Synergistic Anticancer Activities of Natural Substances in Human Hepatocellular Carcinoma
Abstract
:1. Introduction
2. The Combination of Natural Products with Chemotherapeutic Agents
2.1. The Combination of the Natural Product Gambogic Acid with Proteasome Inhibitor MG132 or MG262
2.2. The Combination of Tea Catechins with Doxorubicin
2.3. The Combination of Flavonoids with Conventional Chemotherapeutic Drugs, Cisplatin and 5-Fluorouracil
2.4. The Combination of Genistein, a Soy-Derived Isoflavone, with Arsenic Trioxide, a Weak Anticancer Drug for HCC
2.5. The Combination of Berberine, an Alkaloid Extracted from Various Plants, with Rapamycin, an Immunosuppressive Agent
3. The Combination of a Natural Product with a Natural Product
3.1. The Combination of Zizyphus Jujuba Extract with Green Tea Extract
3.2. The Combination of Resveratrol with Other Natural Products
3.2.1. Synergistic Anticancer Effects of Curcumin and Resveratrol
3.2.2. Synergistic Anticancer Effects of Artemisinin and Resveratrol
3.2.3. Synergistic Anticancer Effects of Matrine and Resveratrol
3.3. Synergistic Anticancer Effects of Betulinic Acid and Ginsenoside Rh2
3.4. Synergistic Anticancer Effects of 1′-Acetoxychavicol Acetate and Sodium Butyrate
4. Conclusions
Authors [Reference] | Combination Treatments | Comment | |
---|---|---|---|
Natural Products | Chemotherapeutic Agents | ||
Huang H. et al. [34] | gambogic acid | proteasome inhibitor (MG132, MG262) | inhibition of growth of cancer cells and tumors in allograft animal model |
Liang G. et al. [41] | catechins | doxorubicin | Inhibition of P-glycoprotein efflux pump activity |
Zhao JL. et al. [46] | quercetin | cisplatin | increases in p21 and p53, suppressing cell growth and inducing apoptosis |
Hu XY. et al. [58] | apigenin | 5-fluorouracil | ROS levels ↑, mitochondrial membrane potential ↓ |
Jiang H. et al. [67] | genistein | arsenic trioxide | ROS levels ↑, mitochondrial membrane potential ↓ |
Guo N. et al. [79] | berberine | rapamycin | Synergistic inhibition of the mTOR signaling pathway |
Natural products | Natural products | ||
Huang X. et al. [12] | jujube extract | tea polyphenols | increases in p21 and p53, G1 arrest ↑ |
Du Q. et al. [15] | curcumin | resveratrol | ROS levels ↑, activation of caspase-3, -8 and -9 |
Li P. et al. [16] | artemisinin | resveratrol | ROS levels ↑, apoptosis and necrosis ↑ |
Ou X. et al. [133] | matrine | resveratrol | ROS levels ↑, mitochondrial membrane potential ↓ |
Li Q. et al. [134] | ginsenoside Rh2 | betulinic acid | apoptosis through a mitochondria pathway |
Kato R. et al. [14] | 1′-acetoxychavicol acetate | butyrate | ROS levels ↑, increase in the phosphorylation of AMPK |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Forman, D. Grobal cancer statistics. CA Cancer J. Clin. 2001, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 2012, 4. [Google Scholar] [CrossRef] [PubMed]
- Aravalli, R.N.; Steer, C.J.; Cressman, E.N. Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008, 48, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Delire, B.; Stärkel, P. The Ras/MAPK pathway and hepatocarcinoma: Pathogenesis and therapeutic implications. Eur. J. Clin. Investig. 2015, 45, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, D.W. The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene 2006, 25, 5233–5243. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Kunnumakkara, A.B.; Harikumar, K.B.; Gupta, S.R.; Tharakari, S.T.; Koca, C.; Dey, S.; Sung, B. Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? Ann. N. Y. Acad. Sci. 2009, 1171, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, J.; Prasad, S.; Agagarwal, B.B. Curcumin and cancer cells: How many ways can curry kill tumor cells selectively? AAPS J. 2009, 11, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.C.; Ng, L.T.; Lin, L.T.; Richardson, C.D.; Wang, G.H.; Lin, C.C. Resveratrol arrests cell cycle and induces apoptosis in human hepatocellular carcinoma Huh-7 cells. J. Med. Food 2010, 13, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Kojima-Yuasa, A.; Xu, S.; Norikura, T.; Kennedy, D.O.; Hasuma, T.; Matsui-Yuasa, I. Green tea extract enhances the selective cytotoxic activity of Zizyphus jujube extracts in HepG2 cells. Am. J. Chin. Med. 2008, 36, 729–744. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Kojima-Yuasa, A.; Xu, S.; Kennedy, D.O.; Hasuma, T.; Matsui-Yuasa, I. Combination of Zizyphus jujube and green tea extracts exerts excellent cytotoxic activity in HepG2 cells via reducing the expression of APRIL. Am. J. Chin. Med. 2009, 37, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Matsui-Yuasa, I.; Azuma, H.; Kojima-Yuasa, A. The synergistic effect of 1′-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells. Chem. Biol. Interact. 2014, 212, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Hu, B.; An, H.M.; Shen, K.P.; Xu, L.; Deng, S.; Wei, M.M. Synergistic anticancer effects of curcumin and resveratrol in Hepal1-6 hepatocellular carcinoma cells. Oncol. Rep. 2013, 29, 1851–1858. [Google Scholar] [PubMed]
- Li, P.; Yang, S.; Dou, M.; Chen, Y.; Zhang, J.; Zhao, X. Synergic effects of artemisinin and resveratrol in cancer cells. J. Cancer Res. Clin. Oncol. 2014, 140, 2065–2075. [Google Scholar] [CrossRef] [PubMed]
- Gruenwald, T.B.J.; Jaenicke, C. PDR for Herbal Medicines, 2nd ed.; Medical Economics: Montvale, NJ, USA, 2000; pp. 325–326. [Google Scholar]
- Yan, F.; Wang, M.; Li, J.; Cheng, H.; Su, J.; Wang, X.; Wu, H.; Xia, L.; Li, X.; Chang, H.C.; et al. Gambogenic acid induced mitochondrial-dependent apoptosis and reffred to phosph-ERK1/2 and phosphor-p38 MAPK in human hepatoma HepG2 cells. Environ. Toxicol. Phaemacol. 2012, 33, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Guo, Q.L.; You, Q.D.; Zhao, L.; Gu, H.Y.; Yuan, S.T. Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823. World J. Gastroenterol. 2005, 11, 3655–3659. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, X.; Chen, X.; Bian, I.; Zhao, W.; Shen, J.; Sun, Q. Gambogic acid induces EGFR degradation and Akt/mTORCI inhibition through AMPK dependent-LRIGI upregulation in cultured U87 glioma cells. Biochem. Biophys. Res. Commun. 2013, 435, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gu, H.; Lu, N.; Yang, Y.; Lie, W.; Qi, Q.; Rong, J.; Wang, X.; You, Q.; Guo, Q. Microtubule depolymerization and phosphorylation of c-jun N-terminal kinase-1 and p38 were involved in gambogic acid induced cell cycle arrest and apoptosis in human breast carcinoma MCF-7 cells. Life Sci. 2008, 83, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, I.; You, Q.D.; Nie, F.F.; Gu, H.Y.; Zhao, X.T.; Wang, Q.L.; Guo, Q.L. Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes. Cancer Lett. 2007, 256, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.L.; You, Q.D.; Wu, Z.Q.; Yuan, S.T.; Zhao, L. General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice. Acta Pharmacol. Sin. 2004, 25, 769–774. [Google Scholar] [PubMed]
- Pandey, M.K.; Sung, B.; Ahn, K.S.; Kunnumakkara, A.B.; Chaturvedi, M.M.; Aggarwal, B.B. Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway. Blood 2007, 110, 3517–3525. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Yi, Z.; Cho, S.G.; Luo, J.; Pandey, M.K.; Aggarwal, M.; Liu, M. Gamogic acid inhibits angiogenenesis and prostate tumor growth by suppressing vascular endotherial growth factor 2 signaling. Cancer Res. 2008, 68, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Guo, Q.I.; You, Q.D.; Zhao, L.; Gu, H.Y.; Yang, Y.; Zhang, H.W.; Tan, Z.; Wang, X. Gambogic acid-induced G2/M phase cell-cycle arrest via disturbing CDK7-mediated phosphorylation of CDC2/p34 in human gastric carcinoma BGC-823 cells. Carcinogenesis 2007, 28, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhen, C.; Wu, Z.; Hu, R.; Zhou, C.; Guo, Q. General pharmacological properties, developmental toxicity, and analogesic activity of gambogic acid, a novel natural anticancer agent. Drug Chem. Toxicol. 2010, 33, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 1994, 79, 13–21. [Google Scholar] [CrossRef]
- Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature 2003, 426, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Hochstrasser, M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 1995, 7, 215–223. [Google Scholar] [CrossRef]
- Adams, J.; Palombella, V.J.; Sausville, E.A.; Johnson, J.; Destree, A.; Lazarus, D.D.; Maas, J.; Pien, C.S.; Prakash, S.; Elliott, P.J. Proteasome inhibitor: A novel class of potent and effective antitumor agents. Cancer Res. 1999, 59, 2615–2622. [Google Scholar] [PubMed]
- Jankowska, E.; Stoj, J.; Karpowicz, P.; Osmulski, P.A.; Gaczynska, M. The protease in health and disease. Curr. Pharm. Des. 2013, 19, 1–19. [Google Scholar]
- Chen, D.; Errezza, M.; Schmitt, S.; Kanwar, J.; Dou, Q.P. Bortezomib as the first proteasome inhibitor anticancer drug: Current status and future perspectives. Curr. Cancer Drug Targets 2011, 11, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, D.; Li, S.; Li, X.; Liu, N.; Lu, X.; Liu, S.; Zhao, K.; Zhao, C.; Guo, H.; et al. Gambogic acid enhances proteasome inhibitor-induced anticancer activity. Cancer Lett. 2011, 301, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Phan, H.; Yang, I.X. Improved chemotherapy for hepatocellular carcinoma. Anticancer Res. 2012, 32, 1379–1386. [Google Scholar] [PubMed]
- Tsang, W.P.; Chau, S.P.Y.; Kong, S.K.; Fung, K.P.; Kwok, T.T. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003, 73, 2047–2058. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Matsumoto, M.; Kojima, A.; Matsui-Yuasa, I. Cellular thiols status and cell death in the effect of green tea polyphenols in Ehrlich ascites tumor cells. Chem. Biol. Interact. 1999, 122, 59–71. [Google Scholar] [CrossRef]
- Kuo, P.I.; Lin, C.C. Green tea constituent (−)-epigallocatechin-3-gallate inhibits HepG2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J. Biomed. Sci. 2003, 10, 219–227. [Google Scholar] [PubMed]
- Lambert, J.D.; Yang, C.S. Mechanisms of cancer prevention by tea constituents. J. Nutr. 2003, 133, 3262S–3267S. [Google Scholar] [PubMed]
- Liang, G.; Tang, A.Z.; Lin, X.Z.; Li, L.; Zhang, S.; Huang, Z.M.; Tang, H.H.; Li, Q.Q. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int. J. Oncol. 2010, 37, 111–123. [Google Scholar] [PubMed]
- Ueda, K.; Yoshida, A.; Amachi, T. Recent progress in P-glycoprotein research. Anticancer Drug Des. 1999, 14, 115–121. [Google Scholar] [PubMed]
- Chen, L.; Ye, H.-L.; Zhang, G.; Yao, W.-M.; Chen, X.-Z.; Zhang, F.-C.; Liang, G. Autophagy inhibition contributes to the synergistic interaction between EGCG and Doxorubicin to kill the hepatoma Hep3B cells. PLoS ONE 2014, 9, e85771. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.S.; Cohen, A.J.; Wasserman, A.G.; Cohen, P.; Ross, A.M. Acute arrhythmogenecity of doxorubicin administration. Cancer 1987, 60, 1213–1218. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Colan, S.D.; Gelber, R.D.; Perez-Atayde, A.R.; Sallan, S.E. Late cardiac effects of doxorubicin therapy for acute lymphoblast leukemia in childhood. N. Engl. J. Med. 1991, 324, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.M.; El-Naga, R.N.; El-Bakly, W.M.; Abdel-Rahman, H.M.; Salah Eldin, R.A.; El-Demerdash, E. Epigallocatechin-3-gallate pretreatment attenuates doxorubicin-induced cardiotoxicity in rats: A mechanistic study. Biochem. Pharmacol. 2015, 95, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Zhao, J.; Jiao, H.J. Synergistic growth-suppressive effects of quercetin and cisplatin on HepG2 human hepatocellular carcinoma cells. Appl. Biochem. Biotechnol. 2014, 172, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Gibeeini, L.; Pinti, M.; Nasi, M.; Montagna, J.P.; de Biasi, S.; Roat, E.; Bertoncell, L.; Cooper, E.L.; Cossarizza, A. Quercetin and cancer chemoprevention. Evid. Based Complement. Altern. Med. 2011, 2011. [Google Scholar] [CrossRef]
- Lu, C.X.; Wang, W.Y.; Cui, Y.; Li, X.Y.; Zhou, Y. Quercetin enhances the effects of 5-fluorouracil-mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF-kappa B. Oncol. Lett. 2012, 4, 775–778. [Google Scholar]
- Angst, E.; Park, J.L.; Moro, A.; Lu, Q.Y.; Lu, X.Y.; Li, G.; King, J.; Chen, M.; Reber, H.A.; Go, V.L.W.; et al. The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo. Pancreas 2013, 42, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, M.; Yu, L.H.; Zhao, Y.; He, N.W.; Yang, X.B. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol. 2012, 50, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Jia, P.; Yan, Z.; Liu, X.; Li, X.; Liu, H. Quercetin induces cell cycle G(1) arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods Find. Exp. Clin. Pharmacol. 2007, 29, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Wang, B.; Zhu, L. Regulation of survivin and bcl-2 in HepG2 cell apoptosis induced by quercetin. Chem. Biodivers. 2009, 6, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Heinz, S.A.; Henson, D.A.; Niemen, D.C.; Austin, M.D.; Iin, E. A-12-week supplementation with quercetin does not affect natural killer cell activity, granulocyte oxidative burst activity or granulocyte phargocytosis in female human subjects. Br. J. Nutr. 2010, 104, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965, 205, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003, 22, 7265–7276. [Google Scholar] [CrossRef] [PubMed]
- Pabla, N.; Dong, Z. Cisplatin nephrotoxocoty: Mecchanisms and renoprotective strategies. Kidney Int. 2008, 73, 994–1007. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Sun, C.; Zhou, B.; Xing, H.; Ma, D.; Chen, G.; Weng, D. Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS ONE 2014, 9, e100314. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Liang, J.Y.; Guo, X.J.; Liu, L.; Guo, Y.B. 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential-mediated apoptosis in hepatocellular carcinoma. Clin. Exp. Pharmcol. Physiol. 2015, 42, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Lefort, E.C.; Blay, J. Apigenin and its impact on gastrointestinal cancers. Mol. Nutr. Food Res. 2013, 57, 126–144. [Google Scholar] [CrossRef] [PubMed]
- Kiliani-Jaziri, S.; Frachet, V.; Bhouri, W.; Ghedira, K.; Chekir-Ghedira, L.; Ronot, X. Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis. Drug Chem. Toxicol. 2012, 35, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Oishi, M.; Izumi, Y.; Taniguchi, T.; Goi, W.; Miki, T.; Sakai, T. Apigenin sensitizes prostate cancer cells to Apo2L/TRAI by targeting adenine nucleotide translocase-2. PLoS ONE 2013, 8, e55922. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.D.; Shiao, C.K.; Lee, Y.C.; Shin, Y.W. Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis. Cancer Cell Int. 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Arias, J.L. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 2008, 13, 2340–2369. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.R. Ribonuclroprotein particle assembly and modification of U2 small nuclear RNA containing 5-fluorouridine. Biochemistry 1993, 32, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Grogan, B.C.; Parker, J.B.; Guminski, A.F.; Stivers, J.M. Effect of thymidylate synthase inhibitors on dUMP and TTP pool levels and the activities of DNA repair glycosylases on uracil and 5-fluorouracil in DNA. Biochemistry 2011, 50, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ma, Y.; Chen, X.; Pan, S.; Sun, B.; Krissansen, G.W. Genistein synergizes with arsenic trioxide to suppress human hepatocellular carcinoma. Cancer Sci. 2010, 101, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Soignet, S.L. Clinical experience of arsenic trioxide in relapsed acute promyelocytic leukemia. Oncologist 2001, 6, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Y.; Yang, Y.; Liu, S.M.; Bi, L.; Chen, S.X. Effect of arsenic trioxide on human hepatocarcinoma in nude mice. World J. Gastroenterol. 2004, 10, 3677–3679. [Google Scholar] [PubMed]
- Mai, Z.; Blackburn, G.L.; Zhou, J.R. Soy phytochemicals synergistically enhance preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis 2007, 28, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- El-Rayes, B.F.; Ali, S.; Ah, I.F.; Philip, P.A.; Abbruzzese, J.; Sarkar, F.H. Potentiation of the effect of erlotinib by genistein in pancreatic cancer. The role of Akt and nuclear factor kappa B. Cancer Res. 2006, 66, 10553–10559. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhu, C.F.; Iwamoto, H.; Chen, J.S. Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J. Gastroenterol. 2005, 11, 6512–6517. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.C.; Chiang, P.C.; Li, T.K.; Hsu, J.L.; Lin, C.J.; Wang, S.W.; Peng, C.Y.; Guh, J.H. Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochem. Pharmacol. 2007, 73, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Feng, Y.; Yang, L.; Huang, Y.; Zhou, D.; Sun, J.; Lie, Y.; Deng, Y. Single- and multiple-dose pharmacolokinetics of genistein capsules in healthy Chinese subjects: A phase I, randomized, open-label study. Curr. Ther. Res. 2008, 69, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, C.H.; Glover, K.; Huang, M.; Hayes, S.A.; Gallot, L.; Quinin, M.; Jovanovic, B.D.; Shapiro, A.; Hernandez, L.; Goetz, A.; et al. Phase I pharmacokinetic and pharmacodynamics analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1213–1221. [Google Scholar]
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzym. Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
- Wang, D.G.; Wang, Z.P.; Tian, B.Q.; Li, X.M.; Li, S.G.; Tian, Y.X. Two hour exposure to sodium butyrate sensitizes bladder cancer to anticancer drugs. Int. J. Urol. 2008, 15, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, J.; Lui, L.; Zhu, H.; Cheu, X.; Pan, S.; Sun, X.; Jiang, H. Genistein potentiates the effect of arsenic trioxide against human hepatocellular carcinoma: Role of Akt and nuclear factor-kB. Cancer Lett. 2011, 301, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Yan, A.; Gao, X.; Chen, Y.; He, X.; Hu, Z.; Mi, M.; Tang, X.; Gou, X. Berberine sensitizes rapamycin-mediated human hepatoma cell death in vitro. Mol. Med. Rep. 2014, 10, 3132–3138. [Google Scholar] [CrossRef] [PubMed]
- Saunders, R.N.; Metcalfe, M.S.; Nicholson, M.L. Rapamycin in transplantation: A review of the evidence. Kidney Int. 2001, 59, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, J.J.; Abraham, R.T.; Yu, K. Mammalian target of rapamycin: Discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin. Oncol. 2009, 36, S3–S17. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. mTOR inhibitor for the treatment of hepatocellular carcinoma. Dig. Dis. 2011, 29, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopp, C.; Kunz, T.; Paquet, T.; Brandt, U.; Sellami, D.; Bruix, J. Phase I study investigating everolimus combined with sorafenib in patients with advanced hepatocellular carcinoma. J. Hepatol. 2013, 59, 1271–1277. [Google Scholar]
- Jun, T.; Yibin, F.; Saiwah, T.; Ning, W.; Robert, C.; Youwei, W. Berberine and coptidis rhizome as novel antineoplastic agents: A review of traditional use and biomedical investigations. J. Ethnopharmacol. 2009, 129, 5–17. [Google Scholar]
- Poon, R.T.; Ho, J.W.; Tong, C.S.; Lau, C.; Ng, I.O.; Fang, S.T. Prognostic significance of serum vascular endotherial growth factor and endostatin in patients with hepatocellular carcinoma. Br. J. Surg. 2004, 91, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.C.; Yu, C.C.; Hsu, L.S.; Chen, K.S.; Su, M.Y.; Chen, P.N. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells. Mol. Pharmacol. 2014, 86, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Saruwatari, J.; Nakagawa, K.; Shindo, J.; Nachi, S.; Echizen, H.; Ishizaki, T. The in vivo effect of sho-saiko-to, a traditional Chinese herbal medicine, on two cytochrome P459 enzymes (1A2 and 3A) and xanthine oxidase in man. J. Pharm. Pharmacol. 2003, 55, 1553–1559. [Google Scholar] [CrossRef] [PubMed]
- Oguni, I.; Nasu, L.; Kanaya, S.; Ota, Y.; Yamamoto, S.; Nomura, T. Epidemiological and experimental studies on the antitumor activity by green tea extracts. Jpn. J. Nutr. 1989, 47, 93–102. [Google Scholar] [CrossRef]
- Shirakami, Y.; Shimizu, M.; Moriwaki, H. Cancer chemoprevention with green tea chatechins: From bench to bed. Curr. Drug Targets 2012, 13, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, Z.Y. Tea and cancer. J. Natl. Cancer Inst. 1993, 85, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Sea-tan, S.; Grove, K.A.; Lambert, J.D. Weight control and prevention of metabolic syndrome by green tea. Pharmacol. Res. 2011, 64, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Shirakami, Y.; Sakai, H.; Kubota, M.; Kochi, T.; Idate, T. Chemopreventive potential of green tea catechins in hepatocellular carcinoma. Int. J. Mol. Sci. 2015, 16, 6124–6139. [Google Scholar] [CrossRef] [PubMed]
- Dreosti, I.E.; Wargovich, M.J.; Yang, C.S. Inhibition of carcinogenesis by tea: The evidence from experimental studies. Crit. Rev. Food sci. Nutr. 1997, 37, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Conney, A.H.; Lu, Y.; Lou, Y.; Xie, J.; Huang, M. Inhibitory effect of green tea and black tea on tumor growth. Proc. Soc. Exp. Biol. Med. 1999, 220, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Kim, S.; Yang, G.Y.; Lee, M.J.; Liao, J.; Chung, J.Y.; Ho, C.T. Inhibition of carcinogenesis by tea: Bioavailability of tea polyphenols and mechanisms of actions. Proc. Soc. Exp. Biol. Med. 1999, 220, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Zhang, W.; Sanderson, B.J.S. Selective growth inhibition of human leukemia and human lymphoblastoid cells by resveratrol via cell cycle arrest and apoptosis induction. J. Agric. Food Chem. 2008, 56, 7572–7577. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.Y.; Kuo, C.H.; Liu, Y.C.; Ye, L.Y.; Chen, J.H.; Shieh, C.J. Ultrasonic-assisted extraction of the botanical dietary supplement resveratrol and other constituents of Polygonum cuspidatum. J. Nat. Prod. 2012, 75, 1810–1813. [Google Scholar] [CrossRef] [PubMed]
- Santandreu, F.M.; Valle, A.; Oliver, J.; Roca, P. Resveratrol potentiates the cytotoxic oxidase sress induced by chemotherapy in human colon cancer cells. Cell Physiol. Biochem. 2011, 28, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Hebber, V.; Shen, G.; Hu, R.; Kim, B.R.; Chen, C.; Korytko, P.J.; Crowell, J.A.; Levine, B.S.; Kong, T. Toxicogenomics of resveratrol in rat liver. Life Sci. 2005, 76, 2299–2314. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.J.; Wu, C.F.; Huang, H.W.; Wu, C.H.; Ho, CT.; Yen, G.C. Evaluation of anti-invasion effect of resveratrol and related methoxy analogues on human hepatocarcinoma cells. J. Agric. Food Chem. 2010, 58, 2886–2894. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; Fu, Y.C.; Xu, W.C.; Feng, Y.Q.; Fang, S.R.; Zhou, X.H. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem. Biophys. Res. Commun. 2009, 380, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.C.; Chen, J.K. Resveratrol enhances perforin expression NK cell cytotoxicity through NKG2D-dependent pathways. J. Cell. Physiol. 2010, 223, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.B.; Zhang, H.F.; Zhang, X.A.; Li, D.Y.; Xue, H.Z.; Pan, C.E.; Zhao, S.H. Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kB-mediated mechanism. Hepatogastroenterology 2010, 57, 1241–1246. [Google Scholar] [PubMed]
- Parekh, P.; Motiwale, L.; Naik, N.; Rao, K.V. Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cells. Exp. Toxicol. Pathol. 2011, 63, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.S.; Chen, W.C.; Lin, Y.Y.; Tsai, C.H.; Liao, C.I.; Shyu, H.Y.; Ko, C.J.; Tzeng, S.F.; Huang, C.Y.; Yang, P.C.; et al. Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis. Cancer Prev. Res. 2013, 6, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Biswas, J.; Sung, B.; Aggarwal, B.B.; Bishayee, A. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr. Drug Targets 2012, 13, 1799–1819. [Google Scholar] [CrossRef] [PubMed]
- Collett, G.P.; Robson, C.N.; Mathers, J.C.; Campbell, F.C. Curcumin modifies Apcmin apoptosis resistance and inhibits 2-amino 1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced tumour formation in Apcmin mice. Carcinogenesis 2001, 22, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.J.; Tian, W.X.; Ma, X.F. Curcumin induces apoptosis of HepG2 cells via inhibiting fatty acid synthase. Target. Oncol. 2014, 9, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Pelletier, J. Examen chimique de la racine de Curcuma. J. Pharm. 1815, 1, 289–300. [Google Scholar]
- Grpta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012, 39, 283–299. [Google Scholar]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.P.; Banerjee, S.; Nautiyal, J.; Patel, B.B.; Patel, V.; Du, J.; Yu, Y.; Elliott, A.A.; Levi, E.; Sarkar, F.H. Curcumin synergizes with resveratrol to inhibit colon cancer. Nutr. Cancer 2009, 61, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Meshnick, S.R. Artemisinin: Mechanisms of action, resistance and toxicity. Int. J. Parasitol. 2002, 32, 1655–1660. [Google Scholar] [CrossRef]
- O’Neill, P.M. Medicinal chemistry: A worthy adversary for malaria. Nature 2004, 430, 838–839. [Google Scholar] [CrossRef] [PubMed]
- Meshnick, S.R. Artemisinin antimalarials: Mechanism of action and resistance. Med. Trop. 1998, 58, 13–17. [Google Scholar]
- Nakase, I.; Gallis, B.; Takatani-Nakase, T.; Oh, S.; Lacoste, E.; Singh, N.P.; Goodlett, D.R.; Tanaka, S.; Futaki, S.; Lai, H.; et al. Ransferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett. 2009, 274, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Nakase, I.; Lacoste, E.; Singh, N.P.; Sasaki, T. Artemisinin transferrin conhugate retards growth of breast tumors in the rat. Anticancer Res. 2009, 29, 3807–3810. [Google Scholar] [PubMed]
- Raganti, C.; Doublier, S.; Costamagna, C.; Aldieri, E.; Pescarmona, G.; Ghigo, D.; Bosia, A. Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human colon cancer HT-29 cells. Mol. Pharmacol. 2008, 74, 475–484. [Google Scholar]
- Tan, W.F.; Shen, F.; Luo, X.J.; Su, C.Q.; Qiu, Z.Q.; Zeng, H.Z.; Yan, P.N.; Yu, Y.; Wu, M.C.; Jiang, X.Q.; et al. Artemisinin inhibits in vitro and in vivo invarsion and metastasis of human hepatocellular carcinoma cells. Phytomedicine 2011, 18, 158–162. [Google Scholar]
- Xu, H.; He, Y.; Yang, X.; Liang, L.; Zhan, Z.; Ye, Y.; Yang, X.; Lian, F.; Sun, L. Antimalarial agent artesunate inhibits TNF-a-induced production of proinflammatory cytokines via inhibition of NF-kB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 2007, 46, 950–926. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, D.; Zhang, R.; Wang, H. Experimental therapy of hepatoma with artemisinin and its derivatives: In vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin. Cancer Res. 2008, 14, 5519–5530. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.L.; Zhang, J.P.; Qian, D.H.; Lin, W.; Xie, W.F.; Zhang, X.R.; Chen, W.Z. Effects of matrine on mouse splenocyte proliferation and release of interleukin-1 and -6 from peritoneal macrophages in vitro. Acta Pharmacol. Sin. 1996, 17, 259–261. [Google Scholar]
- Liu, J.; Zhu, M.; Shi, R.; Yang, M. Radix Sophorae flavescentis for chronic hepatitis B: A systematic review of randomized trials. Am. J. Clin. Med. 2003, 31, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.P.; Zhang, M.; Zhou, J.P.; Liu, F.T.; Zhou, B.; Xie, W.F.; Guo, C.; Zhang, C.; Qian, D.H. Antifibrotic effects of matrine on in vitro and in vivo model of liver fibrosis in rats. Acta Pharmacol. Sin. 2001, 22, 183–186. [Google Scholar] [PubMed]
- Li, X.L.; Chu, W.M.; Liu, J.L.; Xue, X.R.; Lu, Y.J.; Shan, H.L.; Yang, B.F. Antiarrhythmic properties of long-term treatment with matrine in arrhythmic rat induced by coronary ligation. Biol. Pharm. Bull. 2009, 32, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wong, V.K.W.; Yi, X.Q.; Wong, Y.E.; Zhou, H.; Liu, L. Matrine induces cell anergy in human jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol. Pharm. Bull. 2010, 33, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Li, Y.M.; Chen, X.H.; Liu, T.; Chen, Y.T.; He, W.T.; Zhang, Q.B.; Liu, S.Y. Autophagy is involved in anticancer effects of matrine on SGC-7901 human gastric cancer cells. Oncol. Rep. 2011, 26, 115–124. [Google Scholar] [PubMed]
- Zhang, Y.; Zhang, H.; Yu, P.F.; Liu, Q.; Liu, K.; Duan, H.Y.; Luan, G.L.; Yagasaki, K.; Zhang, G.Y. Effects of matrine against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology 2009, 59, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Li, Y.M.; Liu, T.; He, W.I.; Chen, Y.T.; Chen, X.H.; Li, X.; Zhou, W.C.; Yi, J.F.; Ren, Z.J. Antitumor effect of matrine in human hepatoma G2 cell by inducing apoptosis and autophagy. World J. Gastroenterol. 2010, 16, 4281–4290. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.F.; Liu, Q.; Liu, K.; Yagasaki, K.; Wu, E.X.; Zhang, G.Y. Matrine suppresses breast cancer cell proliferation and invasion via VEGF-Akt-NF-kappa B signaling. Cytotechnology 2009, 59, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Fang, H.; Yang, Z.G.; Wang, X.Y.; Ruan, L.M.; Fang, D.R.; Ding, Y.G.; Wang, Y.N.; Zhang, Z.; Jiang, X.L.; et al. Matrine inhibits invasiveness and metastasis of human malignant melanoma cell line A375 in vitro. Int. J. Dermatol. 2008, 47, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.D.; Wen, S.H.; Zhan, Y.; He, Y.J.; Liu, X.S.; Jiang, J.K. Anticancer effects of the Chinese medicine matrine on murine hepatomacellular carcinoma cells. Planta Med. 2008, 74, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Chen, Y.; Cheng, X.; Zhang, X.; He, Q. Potentiation of resveratrol-induced apoptosis by matrine in human hepatoma HepG2 cells. Oncol. Res. 2014, 32, 2803–2809. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, X.; Fang, X.; He, K.; Guo, X.; Zhan, Z.; Sun, C.; Jin, Y.H. Co-treatment with ginsenoside Rh2 and betulinic acid synergistically induces apoptosis in human cancer cells in association with enhanced caspase-8 activation, Bax translocation, and cytochrome c release. Mol. Carcinog. 2011, 50, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Pisha, E.; Chai, H.; Lee, I.S.; Chagwedera, T.E.; Farnsworth, N.R.; Cordell, G.A.; Beecher, C.W.; Fong, H.H.; Kinghom, A.D.; Brown, D.M.; et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med. 1995, 1, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett. 2002, 175, 17–25. [Google Scholar] [CrossRef]
- Fulda, S.; Scaffidi, C.; Susin, S.A.; Krammer, P.H.; Kroemer, G.; Peter, M.E.; Debatin, K.M. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J. Biol. Chem. 1998, 273, 33942–33948. [Google Scholar] [CrossRef] [PubMed]
- Damle, A.A.; Pawar, Y.P.; Narkar, A.A. Anticancer activity of betulinic acid on MCF-7 tumors in nude mice. Ind. J. Exp. Biol. 2013, 51, 485–491. [Google Scholar]
- Nakata, H.; Kikuchi, Y.; Tode, T.; Hirata, J.; Kita, T. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn. J. Cancer Res. 1998, 89, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.F.; Wang, E.X.; Tashiro, S.; Li, T.J.; Ma, J.S.; Ikejima, T. Apoptotic effects of ginsenoside Rh2 on human malignant melanoma A375-S2 cells. Acta Pharmacol. Sin. 2002, 23, 315–322. [Google Scholar] [PubMed]
- Jin, Y.H.; Yoo, K.J.; Lee, Y.H.; Lee, S.K. Caspase 3-mediated cleavage of p21WAF/CIP1 associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells. J. Biol. Chem. 2000, 275, 30256–30263. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Choi, Y.H.; Choi, S.; Chung, H.; Kim, K.; Kim, S.I.; Kim, D.K.; Kim, N.D. Anti-proliferation effects of Ginsenoside Rh2 on MCF-7 human breast cancer cells. Int. J. Oncol. 1999, 14, 869–875. [Google Scholar] [PubMed]
- Kim, H.S.; Lee, E.H.; Ko, S.R.; Choi, K.J.; Park, J.H.; Kim, D.S. Effects of Ginsenoside Rh3 and Rh2 on the proliferation of prostate cancer cells. Arch. Pharm. Res. 2004, 27, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Yun, H.; Kim, D.H.; Kang, I.; Choe, W.; Kim, S.S.; Ha, J. AMP-activated protein kinase determines apoptotic sensitivity of cancer cells to Ginsenoside Rh2. J. Ginseng Res. 2014, 38, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Murakami, A.; Ohura, S.; Nakamura, Y.; Koshimizu, K.; Ohigashi, H. 1′-Acetoxychavicol acetate, a superoxide anion generation inhibitor, potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in ICR mouse skin. Oncology 1996, 53, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, M.; Tanaka, T.; Makita, H.; Kawamori, T.; Mori, H.; Satoh, K.; Hara, A.; Murakami, A.; Ohigashi, H.; Koshimizu, K. Chemopreventive effect of a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate, on rat oral carcinogenesis. Jpn. J. Cancer Res. 1997, 88, 821–830. [Google Scholar] [CrossRef]
- Moffatt, J.; Hashimoto, M.; Kojima, A.; Kennedy, D.O.; Murakami, A.; Koshimizu, K.; Ohigashi, H.; Matsui-Yuasa, I. Apoptosis induced by 1′-acetoxychavicol acetate in Ehrlich ascites tumoe cells is associated with modulation of polyamine metabolism and caspase-3 activation. Carcinogenesis 2000, 21, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Hague, A.; Manning, A.M.; Hanlon, K.A.; Hart, L.I.; Huschtscha, D.; Paraskeva, C. Sodium butyrate induces apoptosis in human colonic tumor cell lines in a p53-independent pathway: Implication for the possible role of dietary fiber in the prevention of large-bowel cancer. Int. J. Cancer 1993, 55, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.T.; Archer, S.Y.; Hinnebusch, B.; Meng, S.; Hodin, R.A. Transient vs. prolonged histone hyperacetylation: Effects on colon cancer cell growth, differentiation and apoptosis. Am. J. Physiol. 2001, 280, G482–G490. [Google Scholar]
- Augeron, C.; Laboisse, C.L. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res. 1984, 44, 3961–3969. [Google Scholar] [PubMed]
- Ho, S.B.; Yan, P.S.; Dahiya, R. Stable differentiation of a human colon adenocarcinoma cell by sodium butyrate is associated with multidrug resistance. J. Cell. Physiol. 1994, 160, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Fujimoto, J.; Okamoto, E.; Furuyama, J.; Tamaoki, T.; Hashimoto-Tamaoki, T. Suppression of growth of hepatocellular carcinoma by sodium butyrate in vitro and in vivo. Int. J. Cancer 1898, 76, 897–902. [Google Scholar] [CrossRef]
- Ling, D.; Xia, H.; Park, W.; Hackett, M.J.; Song, C.; Na, K.; Hui, K.M.; Hyeon, T. pH-Sensitive nanoformulated triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. ACS Nano 2014, 8, 8027–8039. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kojima-Yuasa, A.; Huang, X.; Matsui-Yuasa, I. Synergistic Anticancer Activities of Natural Substances in Human Hepatocellular Carcinoma. Diseases 2015, 3, 260-281. https://doi.org/10.3390/diseases3040260
Kojima-Yuasa A, Huang X, Matsui-Yuasa I. Synergistic Anticancer Activities of Natural Substances in Human Hepatocellular Carcinoma. Diseases. 2015; 3(4):260-281. https://doi.org/10.3390/diseases3040260
Chicago/Turabian StyleKojima-Yuasa, Akiko, Xuedan Huang, and Isao Matsui-Yuasa. 2015. "Synergistic Anticancer Activities of Natural Substances in Human Hepatocellular Carcinoma" Diseases 3, no. 4: 260-281. https://doi.org/10.3390/diseases3040260
APA StyleKojima-Yuasa, A., Huang, X., & Matsui-Yuasa, I. (2015). Synergistic Anticancer Activities of Natural Substances in Human Hepatocellular Carcinoma. Diseases, 3(4), 260-281. https://doi.org/10.3390/diseases3040260