VCC-DASH: A Video Content Complexity-Aware DASH Bitrate Adaptation Strategy
Abstract
:1. Introduction
2. Background and Key Issues
2.1. The Analysis and Measurement of Video Content Complexity
2.2. Tagging VCC for DASH Segments
3. Proposed Algorithm
3.1. QoE Utility Function
3.2. QoE Optimization Model
3.3. VCC-DASH Implement
4. Performance Evaluation
4.1. Simulation Scenarios Setup
4.2. Simulation Results Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dubin, R.; Dvir, A.; Pele, O.; Hadar, O.; Katz, I.; Mashiach, O. Adaptation logic for HTTP dynamic adaptive streaming using geo-predictive crowdsourcing for mobile users. Multimedia Syst. 2018, 24, 19–31. [Google Scholar] [CrossRef] [Green Version]
- ISO/IEC 23009-1:2012: Information technology-dynamic adaptive streaming over http (dash)-part 1: Media presentation description and segment formats. Available online: https://www.iso.org/standard/75485.html (accessed on 29 January 2020).
- Stockhammer, T. Dynamic adaptive streaming over HTTP--: Standards and design principles. In Proceedings of the Second Annual ACM Conference on Multimedia Systems, Santa Clara, CA, USA, 23–25 February 2011; pp. 133–144. [Google Scholar]
- Miller, K.; Quacchio, E.; Gennari, G.; Wolisz, A. Adaptation algorithm for adaptive streaming over HTTP. In Proceedings of the 2012 19th International Packet Video Workshop (PV), Munich, Germany, 10–11 May 2012; pp. 173–178. [Google Scholar]
- Liu, C.; Bouazizi, I.; Gabbouj, M. Rate adaptation for adaptive HTTP streaming. In Proceedings of the Second Annual ACM Conference on Multimedia Systems, Santa Clara, CA, USA, 23–25 February 2011; pp. 169–174. [Google Scholar]
- Müller, C.; Lederer, S.; Timmerer, C. An evaluation of dynamic adaptive streaming over HTTP in vehicular environments. In Proceedings of the 4th Workshop on Mobile Video, Chapel Hill, NC, USA, 22–24 February 2012; pp. 37–42. [Google Scholar]
- Huang, T.Y.; Johari, R.; McKeown, N.; Trunnell, M.; Waston, M. A buffer-based approach to rate adaptation: Evidence from a large video streaming service. ACM SIGCOMM Comput. Commun. Rev. 2015, 44, 187–198. [Google Scholar] [CrossRef]
- Kumar, V.P.M.; Mahapatra, S. Quality of Experience Driven Rate Adaptation for Adaptive HTTP Streaming. IEEE Trans. Broadcast. 2018, 64, 602–620. [Google Scholar] [CrossRef]
- Porter, T.; Peng, X.-H. An objective approach to measuring video playback quality in lossy networks using TCP. IEEE Commun. Lett. 2011, 15, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Klaue, J.; Rathke, B.; Wolisz, A. Evalvid–A framework for video transmission and quality evaluation. In Lecture Notes in Computer Science, Proceedings of the 13th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, Urbana, IL, USA, 2–5 September 2003; Kemper, P., Sanders, W.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 255–272. [Google Scholar]
- Kim, H.J.; Choi, S.G. A study on a QoS/QoE correlation model for QoE evaluation on IPTV service. In Proceedings of the 12th International Conference on Advanced Communication Technology (ICACT), Phoenix Park, Korea, 7–10 February 2010; pp. 1377–1382. [Google Scholar]
- Hu, J.; Wildfeuer, H. Use of content complexity factors in video over IP quality monitoring. In Proceedings of the 2009 International Workshop on Quality of Multimedia Experience, San Diego, CA, USA, 29–31 July 2009; pp. 216–221. [Google Scholar]
- Richardson, I.E.G. H.264 and MPEG4 video compression; John Wiley & Sons: Hoboken, NJ, USA, 2003; Chapter 10. [Google Scholar]
- Mizoguchif, Y.; Kurosaka, T.; Bandai, M. A QoE-aware quality selection controller for HTTP adaptive streaming. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, Y.; Xie, X.; Wu, D.; Chen, M.; Ngai, E. Buffer state is enough: Simplifying the design of QoE-aware HTTP adaptive video streaming. IEEE Trans. Broadcast. 2018, 64, 590–601. [Google Scholar] [CrossRef]
- EvalVid—A Video Quality Evaluation Tool-set. Available online: https://www.tkn.tu-berlin.de/research/evalvid (accessed on 26 January 2020).
- Lekharu, A.; Kumar, S.; Sur, A.; Sarkar, A. A QoE aware LSTM based bit-rate prediction model for DASH video. In Proceedings of the 10th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 3–7 January 2018; pp. 392–395. [Google Scholar]
Video | Akiyo | Container | Foreman | Coastguard | Soccer | Football |
---|---|---|---|---|---|---|
content complexity | 0.70 | 0.65 | 0.75 | 0.80 | 0.90 | 0.90 |
VCC | Complexity | Video |
---|---|---|
1 | Low | Container, Hall-Monitor, Akyio, News, Mother and Daughter |
2 | Middle | Coastguard, Foreman, Silent, Sign-Irene, Tempete |
3 | High | Carphone, Football, Soccer, Stephan, Rugby |
VCCi | aVCCi | bVCCi |
---|---|---|
1 | 0.4883 | 1.4461 |
2 | 0.872 | −1.1834 |
3 | 1.2132 | −3.598 |
Parameter | Value |
---|---|
Segment numbers, n | 100 |
Buffer size | 20 |
The duration of the segment, | 2s |
The lower bound of the buffered segments, | 3 |
The upper bound of the buffered segments, | 15 |
The segment number of bitrate surplus, ω | 20 |
The complexity levels of the segments, VCC | 1,2,3 |
The loss weight of video bitrate switching, γ1 | 0.2 |
The loss weight of the switching range, γ2 | 1 |
The available bitrate set, | (90, 180, 360, 540, 720, 1080) Kbps |
The maximized switching range, | 11 |
VCC-DASH | 422.44 | 427.90 | 6.25 | 12 | 15 |
LIU’s | 408.55 | 414.75 | 6.20 | 11 | 14 |
VCC-DASH | 422.44 | 427.90 | 6.25 | 12 | 15 |
LIU’s | 327.32 | 333.57 | 6.25 | 12 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Zhang, M.; Wang, J.; Han, S.; Chen, X.; Yang, X. VCC-DASH: A Video Content Complexity-Aware DASH Bitrate Adaptation Strategy. Electronics 2020, 9, 230. https://doi.org/10.3390/electronics9020230
Duan J, Zhang M, Wang J, Han S, Chen X, Yang X. VCC-DASH: A Video Content Complexity-Aware DASH Bitrate Adaptation Strategy. Electronics. 2020; 9(2):230. https://doi.org/10.3390/electronics9020230
Chicago/Turabian StyleDuan, Juzheng, Min Zhang, Jing Wang, Shuai Han, Xun Chen, and Xiaolong Yang. 2020. "VCC-DASH: A Video Content Complexity-Aware DASH Bitrate Adaptation Strategy" Electronics 9, no. 2: 230. https://doi.org/10.3390/electronics9020230
APA StyleDuan, J., Zhang, M., Wang, J., Han, S., Chen, X., & Yang, X. (2020). VCC-DASH: A Video Content Complexity-Aware DASH Bitrate Adaptation Strategy. Electronics, 9(2), 230. https://doi.org/10.3390/electronics9020230