 85(1):14. https://doi.org/10.3390/scipharm85010014
Chicago/Turabian StyleFauziyah, Prabasiwi Nur, Elin Yulinah Sukandar, and Dhyan Kusuma Ayuningtyas. 2017. "Combination Effect of Antituberculosis Drugs and Ethanolic Extract of Selected Medicinal Plants against Multi-Drug Resistant Mycobacterium tuberculosis Isolates" Scientia Pharmaceutica 85, no. 1: 14. https://doi.org/10.3390/scipharm85010014
APA StyleFauziyah, P. N., Sukandar, E. Y., & Ayuningtyas, D. K. (2017). Combination Effect of Antituberculosis Drugs and Ethanolic Extract of Selected Medicinal Plants against Multi-Drug Resistant Mycobacterium tuberculosis Isolates. Scientia Pharmaceutica, 85(1), 14. https://doi.org/10.3390/scipharm85010014