Comparative Evaluation of Wide-Range Soft-Switching PWM Full-Bridge Modular Multilevel DC–DC Converters
Abstract
:1. Introduction
- (1)
- Based on conventional FB MMDC, this paper proposes eight novel soft-switching solutions;
- (2)
- Through comparative study of them, the two most promising switching solutions are found;
- (3)
- Converter losses, efficiency and costs of the two solutions are analyzed and tested for verification.
2. Wide-Range Soft-Switching PWM FB MMDCs
2.1. IZVS FB MMDCs
2.2. ZVZCS FB MMDCs
3. IZVS FB MMDC with Secondary Modulated
3.1. Operation Principle
3.2. Soft Start
3.3. ZVS Condition of The Primary Switches
3.4. ZCS Condition of The Secondary Switches
3.5. Turn Ratios
3.6. Duty Ratio Loss
3.7. Reduced Filter Size
4. ZVZCS FB MMDC with Secondary Active Reset
4.1. Operation Principle
4.2. Duty Ratio Loss
4.3. ZVS Condition of the Leading Switches
4.4. ZCS Condition of the Lagging Switches
5. Comparative Evaluation
5.1. Specifications
5.2. Duty Ratio Loss
5.3. Soft Switching Load Range
5.4. Relative Current Rating of the Primary Components
5.5. Power Loss Distribution
5.6. Structure and Cost Comparison
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kakigano, H.; Miura, Y.; Ise, T. Low-voltage bipolar-type DC micro grid for super high quality distribution. IEEE Trans. Power Electron. 2010, 25, 3066–3075. [Google Scholar] [CrossRef]
- Anand, S.; Fernandes, B.G. Reduced-order model and stability analysis of low-voltage DC micro grid. IEEE Trans. Ind. Electron. 2013, 60, 5040–5049. [Google Scholar] [CrossRef]
- Lai, J.; Peng, F.Z. Multi Level converters---A new breed of power converters. IEEE Trans. Ind. Appl. 1996, 32, 509–517. [Google Scholar]
- Pinheiro, J.R.; Barbi, I. The three-level ZVS PWM converter—A new concept in high-voltage DC-to-DC conversion. In Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, San Diego, CA, USA, 13 November 1992; pp. 173–178. [Google Scholar]
- Shi, Y.; Gui, X.; Wang, X.; Xi, J.; Yang, X. Large Power Hybrid Soft Switching Mode PWM Full Bridge DC–DC Converter With Minimized Turn-ON and Turn-OFF Switching Loss. IEEE Trans. Power Electron. 2019, 34, 11629–11644. [Google Scholar] [CrossRef]
- Duarte, J.L.; Lokos, J.; vanHorck, F.B.M. Phase-Shift-Controlled Three-Level Converter With Reduced Voltage Stress Featuring ZVS Over the Full Operation Range. IEEE Trans. Power Electron. 2013, 28, 2140–2150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shi, J.; Zhou, L. Wide input-voltage range boost three-level DC–DC converter with quasi-Z source for fuel cell vehicles. IEEE Trans. Power Electron. 2017, 32, 6728–6738. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Xi, J.; Wang, X.; Gui, X.; Yang, X. Large Power ZVZCS Full Bridge Three-Level DC-DC Converter with Wide Operation Range and Its Application in Sapphire Crystal Furnace Power Supply. IEEE J. Emerg. Sel. Top. Power Electron. 2019. [Google Scholar] [CrossRef]
- Liu, F.; Hu, G.; Ruan, X. Three-Phase Three-Level DC/DC Converter for High Input Voltage and High-Power Applications Adopting Symmetrical Duty Cycle Control. IEEE Trans. Power Electron. 2014, 29, 56–65. [Google Scholar] [CrossRef]
- Liu, D.; Deng, F.; Zhang, Q.; Chen, Z. Zero-voltage switching PWM strategy based capacitor current-balancing control for half-bridge three-level DC/DC converter. IEEE Trans. Power Electron. 2018, 33, 357–369. [Google Scholar] [CrossRef]
- Yu, X.; Jin, K.; Liu, Z. Capacitor Voltage Control Strategy for Half-Bridge Three-Level DC/DC Converter. IEEE Trans. Power Electron. 2014, 29, 1557–1561. [Google Scholar] [CrossRef]
- Ruan, X.; Zhou, L.; Yan, Y. Soft-switching PWM three-level converters. IEEE Trans. Power Electron. 2001, 16, 612–622. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, X. Wide Range Soft Switching PWM Three-Level DC–DC Converters Suitable for Industrial Applications. IEEE Trans. Power Electron. 2014, 29, 603–616. [Google Scholar] [CrossRef]
- Shi, Y. Wide Load Range Capacitor Clamped ZVZCS Half Bridge Three-level DC-DC Converter with Two Unsymmetrical Bi-directional Switches. Energies 2019, 12, 2362. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.O.; Moon, G.W. Analysis and Design of a Three-Level LLC Series Resonant Converter for High- and Wide-Input-Voltage Applications. IEEE Trans. Power Electron. 2012, 27, 2966–2979. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, X. Zero-Voltage Switching PWM Three-Level Full-Bridge DC-DC Converter with Wide ZVS Load Range. IEEE Trans. Power Electron. 2013, 28, 4511–4524. [Google Scholar] [CrossRef]
- Liu, F.; Yan, J.; Ruan, X. Zero-Voltage and Zero-Current-Switching PWM Combined Three-Level DC/DC Converter. IEEE Trans. Ind. Electron. 2010, 57, 1644–1654. [Google Scholar]
- Shi, Y.; Yang, X. Wide-Range Soft-Switching PWM Three-Level Combined DC–DC Converter Without Added Primary Clamping Devices. IEEE Trans. Power Electron. 2014, 29, 4511–4524. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, J.K.; Moon, G.W. A Three-Level Converter with Reduced Filter Size Using Two Transformers and Flying Capacitors. IEEE Trans. Power Electron. 2013, 28, 46–53. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Q.; Mei, Y.; Li, C.; Deng, Y.; He, X. Modular Multilevel DC/DC Converters With Phase-Shift Control Scheme for High-Voltage DC-Based Systems. IEEE Trans. Power Electron. 2015, 30, 99–107. [Google Scholar] [CrossRef]
- Li, W.; He, Y.; He, X.; Sun, Y.; Wang, F.; Ma, L. Series asymmetrical half-bridge converters with voltage auto balance for high input-voltage applications. IEEE Trans. Power Electron. Aug. 2013, 28, 3665–3674. [Google Scholar] [CrossRef]
- Sun, T.T.; Chung, H.S.H.; Ioinovici, A. A high-voltage DC-DC converter with Vin/3—Voltage stress on the primary switches. IEEE Trans. Power Electron. 2007, 22, 2124–2137. [Google Scholar]
- Lin, B. Hybrid DC/DC converter based on dual three-level circuit and half-bridge circuit. IET Power Electron. 2016, 9, 817–824. [Google Scholar] [CrossRef]
- Miller, M. New technologies on telecom power conversion. In Proceedings of the INTELEC 95. 17th International Telecommunications Energy Conference, The Hague, Netherlands, 29 October–1 November 1995. [Google Scholar]
- Shi, Y.; Xu, Z. Wide Load Range ZVS Three-level DC-DC Converter: Modular Structure, Redundancy Ability, and Reduced Filters Size. Energies 2019, 12, 3537. [Google Scholar] [CrossRef] [Green Version]
- Ralph, P.; Vladimir, B.; Todd, J.K. ELECTRICAL POWER CONVERTER POWER SUPPLY AND INVERTER WITH SERIES CONNECTED SWITCHING CIRCUITS. United States Patent No. 5546295, 13 August 1996. [Google Scholar]
- Ruan, X.; Lulu, C.; Tao, Z. Control strategy for input-series output paralleled converter. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006. [Google Scholar]
- Kim, J.W.; You, J.S.; Cho, B.H. Modeling, control, and design of input-series-output-parallel-connected converter for high-speed-train power system. IEEE Trans. Ind. Electron. 2001, 48, 536–544. [Google Scholar]
- Shi, J.; Luo, J.; He, X. Common-duty-ratio control of input-series output-parallel connected phase-shift full-bridge DC-DC converter modules. IEEE Trans. Power Electron. 2011, 26, 3318–3329. [Google Scholar] [CrossRef]
- Jin, L.; Duan, S. Comparative analysis of three-level dual active bridge DC–DC converter between reflux-power-optimised and current-stress-optimised phase shift control. IET Power Electron. 2018, 11, 1681–1688. [Google Scholar] [CrossRef]
- Hong, F.; Li, L.; Wu, Y.; Ji, B.; Zhou, Y. 1500 V three-level forward converter with phase-shifted control. IET Power Electron. 2018, 11, 1547–1555. [Google Scholar] [CrossRef]
- Liu, D.; Deng, F.; Gong, Z.; Chen, Z. Input-parallel output-parallel three-level DC/DC converters with interleaving control strategy for minimizing and balancing capacitor ripple currents. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1122–1132. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.K.; Kang, W.; Soin, H.; Xi, Y. Analysis and Design Considerations of a Load and Line Independent Zero Voltage Switching Full Bridge DC/DC Converter Topology. IEEE Trans. Power Electron. 2002, 17, 649–657. [Google Scholar] [CrossRef]
- Ayyanar, R.; Mohan, N. A Novel Full-Bridge DC–DC Converter for Battery Charging Using Secondary-Side Control Combines Soft Switching Over the Full Load Range and Low Magnetics Requirement. IEEE Trans. Ind. Appl. 2001, 37, 559–565. [Google Scholar] [CrossRef]
- Jung-Goo, C.; Ju-Won, B.; Chang-Yong, J.; Geun-Hie, R. Novel Zero-Voltage and Zero-Current-Switching Full-Bridge PWM Converter Using a Simple Auxiliary Circuit. IEEE Trans. Ind. Appl. 1999, 35, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Seok, K.; Kwon, B. An improved zero-voltage and zero-current switching full-bridge PWM converter using a simple resonant circuit. IEEE Trans. Ind. Electron. 2001, 48, 1205–1209. [Google Scholar] [CrossRef]
- Ruan, X.; Yan, Y. A novel zero-voltage and zero-current-switching PWM full bridge converters using two diodes in series with the lagging leg. IEEE Trans. Ind. Electron. 2001, 48, 777–785. [Google Scholar] [CrossRef]
Converter | Duty ratio loss |
---|---|
IZVS_CD | |
IZVS_CAC and IZVS_SMI | |
IZVS_SMM | |
IZVZCS_DCF, IZVZCS_SRC&CAC and IZVZCS_SI | |
IZVZCS_SAC&CAC |
Item | IZVS_CD | IZVS_CAC and IZVS_SMI | IZVS_SMM |
---|---|---|---|
Turn ratios | |||
Item | IZVZCS_DCF, IZVZCS_SRC&CAC and IZVZCS_SAC&CAC | IZVZCS_SI | |
Turn ratios |
Item | IZVS_CD | IZVS_CAC | IZVS_SMI | IZVS_SMM |
---|---|---|---|---|
0.967 | 0.996 | 1 | 1 | |
Item | IZVZCS_DCF | IZVZCS_SRC&CAC | IZVZCS_SAC&CAC | IZVZCS_SI |
0.996 | 0.996 | 0.996 | 0.996 |
Item | IZVS_CD | IZVS_CAC | IZVS_SMI | IZVS_SMM |
---|---|---|---|---|
0.76 | 1 | 1 | 1 | |
Item | IZVZCS_DCF | IZVZCS_SRC&CAC | IZVZCS_SAC&CAC | IZVZCS_SI |
1 | 1 | 1 | 1 |
Item | ||||
---|---|---|---|---|
Switches | Added diodes | Transformer | Added inductor | |
IZVS_CD | 1.1 | 0.55 | 1.1 | 1.1 |
IZVS_CAC | 1.05 | None | 1.05 | 0.21 |
IZVS_SMI | 1.89 | None | 1.3 | None |
IZVS_SMM | 1.04 | None | 1.09 | None |
IZVZCS_DCF | 1.08 | 0.54 | 1.08 | None |
IZVZCS_SAC&CAC | 1.02 | None | 1.02 | None |
IZVZCS_SRC&CAC | 1.08 | None | 1.08 | None |
IZVZCS_SI | 1.08 | None | 1.08 | 1.08 |
Item | ||||||||
---|---|---|---|---|---|---|---|---|
Primary | Secondary | Primary | Secondary | |||||
IZVS_CD | 73.5 | 49.3 | 23.3 | 15.5 | 18.1 | 20.1 | 17.8 | 19.8 |
IZVS_CAC | 57.6 | 38.6 | 23.3 | 15.5 | 14.5 | 16.1 | 17.8 | 19.8 |
IZVS_SMI | 79.1 | 53.1 | 23.3 | 15.5 | 21.2 | 23.6 | 17.8 | 19.8 |
IZVS_SMM | 40.4 | 28 | 24.6 | 16.5 | 9.6 | 10.7 | 19.6 | 21.8 |
IZVZCS_DCF | 71.1 | 47.4 | 23.3 | 15.5 | 13.9 | 15.4 | 17.8 | 19.8 |
IZVZCS_SAC&CAC | 47.3 | 36.4 | 24.6 | 16.5 | 9.6 | 10.7 | 18.1 | 20.1 |
IZVZCS_SRC&CAC | 67.5 | 45 | 23.3 | 15.5 | 10.4 | 11.6 | 18.5 | 20.5 |
IZVZCS_SI | 74.3 | 49.5 | 23.3 | 15.5 | 13.0 | 14.4 | 17.8 | 19.8 |
Converter | Added primary components | Added secondary components |
---|---|---|
IZVS_CD | N inductors and 2N diodes | None |
IZVS_CAC | N inductors and N capacitors | None |
IZVS_SMI | None | None |
IZVS_SMM | None | 2 MOSFETs and 2 diodes |
IZVZCS_DCF | 2N diodes | None |
IZVZCS_SAC&CAC | None | 1 MOSFET and 1 capacitors |
IZVZCS_SRC&CAC | None | 2 diodes and 1 capacitors |
IZVZCS_SI | N inductors | None |
Converter | Added components | Added cost | Ratio of the total cost |
---|---|---|---|
IZVS_CD | 2 inductors and 4 diodes | $150 | 8.8% |
IZVS_CAC | 2 inductors and 2 capacitors | $60 | 3.3% |
IZVS_SMI | None | None | None |
IZVS_SMM | 2 MOSFETs, 2 diodes and corresponding drive circuits | $80 | 4.4% |
IZVZCS_DCF | 4 diodes | $120 | 6.7% |
IZVZCS_SAC&CAC | 1 MOSFETs, 1 diodes and corresponding drive circuits | $50 | 2.8% |
IZVZCS_SRC&CAC | 2 diodes and 1 capacitors | $45 | 2.6% |
IZVZCS_SI | 2 inductors | $30 | 1.7% |
Item | Parameters |
---|---|
Input | 100–300 V |
Output | 50 V/20 A |
Switching frequency | 20 kHz |
I GBT | G60N100 |
CBL1 and CBL2 | 100 µF |
kT1 and kT2 (IZVS_SMM) | kT1 = 41, kT2 = 16 |
kT (IZVZCS_SAC&CAC) | 11.7 |
kT (Figure 1) | 11.4 |
Sse1 and Sse2 (IZVS_SMM)) | IPB180N04S4 4 |
Sse (IZVZCS_SAC&CAC) | IPB180N04S4 1 |
Cse (IZVZCS_SAC&CAC) | 3 µF/200 A |
Rectifier diodes | MBR30100 |
Lo | 7 µH |
Co | 1000 µF |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Li, X.; Dang, H.; Shi, Y. Comparative Evaluation of Wide-Range Soft-Switching PWM Full-Bridge Modular Multilevel DC–DC Converters. Electronics 2020, 9, 231. https://doi.org/10.3390/electronics9020231
Chen J, Li X, Dang H, Shi Y. Comparative Evaluation of Wide-Range Soft-Switching PWM Full-Bridge Modular Multilevel DC–DC Converters. Electronics. 2020; 9(2):231. https://doi.org/10.3390/electronics9020231
Chicago/Turabian StyleChen, Jingwen, Xiaofei Li, Hongshe Dang, and Yong Shi. 2020. "Comparative Evaluation of Wide-Range Soft-Switching PWM Full-Bridge Modular Multilevel DC–DC Converters" Electronics 9, no. 2: 231. https://doi.org/10.3390/electronics9020231
APA StyleChen, J., Li, X., Dang, H., & Shi, Y. (2020). Comparative Evaluation of Wide-Range Soft-Switching PWM Full-Bridge Modular Multilevel DC–DC Converters. Electronics, 9(2), 231. https://doi.org/10.3390/electronics9020231