Efficient and Versatile Modeling of Mono- and Multi-Layer MoS2 Field Effect Transistor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.1.1. Semiconductor Material Model Interface
2.1.2. Metal Contacts (Ideal Ohmic and Ideal Schottky)
2.1.3. Dielectric Materials and Intrinsic n-Type Behavior
2.1.4. Trap-Assisted Recombination
2.1.5. Atomistic Simulations Platform
2.2. Model Validation
2.2.1. MoS FET with n+ Si Back Gate
2.2.2. MoS Transistor with HfO
2.3. MoS Transistor with HfZrO
3. Results and Discussion
3.1. Atomistic Simulations Results
3.2. MoS FET with n+ Si Back Gate Results
3.3. MoS Transistor with HfO Top Gate Insulator
3.4. MoS Transistor with HfZrO—Simulation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xue, Y.; Zhang, Y.; Liu, Y.; Liu, H.; Song, J.; Ponraj, J.; Liu, J.; Xu, Z.; Xu, Q.; Wang, Z.; et al. Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. ACS Nano 2016, 10, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Hesameddin, I.; Gerhard, K.; Rajib, R.; Chen, Z. Electrically Tunable Bandgaps in Bilayer MoS2. Nano Lett. 2015, 15, 8000–8007. [Google Scholar] [CrossRef]
- Yazyev, O.V.; Kis, A. MoS2 and semiconductors in the flatland. Mater. Today 2014, 20–30. [Google Scholar] [CrossRef]
- Xiong, K.E.A. CMOS-compatible batch processing of monolayer MoS2 MOSFETs. J. Phys. D Appl. Phys. 2018, 51, 15LT02. [Google Scholar] [CrossRef] [Green Version]
- Pierantoni, L.; Coccetti, F.; Russer, P. Nanoelectronics: The paradigm shift. IEEE Microw. Mag. 2010, 11, 8–10. [Google Scholar] [CrossRef]
- Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors 2018, 18, 3638. [Google Scholar] [CrossRef] [Green Version]
- Varghese, S.; Varghese, S.; Swaminathan, S.; Singh, K.; Mittal, V. Two-Dimensional Materials for Sensing: Graphene and Beyond. Electronics 2015, 4, 651–687. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, F.; Fu, W.; Fang, Z.; Zhou, W.; Liu, Z. Two-dimensional heterostructures: Fabrication, characterization, and application. Nanoscale 2014, 6, 12250–12272. [Google Scholar] [CrossRef]
- Wi, S.; Hyunsoo, K.; Chen, M.; Hongsuk, N.; Guo, L.J.; Edgar, M.; Liang, X. Enhancement of Photovoltaic Response in Multilayer MoS2 Induced by Plasma Doping. ACS Nano 2014, 8, 5270–5281. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Krasnozhon, D.; Lembke, D.; Nyffeler, C.; Leblebici, Y.; Kis, A. MoS2 Transistors Operating at Gigahertz Frequencies. Nano Lett. 2014, 14, 5905–5911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.C.; Jariwala, D.; Sangwan, V.K.; Marks, T.J.; Hersam, M.C.; Lauhon, L.J. Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. J. Phys. Chem. Lett. 2013, 4, 2508–2513. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Kang, J.; Liu, W.; Banerjee, K. A Compact Current-Voltage Model for 2D Semiconductor Based Field-Effect Transistors Considering Interface Traps, Mobility Degradation, and Inefficient Doping Effect. IEEE Trans. Electron Devices 2014, 61, 4282–4290. [Google Scholar] [CrossRef]
- Wei, B.; Lu, C. Transition metal dichalcogenide MoS2 field-effect transistors for analog circuits: A simulation study. AEU—Int. J. Electron. Commun. 2018, 88, 110–119. [Google Scholar] [CrossRef]
- Zhang, M.; Chien, P.; Woo, J.C.S. Comparative simulation study on MoS2 FET and CMOS transistor. In Proceedings of the 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Rohnert Park, CA, USA, 5–8 October 2015; pp. 1–2. [Google Scholar]
- Miller, S.L.; McWhorter, P.J. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 1992, 72, 5999. [Google Scholar] [CrossRef]
- Dragoman, M.; Aldrigo, M.; Modreanu, M.; Dragoman, D. Extraordinary tunability of high-frequency devices using Hf0.3Zr0.7O2 ferroelectric at very low applied voltages. Appl. Phys. Lett. 2017, 110, 103–104. [Google Scholar] [CrossRef] [Green Version]
- Mikolajick, T.; Slesazeck, S.; Park, M.H.; Schroeder, U. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. Mrs Bull. 2018, 43, 340–346. [Google Scholar] [CrossRef]
- Shur, M. Physics of Semiconductor Devices; Prentice Hall: Upper Saddle River, NJ, USA, 1990. [Google Scholar]
- Li, X.; Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. J. Mater. 2015, 1, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Yu, Y.C.; Wang, J.T.W.; Chang, C.S.; Li, L.J.; et al. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.N. Electron-Hole Recombination in Germanium. Phys. Rev. 1952, 87, 387. [Google Scholar] [CrossRef]
- Migalska-Zalas, A.; Kityk, I.; Bakasse, M.; Sahraoui, B. Features of the alkynyl ruthenium chromophore with modified anionic subsystem UV absorption. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2008, 69, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Weiner, S.; Kollman, P.; Singh, U.; Case, D.; Ghio, C.; Alagona, G.; Profeta, S.J.; Weiner, P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. [Google Scholar] [CrossRef]
- Cygan, R.; Liang, J.J.; Kalinichev, A. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Mayne, C.; Saam, J.; Schulten, K.; Tajkhorshid, E.; Gumbart, J. Rapid parameterization of small molecules using the force field toolkit. J. Comput. Chem. 2013, 34, 2757–2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.; Goddard, T.; Huang, C.; Couch, G.; Greenblatt, D.; Meng, E.; Ferrin, T. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, S.L.; Jariwala, D.; Wu, C.C.; Chen, K.S.; Sangwan, V.K.; Kang, J.; Marks, T.J.; Hersam, M.C.; Lauhon, L.J. Investigation of Band-Offsets at Monolayer-Multilayer MoS2 Junctions by Scanning Photocurrent Microscopy. Nano Lett. 2015, 15, 2278–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Wei, C.M.; Chou, M. Quantum confinement and electronic properties in silicon nanowires. Phys. Rev. Lett. 2003, 92, 236805. [Google Scholar] [CrossRef]
- Vincenzi, G.; Deligeorgis, G.; Coccetti, F.; Dragoman, M.; Pierantoni, L.; Mencarelli, D.; Plana, R. Extending ballistic graphene FET lumped element models to diffusive devices. Solid-State Electron. 2012, 76, 8–12. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Parameter | Value |
---|---|---|---|
Thickness of MoS | /layer | Electron effective mass | 0.5 m |
Bandgap 1L MoS | Hole effective mass | 0.5 m | |
Bandgap 4L MoS | Thickness gold contact | 75 | |
Electron affinity 1L Mo | Length MoS | ||
Electron affinity 4L MoS | 4 | Silicon thickness | 2 |
Relative permittivity 1L | 4.2 | SiO thickness | 300 |
Relative permittivity 4L | 11 | Width | |
Mobility 1L | 6 cm2 V−1 s−1 | Work function of gate | |
Mobility 4L | 25 cm2 V−1 s−1 | SiO Relative Permittivity | 3.9 |
Drain and Source contact type | Ideal ohmic | Donor concentration (N_D) | cm |
Parameter | Value | Parameter | Value |
---|---|---|---|
Thickness of MoS | SiO Relative Permittivity | 3.9 | |
Bandgap MoS | Electron effective mass | 0.5 m | |
Electron affinity MoS | 5 | Hole effective mass | 0.5 m |
Relative permittivity MoS | Gold contact length | 500 | |
Relative permittivity HfO | 25 | Source-gate spacing | 500 |
Mobility | 217 cm2 V−1 s−1 | Gate-drain spacing | 500 |
SRH lifetimes | Thickness gold contact | 50 | |
Metal work function of top gate | SiO thickness | 270 | |
Work function of bottom gate | HfO thickness | 30 | |
Metal work function source | Width | 4 | |
Metal work function drain | Donor concentration (N_d) | cm |
Parameter | Value | Parameter | Value |
---|---|---|---|
Thickness of MoS | HfZrO thickness | 6 nm | |
Bandgap MoS | Electron effective mass | 0.5 m | |
Electron affinity MoS | 5 | Hole effective mass | 0.5 m |
Relative permittivity MoS | Gold contact length | 500 | |
Relative permittivity HfO | 20 | Source-gate spacing | 500 |
Mobility | 217 cm2 V−1 s−1 | Gate-drain spacing | 500 |
SRH lifetimes | Thickness gold contact | 50 | |
Metal work function of top gate | SiO thickness | 270 | |
Work function of bottom gate | HfO thickness | 30 | |
Metal work function source | Width | 4 | |
Metal work function drain | Donor concentration (N_d) | cm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelagalli, N.; Laudadio, E.; Stipa, P.; Mencarelli, D.; Pierantoni, L. Efficient and Versatile Modeling of Mono- and Multi-Layer MoS2 Field Effect Transistor. Electronics 2020, 9, 1385. https://doi.org/10.3390/electronics9091385
Pelagalli N, Laudadio E, Stipa P, Mencarelli D, Pierantoni L. Efficient and Versatile Modeling of Mono- and Multi-Layer MoS2 Field Effect Transistor. Electronics. 2020; 9(9):1385. https://doi.org/10.3390/electronics9091385
Chicago/Turabian StylePelagalli, Nicola, Emiliano Laudadio, Pierluigi Stipa, Davide Mencarelli, and Luca Pierantoni. 2020. "Efficient and Versatile Modeling of Mono- and Multi-Layer MoS2 Field Effect Transistor" Electronics 9, no. 9: 1385. https://doi.org/10.3390/electronics9091385
APA StylePelagalli, N., Laudadio, E., Stipa, P., Mencarelli, D., & Pierantoni, L. (2020). Efficient and Versatile Modeling of Mono- and Multi-Layer MoS2 Field Effect Transistor. Electronics, 9(9), 1385. https://doi.org/10.3390/electronics9091385