Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature
Abstract
:1. Introduction
- A new type-3 fuzzy fractional-order control scenario is proposed.
- The dynamics of PV, converters, and battery are assumed to be unknown and are perturbed by variable irradiation, random temperature, and sudden changes in output load.
- The new fractional-order adaptation rules are derived for T3-FLS such that the stability to be ensured.
- New combustors are proposed such that the robustness to be guaranteed.
2. Problem Formulation
2.1. General View
2.2. PV Modeling
2.3. Battery Modeling
3. Uncertainty Estimation by Type-3 FLS
4. Main Results
5. Simulation Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verma, P.; Garg, R.; Mahajan, P. Asymmetrical interval type-2 fuzzy logic control based MPPT tuning for PV system under partial shading condition. ISA Trans. 2020, 100, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Shamshirband, S.; Rabczuk, T.; Chau, K.W. A survey of deep learning techniques: Application in wind and solar energy resources. IEEE Access 2019, 7, 164650–164666. [Google Scholar] [CrossRef]
- Şahin, M.E.; Blaabjerg, F. A hybrid PV-battery/supercapacitor system and a basic active power control proposal in MATLAB/simulink. Electronics 2020, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Sandelic, M.; Sangwongwanich, A.; Blaabjerg, F. Reliability Evaluation of PV Systems with Integrated Battery Energy Storage Systems: DC-Coupled and AC-Coupled Configurations. Electronics 2019, 8, 1059. [Google Scholar] [CrossRef] [Green Version]
- Nengroo, S.H.; Kamran, M.A.; Ali, M.U.; Kim, D.H.; Kim, M.S.; Hussain, A.; Kim, H.J. Dual battery storage system: An optimized strategy for the utilization of renewable photovoltaic energy in the United Kingdom. Electronics 2018, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Dong, W.; Etemadi, A.H. A unified control and power management scheme for PV-battery-based hybrid microgrids for both grid-connected and islanded modes. IEEE Trans. Smart Grid 2017, 9, 5975–5985. [Google Scholar] [CrossRef]
- Barchi, G.; Pierro, M.; Moser, D. Predictive Energy Control Strategy for Peak Shaving and Shifting Using BESS and PV Generation Applied to the Retail Sector. Electronics 2019, 8, 526. [Google Scholar] [CrossRef] [Green Version]
- Kamal, T.; Karabacak, M.; Hassan, S.Z.; Fernández-Ramírez, L.M.; Riaz, M.H.; Riaz, M.T.; Khan, M.A.; Khan, L. Energy management and switching control of PHEV charging stations in a hybrid smart micro-grid system. Electronics 2018, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Beniwal, N.; Hussain, I.; Singh, B. Control and operation of a solar PV-battery-grid-tied system in fixed and variable power mode. IET Gener. Transm. Distrib. 2018, 12, 2633–2641. [Google Scholar] [CrossRef]
- Shan, Y.; Hu, J.; Liu, M.; Zhu, J.; Guerrero, J.M. Model Predictive Voltage and Power Control of Islanded PV-Battery Microgrids With Washout-Filter-Based Power Sharing Strategy. IEEE Trans. Power Electr. 2019, 35, 1227–1238. [Google Scholar] [CrossRef]
- Kalla, U.K.; Kaushik, H.; Singh, B.; Kumar, S. Adaptive Control of Voltage Source Converter Based Scheme for Power Quality Improved Grid-Interactive Solar PV–Battery System. IEEE Trans. Ind. Appl. 2019, 56, 787–799. [Google Scholar] [CrossRef]
- Hu, J.; Shan, Y.; Xu, Y.; Guerrero, J.M. A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. Int. J. Electr. Power Energy Syst. 2019, 104, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, Y.; Shang, Y.; Duan, B.; Cui, N.; Zhang, C. A fractional-Order kinetic battery model of lithium-Ion batteries considering a nonlinear capacity. Electronics 2019, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Kapoulea, S.; Bizonis, V.; Bertsias, P.; Psychalinos, C.; Elwakil, A.; Petráš, I. Reduced Active Components Count Electronically Adjustable Fractional-Order Controllers: Two Design Examples. Electronics 2020, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Do, T.C.; Tran, D.T.; Dinh, T.Q.; Ahn, K.K. Tracking Control for an Electro-Hydraulic Rotary Actuator Using Fractional Order Fuzzy PID Controller. Electronics 2020, 9, 926. [Google Scholar] [CrossRef]
- Yang, B.; Yu, T.; Shu, H.; Zhu, D.; An, N.; Sang, Y.; Jiang, L. Energy reshaping based passive fractional-order PID control design and implementation of a grid-connected PV inverter for MPPT using grouped grey wolf optimizer. Solar Energy 2018, 170, 31–46. [Google Scholar] [CrossRef]
- Ramadan, H. Optimal fractional order PI control applicability for enhanced dynamic behavior of on-grid solar PV systems. Int. J. Hydrog. Energy 2017, 42, 4017–4031. [Google Scholar] [CrossRef]
- Al-Dhaifallah, M.; Nassef, A.M.; Rezk, H.; Nisar, K.S. Optimal parameter design of fractional order control based INC-MPPT for PV system. Solar Energy 2018, 159, 650–664. [Google Scholar] [CrossRef]
- Reddy, V.M.S.; Sreenivasulu, Y. Fractional Order PID Control for Solar PV and Battery Storage Systems using Three-Level NPC Inverter. Int. J. Adv. Technol. Innov. Res. 2016, 8, 2348–2370. [Google Scholar]
- Yang, B.; Yu, T.; Shu, H.; Zhu, D.; Sang, Y.; Jiang, L. Passivity-based fractional-order sliding-mode control design and implementation of grid-connected photovoltaic systems. J. Renew. Sustain. Energy 2018, 10, 043701. [Google Scholar] [CrossRef]
- Yang, B.; Yu, T.; Shu, H.; Zhu, D.; Zeng, F.; Sang, Y.; Jiang, L. Perturbation observer based fractional-order PID control of photovoltaics inverters for solar energy harvesting via Yin-Yang-Pair optimization. Energy Convers. Manag. 2018, 171, 170–187. [Google Scholar] [CrossRef]
- Javed, K.; Ashfaq, H.; Singh, R.; Hussain, S.; Ustun, T.S. Design and performance analysis of a stand-alone PV system with hybrid energy storage for rural India. Electronics 2019, 8, 952. [Google Scholar] [CrossRef] [Green Version]
- Rai, N.; Rai, B. Control of fuzzy logic based PV-battery hybrid system for stand-alone DC applications. J. Electr. Syst. Inf. Technol. 2018, 5, 135–143. [Google Scholar] [CrossRef]
- Zainuri, M.A.A.M.; Radzi, M.A.M.; Soh, A.C.; Abd Rahim, N. Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter. IET Renew. Power Gener. 2013, 8, 183–194. [Google Scholar] [CrossRef]
- Chen, Y.K.; Wu, Y.C.; Song, C.C.; Chen, Y.S. Design and implementation of energy management system with fuzzy control for DC microgrid systems. IEEE Trans. Power Electr. 2012, 28, 1563–1570. [Google Scholar] [CrossRef]
- García, P.; Torreglosa, J.P.; Fernandez, L.M.; Jurado, F. Optimal energy management system for stand-alone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic. Int. J. Hydrog. Energy 2013, 38, 14146–14158. [Google Scholar] [CrossRef]
- Abd Nafeh, E.S.A. Fuzzy logic operation control for PV-diesel-battery hybrid energy system. Open Renew. Energy J. 2009, 2, 70–78. [Google Scholar] [CrossRef]
- Feng, X.; Gooi, H.; Chen, S. Hybrid energy storage with multimode fuzzy power allocator for PV systems. IEEE Trans. Sustain. Energy 2014, 5, 389–397. [Google Scholar] [CrossRef]
- Balamurugan, R.; Nithya, R. FC/PV Fed SAF with fuzzy logic control for power quality enhancement. Int. J. Power Electr. Drive Syst. 2015, 5, 470. [Google Scholar] [CrossRef]
- Lee, C.L.; Lin, C.J. Integrated Computer Vision and Type-2 Fuzzy CMAC Model for Classifying Pilling of Knitted Fabric. Electronics 2018, 7, 367. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.J.; Lin, C.H.; Wang, S.H. Using a Hybrid of Interval Type-2 RFCMAC and Bilateral Filter for Satellite Image Dehazing. Electronics 2020, 9, 710. [Google Scholar] [CrossRef]
- Shamshirband, S.; Chronopoulos, A.T. A new malware detection system using a high performance-ELM method. In Proceedings of the 23rd International Database Applications & Engineering Symposium, Athens, Greece, 10–12 June 2019; pp. 1–10. [Google Scholar]
- Castillo, O.; Atanassov, K. Comments on fuzzy sets, interval type-2 fuzzy sets, general type-2 fuzzy sets and intuitionistic fuzzy sets. In Recent Advances in Intuitionistic Fuzzy Logic Systems; Springer: Midtown Manhattan, NY, USA, 2019; pp. 35–43. [Google Scholar]
- Mohammadzadeh, A.; Kaynak, O. A novel general type-2 fuzzy controller for fractional-order multi-agent systems under unknown time-varying topology. J. Franklin Inst. 2019, 356, 5151–5171. [Google Scholar] [CrossRef]
- Krein, P.T.; Bentsman, J.; Bass, R.M.; Lesieutre, B.L. On the use of averaging for the analysis of power electronic systems. IEEE Trans. Power Electr. 1990, 5, 182–190. [Google Scholar] [CrossRef]
- Lin, B. Conceptual design and modeling of a fuel cell scooter for urban Asia. J. Power Sour. 2000, 86, 202–213. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Sabzalian, M.H.; Zhang, W. An interval type-3 fuzzy system and a new online fractional-order learning algorithm: Theory and practice. IEEE Trans. Fuzzy Syst. 2019. [Google Scholar] [CrossRef]
- Sung, S.W.; Lee, J.; Lee, I.B. Process Identification and PID Control; Wiley Online Library: Hoboken, NJ, USA, 2009; Volume 6. [Google Scholar]
- Tofighi, A.; Kalantar, M. Power management of PV/battery hybrid power source via passivity-based control. Renew. Energy 2011, 36, 2440–2450. [Google Scholar] [CrossRef]
- Mojallizadeh, M.R.; Badamchizadeh, M.; Khanmohammadi, S.; Sabahi, M. Designing a new robust sliding mode controller for maximum power point tracking of photovoltaic cells. Solar Energy 2016, 132, 538–546. [Google Scholar] [CrossRef]
- Kirk, D.E. Optimal control theory: An introduction; Courier Corporation: Washington, DC, USA, 2012. [Google Scholar]
Parameter | Description |
---|---|
n | Cell Number |
G (w/m) | Solar irradiation |
(J/K) | Boltzmann’s constant |
(ev) | Band-Gap energy |
/ | Equivalent resistances |
T (C) | Temperature of PV |
q | Electron charge |
A | Constant of the diode ideality |
(A) | Saturation current |
(C) | Reference temperature |
(A) | Photo generated currents |
Parameter | Unit | Description |
---|---|---|
Battery internal resistance | ||
(w) | Power losses | |
(v) | Voltage of battery open circuit | |
and | - | Rates of charge and discharge |
(J) | Maximum storable energy |
Parameter | Value | Parameter | Value |
---|---|---|---|
10 (mH) | 12 () | ||
q | 1.60 | n | 45 |
56 (w) | 3.56 (A) | ||
C | 521 (f) | 36 () | |
70 (m) | 1.481 | ||
(C) | 1.2 () | ||
A | 1.1 | 9 (v) | |
5.97 (A) | 1.42 () | ||
0.95 | 1.4 | ||
25 (w) | 25 (w) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosavi, A.; Qasem, S.N.; Shokri, M.; Band, S.S.; Mohammadzadeh, A. Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature. Electronics 2020, 9, 1455. https://doi.org/10.3390/electronics9091455
Mosavi A, Qasem SN, Shokri M, Band SS, Mohammadzadeh A. Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature. Electronics. 2020; 9(9):1455. https://doi.org/10.3390/electronics9091455
Chicago/Turabian StyleMosavi, Amirhosein, Sultan Noman Qasem, Manouchehr Shokri, Shahab S. Band, and Ardashir Mohammadzadeh. 2020. "Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature" Electronics 9, no. 9: 1455. https://doi.org/10.3390/electronics9091455
APA StyleMosavi, A., Qasem, S. N., Shokri, M., Band, S. S., & Mohammadzadeh, A. (2020). Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature. Electronics, 9(9), 1455. https://doi.org/10.3390/electronics9091455