Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication Process
2.2. Measurement Procedure
3. Results
3.1. Diode-Like Threshold Switching Characteristics
3.2. Switching Characteristics, Uniformity and Current Conduction
3.3. C-V Characteristics and Understanding of Switching
3.4. Read Endurance and Data Retention Characteristics
3.5. P/E Endurance Characteristics
3.6. CBRAM Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slesazeck, S.; Mikolajick, T. Nanoscale resistive switching memory devices: A review. Nanotechnology 2019, 30, 352003. [Google Scholar] [CrossRef] [PubMed]
- Saxena, N.; Persch, C.; Wuttig, M.; Manivannan, A. Exploring ultrafast threshold switching in In3SbTe2 phase change memory devices. Sci. Rep. 2019, 9, 19251. [Google Scholar] [CrossRef] [Green Version]
- Baek, E.; Purnama, I.; You, C.Y. Limited stochastic current for energy-optimized switching of spin-Transfer-torque magnetic random-access memory. Phys. Rev. Appl. 2019, 12, 064004. [Google Scholar] [CrossRef]
- Lee, T.Y.; Lee, K.; Lim, H.H.; Song, M.S.; Yang, S.M.; Yoo, H.K.; Suh, D.I.; Zhu, Z.W.; Yoon, A.; MacDonald, M.R.; et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS Appl. Mater. Interfaces 2019, 11, 3142–3149. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.T.; Samanta, S.; Dutta, M.; Ginnaram, S.; Maikap, S. Controlling resistive switching by using an optimized MoS2 interfacial layer and the role of top electrodes on ascorbic acid sensing in TaOx-based RRAM. Langmuir 2019, 35, 3897–3906. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Maikap, S.; Qiu, J.T. Controlling conductive filament and tributyrin sensing using an optimized porous iridium interfacial layer in Cu/Ir/TiNxOy/TiN. Adv. Electron. Mater. 2019, 5, 1800288. [Google Scholar]
- Lanza, M.; Wong, H.S.P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.C.; Larcher, L.; Villena, M.A.; Yang, J.J.; Goux, L.; et al. Recommended methods to study resistive switching devices. Adv. Electron. Mater. 2018, 4, 1800143. [Google Scholar] [CrossRef] [Green Version]
- Jana, D.; Roy, S.; Panja, R.; Dutta, M.; Rahaman, S.Z.; Mahapatra, R.; Maikap, S. Conductive-bridging random access memory: Challenges and opportunity for 3D architecture. Nanoscale Res. Lett. 2015, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, A.; Radhakrishnan, J.; Goux, L.; Donadio, G.L.; Kumbhare, P.; Redolfi, A.; Delhougne, R.; Nyns, L.; Devulder, W.; Witters, T.; et al. Co active electrode enhance CBRAM and scaling potential. In Proceedings of the IEEE International Electron Devices Meeting 2019, San Francisco, CA, USA, 7–11 December 2019. [Google Scholar]
- Woo, H.; Vishwanath, S.K.; Jeon, S. Excellent resistive switching performance of Cu−Se-based atomic switch using lanthanide metal nanolayer at the Cu−Se/Al2O3 interface. ACS Appl. Mater. Interfaces 2018, 10, 8124–8131. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, H.J.; Jung, H.J.; Kim, S.H.; Park, J.Y.; Seok, T.J.; Park, T.J.; Lee, S.W. Highly uniform resistive switching performances using two-dimensional electron gas at a thin-film heterostructure for conductive bridge random access memory. ACS Appl. Mater. Interfaces 2019, 11, 30028–30036. [Google Scholar]
- Sleiman, A.; Sayers, P.W.; Mabrook, M.F. Mechanism of resistive switching in Cu/AlOx/W nonvolatile memory structures. J. Appl. Phys. 2013, 113, 164506. [Google Scholar] [CrossRef]
- Belmonte, A.; Kim, W.; Chan, B.T.; Heylen, N.; Fantini, A.; Houssa, M.; Jurczak, M.; Goux, L. 90 nm W\Al2O3\TiW\Cu 1T1R CBRAM cell showing low-power, fast and disturb-free operation. In Proceedings of the 5th IEEE International Memory Workshop, Monterey, CA, USA, 26–29 May 2013. [Google Scholar]
- Wang, Z.; Rao, M.; Midya, R.; Joshi, S.; Jiang, H.; Lin, P.; Song, W.; Asapu, S.; Zhuo, Y.; Li, C.; et al. Threshold switching of Ag or Cu in dielectrics: Materials, mechanism, and applications. Adv. Funct. Mater. 2018, 28, 1704862. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Kwak, M.; Moon, K.; Choi, W.; Park, J.; Yoo, J.; Song, J.; Lim, S.; Sung, C.; Banerjee, W.; et al. Various threshold switching devices for integrate and fire neuron applications. Adv. Electron. Mater. 2019, 5, 1800866. [Google Scholar] [CrossRef]
- Samanta, S.; Han, K.; Das, S.; Gong, X. Improvement in threshold switching performance using Al₂O₃ interfacial layer in Ag/Al₂O₃/SiOx/W cross-point platform. IEEE Electron Device Lett. 2020, 41, 924–927. [Google Scholar] [CrossRef]
- Roy, A.; Maikap, S.; Tzeng, P.-J.; Qiu, J.T. Sensing characteristics of dopamine using Pt/n-Si structure. Vacuum 2020, 172, 109050. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, H.; Wu, R.; Zhang, Y.; Deng, N.; Yu, Z.; Qian, H. Study of multi-level characteristics for 3D vertical resistive switching memory. Sci. Rep. 2014, 4, 5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.H.; Song, S.J.; Yoo, I.H.; Seok, J.Y.; Yoon, K.J.; Kwon, D.E.; Park, T.H.; Hwang, C.S. Highly uniform, electroforming free, and self-rectifying resistive memory in the Pt/Ta2O5/HfO2/TiN structure. Adv. Funct. Mater. 2014, 24, 5086–5095. [Google Scholar] [CrossRef]
- Panja, R.; Roy, S.; Jana, D.; Maikap, S. Impact of device size and thickness of Al2O3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application. Nanoscale Res. Lett. 2014, 9, 692. [Google Scholar] [CrossRef] [Green Version]
- Jana, D.; Samanta, S.; Roy, S.; Lin, Y.F.; Maikap, S. Observation of resistive switching memory by reducing device size in a new Cr/CrOx/TiOx/TiN structure. Nano–Micro Lett. 2015, 7, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Rubi, D.; Tesler, F.; Alposta, I.; Kalstein, A.; Ghenzi, N.; Marlasca, F.G.; Rozenberg, M.; Levy, P. Two resistive switching regimes in thin film manganite memory devices on silicon. Appl. Phys. Lett. 2013, 103, 163506. [Google Scholar] [CrossRef] [Green Version]
- Sheng, S.D.; Wang, Q.; Chen, D.L.; Dong, R.; Li, X.M.; Zhang, W.Q. Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. Phys. Rev. B 2006, 73, 245427. [Google Scholar] [CrossRef]
- Kamel, F.E.; Gonon, P.; Jomni, F.; Yangui, B. Observation of negative capacitances in metal-insulator-metal devices based on a-BaTiO3: H. Appl. Phys. Lett. 2008, 93, 042904. [Google Scholar] [CrossRef]
- Rahaman, S.Z.; Maikap, S.; Tien, T.C.; Lee, H.Y.; Chen, W.S.; Chen, F.T.; Kao, M.J.; Tsai, M.J. Excellent resistive memory characteristics and switching mechanism using a Ti Nanolayer at the Cu/TaOx interface. Nanoscale Res. Lett. 2012, 7, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; Hurk, J.V.D.; Lentz, F.; Walser, R. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 2013, 4, 1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ershov, E.; Liu, H.C.; Li, L.; Buchanan, M.; Wasilewski, Z.R.; Jonscher, A.K. Negative capacitance effect in semiconductor devices. IEEE Trans. Electron Devices 1998, 45, 2196–2206. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.I.; Chatterjee, K.; Wang, B.; Drapcho, S.; You, L.; Serrao, C.; Bakaul, S.R.; Ramesh, R.; Salahuddin, S. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 2015, 14, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Misawa, T. Impedance of bulk semiconductor in junction diode. J. Phys. Soc. Jpn. 1957, 12, 882–890. [Google Scholar] [CrossRef]
- Gogurla, N.; Mondal, S.P.; Sinha, A.K.; Katiyar, A.K.; Banerjee, W.; Kundu, S.C.; Ray, S.K. Transparent and flexible resistive switching memory devices with a very high on/off ratio using gold nanoparticles embedded in a silk protein matrix. Nanotechnology 2013, 24, 345202. [Google Scholar] [CrossRef]
- Attarimashalkoubeh, B.; Prakash, A.; Lee, S.; Song, J.; Woo, J.; Misha, S.H.; Tamanna, N.; Hwang, H. Effects of Ti buffer layer on retention and electrical characteristics of Cu-based conductive-bridge random access memory (CBRAM). ECS Solid State Lett. 2014, 3, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.H.; Jang, S.K.; Son, H.; Park, J.H.; Lee, S. High performance bi-layer atomic switching devices. Nanoscale 2017, 9, 8373–8379. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Long, S.; Wang, W.; Wang, Q.; Zhang, M.; Zhang, S.; Li, Y.; Zuo, Q.; Yang, J.; et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 2010, 21, 045202. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Han, Y.; Zhou, J.; Zuo, W.; Gao, X.; Han, L.; Pang, X.; Zhang, L.; Liu, Y.; Cao, S. Enhanced switching ratio and long-term stability of flexible RRAM by anchoring polyvinyl ammonium on perovskite grains. ACS Appl. Mater. Interfaces 2019, 11, 35914–35923. [Google Scholar] [CrossRef]
- Kang, D.H.; Choi, W.Y.; Woo, H.; Jang, S.; Park, H.Y.; Shim, J.; Choi, J.W.; Kim, S.; Jeon, S.; Lee, S.; et al. Poly-4-vinylphenol (PVP) and Poly(melamine-co-formaldehyde) (PMF)-based atomic switching device and its application to logic gate circuits with low operating voltage. ACS Appl. Mater. Interfaces 2017, 9, 27073–27082. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, S.H.; Kim, S.G.; Heo, K.; Yu, H.Y. Nitrogen-induced filament confinement technique for a highly reliable hafnium-based electrochemical metallization threshold switch and its application to flexible logic circuits. ACS Appl. Mater. Interfaces 2019, 11, 9182–9189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.; Niu, J.; Liao, L.; Liu, Q.; Xiao, X.; Lv, H.; Long, S.; Banerjee, W.; Li, W.; et al. Confining cation injection to enhance CBRAM performance by nanopore graphene layer. Small 2017, 13, 1603948. [Google Scholar] [CrossRef]
- Roy, S.; Maikap, S.; Sreekanth, G.; Dutta, M.; Jana, D.; Chen, Y.Y.; Yang, J.R. Improved resistive switching phenomena and mechanism using Cu-Al alloy in a new Cu:AlOx/TaOx/TiN structure. J. Alloy. Compd. 2015, 637, 517–523. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, K.-C.; Tsai, T.-M.; Chu, T.-J.; Sze, S.M. Resistance random access memory. Mater. Today 2016, 19, 254–264. [Google Scholar] [CrossRef]
- Ginnaram, S.; Qiu, J.T.; Maikap, S. Role of the Hf/Si interfacial layer on the high performance of MoS2-based conductive bridge RAM for artificial synapse application. IEEE Electron Device Lett. 2020, 41, 709–712. [Google Scholar] [CrossRef]
Device Structure | P/E Voltage (V) | P/E Current (mA) | P/E Pulse Width (µs) | Cycle No. | On/Off Ratio | Retention (s) |
---|---|---|---|---|---|---|
Al/Ag/Al2O3/TiN (This work) | 1.5/−1.2 | 1/5 | 500/500 | 10 | >106 | 3 × 103 |
Cu-Se/Nd/Al2O3/Pt [10] | 1.5/−2 | 0.1/0.1 | 500/500 | 10,000 | 105 | 104 at 85 °C |
Cu/Ti/Al2O3/TiO2 [11] | 7/−9 | 0.1/10 | 5/5 | 107 | 105 | 106 |
Cu/TaOx/Ta2O5-x/Pt [33] | -/- | 0.1/0.1 | - | 3000 | ~105 | >104 at 85 °C |
Cu/HfO2:Cu/Pt [34] | -/- | 1/1 | 0.01/100 | >100 | 107 | 105 |
Al/CH3NH3Pbl3:PVAm.Hl/ITO/Glass [35] | 3/−1 | 100/100 | 104/104 | 500 | >105 | 104 |
Cu/Ti/PVP-PMF/Pt [36] | 1/−0.5 | 1/5 | 104/104 | >103 | >103 | >103at 85 °C |
Ag/HfOx:N/Pt [37] | 2/- | 0.1/- | 50/50 | 106 | 5 × 108 | - |
Cu/NG/HfO2 [38] | 4/−4 | 0.5/0.5 | 0.5/0.5 | 107 | >106 | 2 × 105 at 125 °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senapati, A.; Roy, S.; Lin, Y.-F.; Dutta, M.; Maikap, S. Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM. Electronics 2020, 9, 1106. https://doi.org/10.3390/electronics9071106
Senapati A, Roy S, Lin Y-F, Dutta M, Maikap S. Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM. Electronics. 2020; 9(7):1106. https://doi.org/10.3390/electronics9071106
Chicago/Turabian StyleSenapati, Asim, Sourav Roy, Yu-Feng Lin, Mrinmoy Dutta, and Siddheswar Maikap. 2020. "Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM" Electronics 9, no. 7: 1106. https://doi.org/10.3390/electronics9071106
APA StyleSenapati, A., Roy, S., Lin, Y.-F., Dutta, M., & Maikap, S. (2020). Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM. Electronics, 9(7), 1106. https://doi.org/10.3390/electronics9071106