Compact Wideband MIMO Diversity Antenna for Mobile Applications Using Multi-Layered Structure
Abstract
:1. Introduction
2. Antenna Configuration, Feeding Structure and Design Concepts
2.1. Antenna Geometry and Design Concepts
2.2. Antenna Geometry Parametric Study
3. Design Exploration of the Wideband MIMO Antenna Units
3.1. Multi-fidelity Surrogate Model Assisted Differential Evolution Algorithm
3.2. Implementation of MSADEA for the Wideband MIMO Antenna
d1 − 2 × min([15 − l1/2 − 5]) ≥ 0
−l2/3 + abs(xvia) ≥ 0
4. Measurement Results and MIMO Performance
4.1. Reflection Coefficient (S11) and Impedance Bandwidth
4.2. Radiation Patterns
4.3. Gain and Current Distributions
4.4. Diversity Gain, Correlation and Multiplexing Efficiency
4.5. Performance Comparison
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vitturi, S.; Zunino, C.; Sauter, T. Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G. Proc. IEEE 2019, 107, 944–961. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Xu, R.; Gao, S.; Izquierdo, B.S.; Gu, C.; Reynaert, P.; Standaert, A.; Gibbons, G.J.; Bösch, W.; Gadringer, M.E.; Li, D. A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications. IEEE Access 2020, 8, 57615–57629. [Google Scholar] [CrossRef]
- Costanzo, A.; Masotti, D.; Fantuzzi, M.; Del Prete, M. Co-Design Strategies for Energy-Efficient UWB and UHF Wireless Systems. IEEE Trans. Microw. Theory Tech. 2017, 65, 1852–1863. [Google Scholar] [CrossRef]
- Ma, R.; Behdad, N. A Compact, Low-Cost, Ultrawideband Direction-Finding System: Techniques Suitable for Small-Aperture Designs. IEEE Antennas Propag. Mag. 2018, 60, 32–44. [Google Scholar]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Wearable Ultrawideband Technology—A Review of Ultrawideband Antennas, Propagation Channels, and Applications in Wireless Body Area Networks. IEEE Access 2018, 6, 42177–42185. [Google Scholar] [CrossRef]
- Yadav, R.; Malviya, L. UWB antenna and MIMO antennas with bandwidth, band-notched, and isolation properties for high-speed data rate wireless communication: A review. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, 1–25. [Google Scholar] [CrossRef]
- Home, P.P.; Khan, T.; Laskar, R.H. A state-of-art review on band-notch characteristics in UWB antennas. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, 1–16. [Google Scholar]
- Nadeem, I.; Choi, D. Study on Mutual Coupling Reduction Technique for MIMO Antennas. IEEE Access 2019, 7, 563–586. [Google Scholar] [CrossRef]
- Zhang, S.; Lau, B.K.; Sunesson, A.; He, S. Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications. IEEE Trans. Antennas Propag. 2012, 60, 4372–4380. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Cheung, S.W.; Yuk, T.I. Compact MIMO antenna for portable devices in UWB applications. IEEE Trans. Antennas Propag. 2013, 61, 4257–4264. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, I.; Abdalla, M.; Mitkees, A. Perfect isolation performance among two-element MIMO antennas AEU. Int. J. Electron. Commun. 2019, 107, 21–31. [Google Scholar] [CrossRef]
- See, C.H.; Hraga, H.I.; Noras, J.M.; Abd-Alhameed, R.A.; McEwan, N.J. Compact Multiple Input and Multiple Output/Diversity Antenna for Portable and Mobile Ultra-wideband applications. IET Microw. Antennas Propag. 2013, 7, 444–451. [Google Scholar] [CrossRef]
- Yoon, H.K.; Yoon, Y.J.; Kim, H.; Lee, C.H. Flexible ultra-wideband polarisation diversity antenna with band-notch function. IET Microw. Antennas Propag. 2011, 5, 1463–1470. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, K.B.; Ryu, H.K.; Woo, J.M. A compact ultrawide-band MIMO antenna with WLAN band-rejected operation for mobile devices. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 990–993. [Google Scholar]
- Sharawi, M.S.; Khan, M.U.; Numan, A.B.; Aloi, D.N. A CSRR loaded MIMO antenna system for ISM band operation. IEEE Trans. Antennas Propag. 2013, 61, 4265–4274. [Google Scholar] [CrossRef]
- Wang, L.; Du, Z.; Yang, H.; Ma, R.; Zhao, Y.; Cui, X.; Xi, X. Compact UWB MIMO Antenna with High Isolation Using Fence-Type Decoupling Structure. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1641–1645. [Google Scholar] [CrossRef]
- Khan, M.S.; Iftikhar, A.; Shubair, R.M.; Capobianco, A.; Braaten, B.D.; Anagnostou, D.E. Eight-Element Compact UWB-MIMO/Diversity Antenna with WLAN Band Rejection for 3G/4G/5G Communications. IEEE Open J. Antennas Propag. 2020, 1, 196–206. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Shukla, P.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Quazzane, K.; Limiti, E. Isolation Enhancement of Densely Packed Array Antennas with Periodic MTM-Photonic Bandgap for SAR and MIMO Systems. IET Microw. Antennas Propag. 2020, 14, 183–188. [Google Scholar] [CrossRef]
- See, C.H.; Abd-Alhameed, R.A.; Abidin, Z.Z.; McEwan, N.J.; Excell, P.S. Wideband Printed MIMO/Diversity Monopole Antenna for WiFi/WiMAX Applications. IEEE Trans. Antennas Propag. 2012, 60, 2028–2035. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. High-Isolation Leaky-Wave Array Antenna Based on CRLH-Metamaterial Implemented on SIW with ±30° Frequency Beam-Scanning Capability at Millimeter-Waves. Electronics 2019, 8, 642. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Virdee, B.S.; Shukla, P.; See, C.H.; Abd-Alhameed, R.; Khalily, M.; Falcone, F.; Limiti, E. Antenna Mutual Coupling Suppression Over Wideband using Embedded Periphery Slot for Antenna Arrays. Electronics 2018, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, A.; Gupta, G.; Konanur, A.S.; Hughes, B.; Lazzi, G. Increasing channel capacity of an ultrawideband MIMO system using vector antennas. IEEE Trans. Antennas Propag. 2007, 55, 2880–2887. [Google Scholar] [CrossRef]
- Saleem, R.; Bilal, M.; Bajwa, K.B.; Shafique, M.F. Eight-element UWB-MIMO array with three distinct isolation mechanisms. Electron. Lett. 2015, 51, 311–313. [Google Scholar] [CrossRef]
- Soltani, S.; Murch, R.D. A compact planar printed MIMO antenna design. IEEE Trans. Antennas Propag. 2015, 63, 1140–1149. [Google Scholar] [CrossRef]
- Kim, J.; Ju, J.; Eom, S.; Song, M.; Kim, N. Four-channel MIMO antenna for WLAN using hybrid structure. Electron. Lett. 2013, 49, 857–858. [Google Scholar] [CrossRef]
- Li, H.; Xiong, J.; Ying, Z.; He, S.L. Compact and low profile co-located MIMO antenna structure with polarisation diversity and high port isolation. Electron. Lett. 2010, 46, 108–110. [Google Scholar] [CrossRef]
- Gallo, M.; Daviu, E.A.; Bataller, M.F.; Bozzetti, M.; Pardo, J.M.; Llacer, L.J. A broadband pattern diversity annular slot antenna. IEEE Trans. Antennas Propag. 2011, 60, 1596–1600. [Google Scholar] [CrossRef]
- Adamiuk, G.; Zwick, T.; Wiesbeck, W. Compact, dual-polarized UWB- antenna, embedded in a dielectric. IEEE Trans. Antennas Propag. 2009, 58, 279–286. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, W.; Han, L.; Han, G.; Yang, R. A wideband dual-polarized patch antenna fed with the aperture-coupled microstrip. Electromagnetics 2018, 38, 58–69. [Google Scholar] [CrossRef]
- Kang, L.; Li, H.; Wang, X.; Shi, X. Compact Offset Microstrip-Fed MIMO Antenna for Band-Notched UWB Applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1754–1757. [Google Scholar] [CrossRef]
- Mao, C.; Chu, Q. Compact Coradiator UWB-MIMO Antenna with Dual Polarization. IEEE Trans. Antennas Propag. 2014, 62, 4474–4480. [Google Scholar] [CrossRef]
- Garg, R.; Bhartia, P.; Bahl, I.J.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House: Boston, MA, USA, 2001. [Google Scholar]
- Legay, H.; Shafai, L. New Stacked Microstrip Antenna with Large Bandwidth and High Gain. IEE Proc. Microw. Antennas Propag. 1994, 141, 199–204. [Google Scholar] [CrossRef]
- Nishiyama, E.; Aikawa, M.; Egashira, S. Stacked microstrip antenna for wideband and high gain. IEE Proc. Microw. Antennas Propag. 2004, 151, 143–148. [Google Scholar] [CrossRef]
- Katyal, A.; Basu, A. Compact and Broadband Stacked Microstrip Patch Antenna for Target Scanning Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 381–384. [Google Scholar] [CrossRef]
- Liu, B.; Aliakbarian, H.; Ma, Z.; Vandenbosch, G.A.; Gielen, G.; Excell, P. An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. Antennas Propag. 2013, 62, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Santner, T.J.; Williams, B.J.; Notz, W.I. The Design and Analysis of Computer Experiments; Springer Series in Statistics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Price, K.; Storn, R.M.; Lampinen, J. Differential Evolution: A Practical Approach to Global Optimization; Springer Natural Computing Series; Springer: Berlin, Germany, 2005. [Google Scholar]
- Liu, B.; Zhang, Q.; Gielen, G.G. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans. Evol. Comput. 2013, 18, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Danjuma, I.M.; Akinsolu, M.O.; See, C.H.; Abd-Alhameed, R.A.; Liu, B. Design and Optimization of a Slotted Monopole Antenna for Ultra-wide Band Body Centric Imaging Applications. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 4, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Grout, V.; Akinsolu, M.; Liu, B.; Lazaridis, P.; Mistry, K.; Zaharis, Z. Software Solutions for Antenna Design Exploration: A Comparison of Packages, Tools, Techniques and Algorithms for Various Design Challenges. IEEE Antennas Propag. Mag. 2019, 61, 48–59. [Google Scholar] [CrossRef]
- Nelder, J.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Liu, B.; Irvine, A.; Akinsolu, M.; Arabi, O.; Ali, N.; Grout, V. GUI Design Exploration Software for Microwave Antennas. J. Comput. Des. Eng. 2017, 4, 274–281. [Google Scholar] [CrossRef]
- Tian, R.; Lau, B.K.; Ying, Z. Multiplexing efficiency of MIMO antennas. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Li, W.T.; Hei, Y.Q.; Grubb, P.M.; Shi, X.; Chen, R.T. Inkjet Printing of Wideband Stacked Microstrip Patch Array Antenna on Ultrathin Flexible Substrates. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1695–1701. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, S.; Chen, Z. Modified corner-fed dual-polarized stacked patch antenna for micro-base station applications. Electron. Lett. 2015, 51, 604–606. [Google Scholar] [CrossRef]
- Bondarik, A.; Sjoberg, D. Gridded Parasitic Patch Stacked Microstrip Antenna with Beam Shift Capability for 60 GHz Band. Prog. Electromagn. Res. B 2015, 62, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Belen, M.A. Stacked microstrip patch antenna design for ISM band applications with 3D-printing technology. Microw. Opt. Technol. Lett. 2019, 61, 709–712. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, N.; Gautam, P.C. Design Analysis of Broadband Stacked Microstrip Patch Antenna for WLAN Applications. Wirel. Pers. Commun. 2018, 103, 1499–1515. [Google Scholar] [CrossRef]
- Sarin, V.P.; Nishamol, M.S.; Tony, D.; Aanandan, C.K.; Mohanan, P.; Vasudevan, K. A Wideband Stacked Offset Microstrip Antenna with Improved Gain and Low Cross Polarization. IEEE Trans. Antennas Propag. 2011, 59, 1376–1379. [Google Scholar] [CrossRef]
- Klionovski, K.; Shamim, A. Back Radiation Suppression through a Semitransparent Ground Plane for a Millimeter-Wave Patch Antenna. IEEE Trans. Antennas Propag. 2017, 65, 3935–3941. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Hong, S.K.; Kim, B. A shared-aperture S/X dual broadband microstrip antenna with one perforated patch. Microw. Opt. Technol. Lett. 2020, 62, 507–513. [Google Scholar] [CrossRef]
- Feng, B.; Li, L.; Cheng, J.; Sim, C. A Dual-Band Dual-Polarized Stacked Microstrip Antenna with High-Isolation and Band-Notch Characteristics for 5G Microcell Communications. IEEE Trans. Antennas Propag. 2019, 67, 4506–4516. [Google Scholar] [CrossRef]
- Yang, X.; Ge, L.; Wang, J.; Sim, C. A Differentially Driven Dual-Polarized High-Gain Stacked Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1181–1185. [Google Scholar] [CrossRef]
- Klionovski, K.; Shamim, A. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3208–3211. [Google Scholar] [CrossRef] [Green Version]
Parameters | Variable | Dimension |
---|---|---|
Main Patch Width | w2 | 10 |
Main Patch Length | l2 | 10 |
Separation between Parasitics | d1 | 1.68 |
Parasitic Patch Length | w1 | 8.4 |
Parasitic Patch Width | l1 | 8.4 |
Antenna Width | ly | 18.48 |
Antenna Length | lx | 18.48 |
Corner Truncated Length of the Parasitic Patch | Δs | 1.2 |
Corner Truncated Length of the Main Patch | Δp | 2 |
Via wrt. Main Patch ctr. | xvia | −3.5 |
1st Layer Thickness | h1 | 3.048 |
2nd Layer Thickness | h2 | 1.28 |
3rd Layer Thickness | h3 | 0.813 |
Feeding Strip width | w3 | 1.1 |
Feeding Strip Length | l3 | 20.45 |
Variables | l2 | w2 | l1 | w1 | d1 | xvia | xport |
---|---|---|---|---|---|---|---|
Lower bound | 5 | 5 | 5 | 5 | 0.5 | −9 | 0.25 |
Upper bound | 18 | 18 | 20 | 20 | 5 | 9 | 25 |
Variables | l2 | w2 | l1 | w1 | d1 | xvia | xport |
---|---|---|---|---|---|---|---|
Stage 1 | 10.14 | 10.63 | 15.97 | 10.79 | 1.21 | −3.02 | 15 |
Stage 2 | 10.07 | 10.01 | 8.41 | 8.40 | 1.68 | −3.51 | 20.45 |
References | Frequency Band (GHz) | Impedance Bandwidth | Antenna Size (Width × Length) | Gain (dBi) | Isolation (dB) |
---|---|---|---|---|---|
[36] | 4.9 to 7.05 | 35% | 0.36 λo × 0.39 λo | 6.0 | NA |
[46] | 4.79 to 5.04 | 5.1% | 0.35 λo × 0.50 λo | 4.5 | NA |
[47] | 2.5 to 2.7 | 7.7% | 0.67 λo × 0.67 λo | 8 | 28 |
[48] | 54 to 67 | 21.5% | 0.62 λo × 0.60 λo | 8 | NA |
[49] | 2.4 to 2.5 | 4.1% | 1.34 λo × 1.14 λo | 10 | NA |
[50] | 2.16 to 2.82 | 26.5% | 0.78 λo × 0.58 λo | 5.5 | 30 |
[51] | 3.73 to 5.73 | 34.9% | 0.52 λo × 0.68 λo | 8.0 | NA |
[52] | 27.0 to 35.0 | 25.8% | 0.8 λo × 0.8 λo | 8 | 18 |
[53] | 4.55 to 6.28 | 31.95% | 0.91 λo × 0.91 λo | 6.2 | NA |
[54] | 3.28 to 3.7 | 11.4% | 0.48 λo × 0.48 λo | 8.0 | 40 |
[55] | 2.31 to 2.81 | 19.0% | 1.19 λo × 1.19 λo | 11 | 35 |
[56] | 23.9 to 72.2 | 100.3% | 0.8 λo × 0.8 λo | 5 | NA |
This work | 4.5 to 8.5 | 61.54% | 0.27 λo × 0.27 λo | 6 | 18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arabi, O.; See, C.H.; Ullah, A.; Ali, N.; Liu, B.; Abd-Alhameed, R.; McEwan, N.J.; Excell, P.S. Compact Wideband MIMO Diversity Antenna for Mobile Applications Using Multi-Layered Structure. Electronics 2020, 9, 1307. https://doi.org/10.3390/electronics9081307
Arabi O, See CH, Ullah A, Ali N, Liu B, Abd-Alhameed R, McEwan NJ, Excell PS. Compact Wideband MIMO Diversity Antenna for Mobile Applications Using Multi-Layered Structure. Electronics. 2020; 9(8):1307. https://doi.org/10.3390/electronics9081307
Chicago/Turabian StyleArabi, Omer, Chan Hwang See, Atta Ullah, Nazar Ali, Bo Liu, Raed Abd-Alhameed, Neil J. McEwan, and Peter S. Excell. 2020. "Compact Wideband MIMO Diversity Antenna for Mobile Applications Using Multi-Layered Structure" Electronics 9, no. 8: 1307. https://doi.org/10.3390/electronics9081307
APA StyleArabi, O., See, C. H., Ullah, A., Ali, N., Liu, B., Abd-Alhameed, R., McEwan, N. J., & Excell, P. S. (2020). Compact Wideband MIMO Diversity Antenna for Mobile Applications Using Multi-Layered Structure. Electronics, 9(8), 1307. https://doi.org/10.3390/electronics9081307