Improved InGaAs and InGaAs/InAlAs Photoconductive Antennas Based on (111)-Oriented Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
4. Discussion
4.1. Pump-Probe Results.
4.2. Temporal and Spectral Dependences of the Generated THz Field.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vieweg, N.; Rettich, F.; Deninger, A.; Roehle, H.; Dietz, R.; Göbel, T.; Schell, M. Terahertz-time domain spectrometer with 90 dB peak dynamic range. J. Infrared Milli Terahz Waves 2014, 35, 823–832. [Google Scholar] [CrossRef]
- Globisch, B.; Dietz, R.J.B.; Kohlhaas, R.B.; Göbel, T.; Schell, M.; Alcer, D.; Semtsiv, M.; Masselink, W.T. Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor. J. Appl. Phys. 2017, 121, 053102. [Google Scholar] [CrossRef]
- Castro-Camus, E.; Alfaro, M. Photoconductive devices for terahertz pulsed spectroscopy: A review. Photon. Res. 2016, 4, A36. [Google Scholar] [CrossRef]
- Burford, N.M.; El-Shenawee, M.O. Review of terahertz photoconductive antenna technology. Opt. Eng. 2017, 56, 010901. [Google Scholar] [CrossRef]
- Yardimci, N.T.; Jarrahi, M. Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection. Small J. 2018, 14, 1802437. [Google Scholar] [CrossRef]
- Lepeshov, S.; Gorodetsky, A.; Krasnok, A.; Rafailov, E.; Belov, P. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas: Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev. 2017, 11, 1600199. [Google Scholar] [CrossRef] [Green Version]
- Yachmenev, A.E.; Lavrukhin, D.V.; Glinskiy, I.A.; Zenchenko, N.V.; Goncharov, Y.G.; Spektor, I.E.; Khabibullin, R.A.; Otsuji, T.; Ponomarev, D.S. Metallic and dielectric metasurfaces in photoconductive terahertz devices: A review. Opt. Eng. 2019, 59, 061608. [Google Scholar] [CrossRef]
- Petrov, B.; Fekecs, A.; Sarra-Bournet, C.; Ares, R.; Morris, D. Terahertz Emitters and Detectors Made on High-Resistivity InGaAsP:Fe Photoconductors. IEEE Trans. THz Sci. Technol. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Suzuki, M.; Tonouchi, M. Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation. Appl. Phys. Lett. 2005, 86, 051104. [Google Scholar] [CrossRef]
- Kohlhaas, R.B.; Breuer, S.; Nellen, S.; Liebermeister, L.; Schell, M.; Semtsiv, M.P.; Masselink, W.T.; Globisch, B. Photoconductive terahertz detectors with 105 dB peak dynamic range made of rhodium doped InGaAs. Appl. Phys. Lett. 2019, 114, 221103. [Google Scholar] [CrossRef]
- Yardimci, N.T.; Lu, H.; Jarrahi, M. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Appl. Phys. Lett. 2016, 109, 191103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandi, U.; Norman, J.C.; Gossard, A.C.; Lu, H.; Preu, S. 1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth. J. Infrared Milli Terahz Waves 2018, 39, 340–348. [Google Scholar] [CrossRef]
- Künzel, H.; Böttcher, J.; Gibis, R.; Urmann, G. Material properties of GaInAs grown on InP by low-temperature molecular beam epitaxy. Appl. Phys. Lett. 1992, 61, 1347–1349. [Google Scholar] [CrossRef]
- Metzger, R.A. Structural and electrical properties of low temperature GaInAs. J. Vac. Sci. Technol. B 1993, 11, 798. [Google Scholar] [CrossRef]
- Grandidier, B.; Chen, H.; Feenstra, R.M.; McInturff, D.T.; Juodawlkis, P.W.; Ralph, S.E. Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs. Appl. Phys. Lett. 1999, 74, 1439–1441. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.; Gregory, I.S.; Tribe, W.R.; Bradley, I.V.; Evans, M.J.; Linfield, E.H.; Missous, M. Highly resistive annealed low-temperature-grown InGaAs with sub-500fs carrier lifetimes. Appl. Phys. Lett. 2004, 85, 4965–4967. [Google Scholar] [CrossRef]
- Dietz, R.J.B.; Globisch, B.; Roehle, H.; Stanze, D.; Göbel, T.; Schell, M. Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range. Opt. Express 2014, 22, 19411. [Google Scholar] [CrossRef]
- Ponomarev, D.S.; Gorodetsky, A.; Yachmenev, A.E.; Pushkarev, S.S.; Khabibullin, R.A.; Grekhov, M.M.; Zaytsev, K.I.; Khusyainov, D.I.; Buryakov, A.M.; Mishina, E.D. Enhanced terahertz emission from strain-induced InGaAs/InAlAs superlattices. J. Appl. Phys. 2019, 125, 151605. [Google Scholar] [CrossRef]
- Kuenzel, H.; Biermann, K.; Nickel, D.; Elsaesser, T. Low-temperature MBE growth and characteristics of InP-based AlInAs/GaInAs MQW structures. J. Cryst. Growth 2001, 227–228, 284–288. [Google Scholar] [CrossRef]
- Kuznetsov, K.A.; Galiev, G.B.; Kitaeva, G.K.; Kornienko, V.V.; Klimov, E.A.; Klochkov, A.N.; Leontyev, A.A.; Pushkarev, S.S.; Malrsev, P.P. Photoconductive antennas based on epitaxial films In0.5Ga0.5As on GaAs (111)A and (100)A substrates with a metamorphic buffer. Laser Phys. Lett. 2018, 15, 076201. [Google Scholar] [CrossRef]
- Galiev, G.B.; Grekhov, M.M.; Kitaeva, G.K.; Klimov, E.A.; Klochkov, A.N.; Kolentsova, O.S.; Kornienko, V.V.; Kuznetsov, K.A.; Maltsev, P.P.; Pushkarev, S.S. Terahertz-radiation generation in low-temperature InGaAs epitaxial films on (100) and (411) InP substrates. Semiconductors 2017, 51, 310–317. [Google Scholar] [CrossRef]
- Galiev, G.B.; Pushkarev, S.S.; Buriakov, A.M.; Bilyk, V.R.; Mishina, E.D.; Klimov, E.A.; Vasil’evskii, I.S.; Maltsev, P.P. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates. Semiconductors 2017, 51, 503–508. [Google Scholar] [CrossRef]
- Bacher, F.R.; Blakemore, J.S.; Ebner, J.T.; Arthur, J.R. Optical-absorption coefficient of InGaAs/InP. Phys. Rev. B 1988, 37, 2551–2557. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, E.; Schweizer, H.; Streubel, K.; Eisele, H.; Weimann, G. Excitonic transitions and exciton damping processes in InGaAs/InP. J. Appl. Phys. 1986, 59, 2196–2204. [Google Scholar] [CrossRef]
- Globisch, B.; Dietz, R.J.B.; Stanze, D.; Gobel, T.; Schell, M. Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs. Appl. Phys. Lett. 2014, 104, 172103-1-4. [Google Scholar] [CrossRef]
- Shockley, W.; Read, W.T. Statistics of the Recombinations of Holes and Electrons. Phys. Rev. 1952, 87, 835–842. [Google Scholar] [CrossRef]
- Auston, D.H.; Cheung, K.P.; Smith, P.R. Picosecond photoconducting Hertzian dipoles. Phys. Lett. 1984, 45, 284–286. [Google Scholar] [CrossRef]
- Sartorius, B.; Roehle, H.; Kunzel, H.; Boettcher, J.; Schlak, M.; Stanze, D.; Venghaus, H.; Schell, M. All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths. Opt. Express 2008, 16, 9565–9570. [Google Scholar] [CrossRef]
- Dietz, R.J.B.; Globisch, B.; Gerhard, M.; Velauthapillai, A.; Stanze, D.; Roehle, H.; Koch, M.; Gobel, T.; Schell, M. 64 μW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions. Appl. Phys. Lett. 2013, 103, 061103-1-4. [Google Scholar] [CrossRef]
Sample | nS (1012 cm−2) | μ (cm2/Vs) |
---|---|---|
LT-InGaAs/GaAs (100) | 11.9 | 380 |
LT-InGaAs/GaAs (111)A | 20.1 | 110 |
LT-InGaAs/InAlAs/InP (111)A | 1.2 | 30 |
Sample | τ1 (ps) | τ2 (ps) |
---|---|---|
LT-InGaAs/GaAs(100) | 3.0 ± 0.1 | 21.0 ± 0.2 |
LT-InGaAs/GaAs(111)A | 1.9 ± 0.1 | 17.0 ± 0.3 |
LT-InGaAs/InAlAs/InP(111)A | 1.7 ± 0.1 | 14.0 ± 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, K.; Klochkov, A.; Leontyev, A.; Klimov, E.; Pushkarev, S.; Galiev, G.; Kitaeva, G. Improved InGaAs and InGaAs/InAlAs Photoconductive Antennas Based on (111)-Oriented Substrates. Electronics 2020, 9, 495. https://doi.org/10.3390/electronics9030495
Kuznetsov K, Klochkov A, Leontyev A, Klimov E, Pushkarev S, Galiev G, Kitaeva G. Improved InGaAs and InGaAs/InAlAs Photoconductive Antennas Based on (111)-Oriented Substrates. Electronics. 2020; 9(3):495. https://doi.org/10.3390/electronics9030495
Chicago/Turabian StyleKuznetsov, Kirill, Aleksey Klochkov, Andrey Leontyev, Evgeniy Klimov, Sergey Pushkarev, Galib Galiev, and Galiya Kitaeva. 2020. "Improved InGaAs and InGaAs/InAlAs Photoconductive Antennas Based on (111)-Oriented Substrates" Electronics 9, no. 3: 495. https://doi.org/10.3390/electronics9030495
APA StyleKuznetsov, K., Klochkov, A., Leontyev, A., Klimov, E., Pushkarev, S., Galiev, G., & Kitaeva, G. (2020). Improved InGaAs and InGaAs/InAlAs Photoconductive Antennas Based on (111)-Oriented Substrates. Electronics, 9(3), 495. https://doi.org/10.3390/electronics9030495