Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID
Abstract
:1. Introduction
2. Employed Optimization Technique
3. Results and Discussion
3.1. Impedance Measurement
3.2. Antenna Gain Pattern Measurement
3.3. Design Considerations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karnaushenko, D.D.; Karnaushenko, D.; Makarov, D.; Schmidt, O.G. Compact helical antenna for smart implant applications. NPG Asia Mater. 2015, 7, e188. [Google Scholar] [CrossRef] [Green Version]
- Luk, K.M.; Zhou, S.F.; Li, Y.J.; Wu, F.; Ng, K.B.; Chan, C.H.; Pang, S.W. A microfabricated low-profile wideband antenna array for terahertz communications. Sci. Rep. 2017, 7, 1268. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, J.; Chen, H.; Huangfu, J.; Ran, L. High-directivity antenna with small antenna aperture. Appl. Phys. Lett. 2009, 95, 193506. [Google Scholar] [CrossRef]
- Nan, T.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.; Chen, H.; Sun, N.; Wei, S.; Wang, Z.; Li, M.; et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 2017, 8, 296. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.; Abdullah, A.S.; Parchin, N.O.; Abd-Alhameed, R.A.; Noras, J.M. A new polarization-reconfigurable antenna for 5G applications. Electronics 2018, 7, 293. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.; Park, I.; Choo, H. Design of a circularly polarized tag antenna for increased reading range. IEEE Trans. Antennas Propag. 2009, 57, 3418–3422. [Google Scholar] [CrossRef]
- Zhang, J.; Long, Y. A Miniaturized via-patch loaded dual-layer rfid tag antenna for metallic object applications. IEEE Antennas Wirel. Propag. Lett. 2013. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.S.; Ding, X.; Wang, B.Z. Antenna radiation characteristics optimization by a hybrid topological method. IEEE Trans. Antennas Propag. 2017, 65, 2843–2854. [Google Scholar] [CrossRef]
- Thors, B.; Steyskal, H.; Holter, H. F Broad-band fragmented aperture phased array element design using genetic algorithms. IEEE Trans. Antennas Propag. 2005, 53, 3280–3287. [Google Scholar] [CrossRef]
- Steyskal, H.; Hanna, D. Design aspects of fragmented patch elements for phased arrays. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Honolulu, HI, USA, 10 June 2007; pp. 141–144. [Google Scholar] [CrossRef]
- Herscovici, N.; Ginn, J.; Donisi, T.; Tomasic, B. A fragmented aperture-coupled microstrip antenna. In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI, San Diego, CA, USA, 5–11 July 2008; pp. 25–28. [Google Scholar] [CrossRef]
- Gregory, M.D.; Werner, D.H. Optimization of broadband antenna elements in a periodic planar infinite array. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Honolulu, HI, USA, 1–5 June 2009; pp. 8–11. [Google Scholar] [CrossRef]
- Ellgardt, A.; Persson, P. Characteristics of a broad-band wide-scan fragmented aperture phased array antenna. In Proceedings of the 2006 First European Conference on Antennas and Propagation, Nice, France, 6–10 November 2006; pp. 6–10. [Google Scholar] [CrossRef]
- Masotti, D.; Costanzo, A.; Del Prete, M.; Rizzoli, V. Genetic-based design of a tetra-band high-efficiency radio-frequency energy harvesting system. IET Microwaves Antennas Propag. 2013, 7, 1254–1263. [Google Scholar] [CrossRef]
- Ehrenborg, C.; Gustafsson, M. Physical bounds and automatic design of antennas above ground planes. In Proceedings of the 2016 URSI International Symposium on Electromagnetic Theory, EMTS, Espoo, Finland, 14–18 August 2016; pp. 233–235. [Google Scholar] [CrossRef]
- Kiesel, G.; Cook, K. Optimization of pixelated antennas. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Vancouver, BC, Canada, 19–24 July 2015; pp. 1328–1329. [Google Scholar] [CrossRef]
- Yang, C.; Wang, G.; Ding, D. Design of tiny versatile UHF RFID tags of fragment-type structure. Prog. Electromagn. Res. M 2014, 37, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Zang, X.; Wang, C.; Yang, C. Design of a fragment-type UHF RFID tag integrated into printed circuit board. Microw. Opt. Technol. Lett. 2019, 61, 676–681. [Google Scholar] [CrossRef]
- Jayasinghe, J.W.; Anguera, J.; Uduwawala, D.N. A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization. Prog. Electromagn. Res. M 2012, 27, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Lamsalli, M.; El Hamichi, A.; Boussouis, M.; Touhami, N.A.; Elhamadi, T.E. Genetic algorithm optimization for microstrip patch antenna miniaturization. Prog. Electromagn. Res. Lett. 2016, 60, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, J.M.; Uduwawala, D.N. Design of broadband patch antennas using genetic algorithm optimization. In Proceedings of the 5th International Conference on Industrial and Information Systems, ICIIS, Mangalore, India, 29 July–1 August 2010; pp. 60–65. [Google Scholar] [CrossRef]
- Ethier, J.L.; McNamara, D.A. Antenna shape synthesis without prior specification of the feedpoint locations. IEEE Trans. Antennas Propag. 2014, 62, 4919–4934. [Google Scholar] [CrossRef]
- Thiel, D.V.; Shahpari, M.; Hettenhausen, J.; Lewis, A. Point contacts in modeling conducting 2-D planar structures. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 978–981. [Google Scholar] [CrossRef] [Green Version]
- MathWorks. Genetic Algorithm and Direct Search Toolbox; The MathWorks Inc.: Natick, MA, USA, 2004. [Google Scholar]
- EPCglobal. EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID; EPCglobal Inc.: Brussels, Belgium, 2013. [Google Scholar] [CrossRef]
- Kotani, K.; Sasaki, A.; Ito, T.; Member, S. High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs. IEEE J. Solid-State Circuits 2009, 44, 3011–3018. [Google Scholar] [CrossRef]
- Rogers Corporation’s Advanced Circuit Materials Division. RO4000® Series High Frequency Circuit Materials Some Typical Applications: #92-004; Rogers Corporation’s Advanced Circuit Materials Division: Chandler, AZ, USA, 2006; pp. 1–4. [Google Scholar]
- Qing, X.; Khan Goh, C.; Ning Chen, Z. Impedance Characterization of RFID Tag Antennas and Application in Tag Co-Design. IEEE Trans. Microw. Theory Tech. 2009, 57, 1268–1274. [Google Scholar] [CrossRef]
- Thomas, A. Milligan. Modern Antenna Design; McGraw-Hill, Inc. Professional Book Group: New York, NY, USA, 1985; p. 408. [Google Scholar]
- Wheeler, H.A. Small Antennas. IEEE Trans. Antennas Propag. 1975, 23, 462–469. [Google Scholar] [CrossRef]
- Erman, F.; Hanafi, E.; Lim, E.H.; Mahyiddin, W.A.W.M.; Harun, S.W.; Umair, H.; Soboh, R.; Makmud, M.Z.H. Miniature compact folded dipole for metal mountable UHF RFID tag antenna. Electronics 2019, 8, 713. [Google Scholar] [CrossRef] [Green Version]
- Tatomirescu, A. Compact UHF RFID Antenna for On-body Applications. In Proceedings of the 13th European Conference on Antennas and Propagation, EuCAP, Krakow, Poland, 31 March–5 April 2019. [Google Scholar]
- Rokunuzzaman, M.; Islam, M.T.; Rowe, W.S.; Kibria, S.; Singh, M.J.; Misran, N. Design of a miniaturized meandered line antenna for UHF RFID tags. PLoS ONE 2016, 11, e0161293. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ukkonen, L.; Bjöninen, T.; Virkki, J. Comparison of E-textile dipole and folded dipole antennas for wearable passive UHF RFID tags. Prog. Electromagn. Res. Symp. 2017. [Google Scholar] [CrossRef]
Antenna | [MHz] | [dB] | [MHz] | [dB] | ffl [%] | [%] |
---|---|---|---|---|---|---|
Antenna A | 861.5 | −16.06 | 874.9 | −17.21 | 0.79 | 0.75 |
Antenna B | 863 | −15.87 | 875.1 | −38.08 | 0.81 | 0.58 |
Antenna C | 873.5 | −15.99 | 878.8 | −8.32 | 1.15 | 0.63 |
Antenna | [dBi] | [dBi] | MAE [dB] | MAE [dB] | MAE [dB] |
---|---|---|---|---|---|
Antenna A | 1.3 | 1.49 | 1.32 | 0.92 | 1.03 |
Antenna B | −1.37 | −0.11 | 0.96 | 0.59 | 0.91 |
Antenna C | −3.9 | −2.02 | 0.87 | 1.35 | 1.3 |
Antenna | Material | X × Y [cm] | Dn [%] | Gain [dBi] | Freq. [MHz] |
---|---|---|---|---|---|
[33] (*) | FR4 | 7.77 × 3.55 | 26.22 | 1.75 | 920 |
[34] (*) | EPDM | 4 × 4 | 16.23 | −13.8 | 860 |
[31] | PTFE | 8.28 × 1.95 | 24.59 | −0.53 | 866.5 |
[32] (x) | FR4 | 8 × 5 | 27.06 | −1.6 | 860 |
A | RO4350B | 6 × 6 | 24.57 | 1.4 | 868 |
B | RO4350B | 4 × 4 | 16.38 | −1.4 | 868 |
C | RO4350B | 3 × 3 | 12.28 | −3.9 | 868 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mair, D.; Renzler, M.; Pfeifhofer, A.; Ußmüller, T. Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID. Electronics 2020, 9, 1856. https://doi.org/10.3390/electronics9111856
Mair D, Renzler M, Pfeifhofer A, Ußmüller T. Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID. Electronics. 2020; 9(11):1856. https://doi.org/10.3390/electronics9111856
Chicago/Turabian StyleMair, Dominik, Michael Renzler, Alexander Pfeifhofer, and Thomas Ußmüller. 2020. "Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID" Electronics 9, no. 11: 1856. https://doi.org/10.3390/electronics9111856
APA StyleMair, D., Renzler, M., Pfeifhofer, A., & Ußmüller, T. (2020). Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID. Electronics, 9(11), 1856. https://doi.org/10.3390/electronics9111856