Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID
Abstract
1. Introduction
2. Employed Optimization Technique
3. Results and Discussion
3.1. Impedance Measurement
3.2. Antenna Gain Pattern Measurement
3.3. Design Considerations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karnaushenko, D.D.; Karnaushenko, D.; Makarov, D.; Schmidt, O.G. Compact helical antenna for smart implant applications. NPG Asia Mater. 2015, 7, e188. [Google Scholar] [CrossRef]
- Luk, K.M.; Zhou, S.F.; Li, Y.J.; Wu, F.; Ng, K.B.; Chan, C.H.; Pang, S.W. A microfabricated low-profile wideband antenna array for terahertz communications. Sci. Rep. 2017, 7, 1268. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, J.; Chen, H.; Huangfu, J.; Ran, L. High-directivity antenna with small antenna aperture. Appl. Phys. Lett. 2009, 95, 193506. [Google Scholar] [CrossRef]
- Nan, T.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.; Chen, H.; Sun, N.; Wei, S.; Wang, Z.; Li, M.; et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 2017, 8, 296. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.; Abdullah, A.S.; Parchin, N.O.; Abd-Alhameed, R.A.; Noras, J.M. A new polarization-reconfigurable antenna for 5G applications. Electronics 2018, 7, 293. [Google Scholar] [CrossRef]
- Cho, C.; Park, I.; Choo, H. Design of a circularly polarized tag antenna for increased reading range. IEEE Trans. Antennas Propag. 2009, 57, 3418–3422. [Google Scholar] [CrossRef]
- Zhang, J.; Long, Y. A Miniaturized via-patch loaded dual-layer rfid tag antenna for metallic object applications. IEEE Antennas Wirel. Propag. Lett. 2013. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.S.; Ding, X.; Wang, B.Z. Antenna radiation characteristics optimization by a hybrid topological method. IEEE Trans. Antennas Propag. 2017, 65, 2843–2854. [Google Scholar] [CrossRef]
- Thors, B.; Steyskal, H.; Holter, H. F Broad-band fragmented aperture phased array element design using genetic algorithms. IEEE Trans. Antennas Propag. 2005, 53, 3280–3287. [Google Scholar] [CrossRef]
- Steyskal, H.; Hanna, D. Design aspects of fragmented patch elements for phased arrays. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Honolulu, HI, USA, 10 June 2007; pp. 141–144. [Google Scholar] [CrossRef]
- Herscovici, N.; Ginn, J.; Donisi, T.; Tomasic, B. A fragmented aperture-coupled microstrip antenna. In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI, San Diego, CA, USA, 5–11 July 2008; pp. 25–28. [Google Scholar] [CrossRef]
- Gregory, M.D.; Werner, D.H. Optimization of broadband antenna elements in a periodic planar infinite array. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Honolulu, HI, USA, 1–5 June 2009; pp. 8–11. [Google Scholar] [CrossRef]
- Ellgardt, A.; Persson, P. Characteristics of a broad-band wide-scan fragmented aperture phased array antenna. In Proceedings of the 2006 First European Conference on Antennas and Propagation, Nice, France, 6–10 November 2006; pp. 6–10. [Google Scholar] [CrossRef]
- Masotti, D.; Costanzo, A.; Del Prete, M.; Rizzoli, V. Genetic-based design of a tetra-band high-efficiency radio-frequency energy harvesting system. IET Microwaves Antennas Propag. 2013, 7, 1254–1263. [Google Scholar] [CrossRef]
- Ehrenborg, C.; Gustafsson, M. Physical bounds and automatic design of antennas above ground planes. In Proceedings of the 2016 URSI International Symposium on Electromagnetic Theory, EMTS, Espoo, Finland, 14–18 August 2016; pp. 233–235. [Google Scholar] [CrossRef]
- Kiesel, G.; Cook, K. Optimization of pixelated antennas. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Vancouver, BC, Canada, 19–24 July 2015; pp. 1328–1329. [Google Scholar] [CrossRef]
- Yang, C.; Wang, G.; Ding, D. Design of tiny versatile UHF RFID tags of fragment-type structure. Prog. Electromagn. Res. M 2014, 37, 161–173. [Google Scholar] [CrossRef]
- Tao, Y.; Zang, X.; Wang, C.; Yang, C. Design of a fragment-type UHF RFID tag integrated into printed circuit board. Microw. Opt. Technol. Lett. 2019, 61, 676–681. [Google Scholar] [CrossRef]
- Jayasinghe, J.W.; Anguera, J.; Uduwawala, D.N. A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization. Prog. Electromagn. Res. M 2012, 27, 255–269. [Google Scholar] [CrossRef]
- Lamsalli, M.; El Hamichi, A.; Boussouis, M.; Touhami, N.A.; Elhamadi, T.E. Genetic algorithm optimization for microstrip patch antenna miniaturization. Prog. Electromagn. Res. Lett. 2016, 60, 113–120. [Google Scholar] [CrossRef]
- Jayasinghe, J.M.; Uduwawala, D.N. Design of broadband patch antennas using genetic algorithm optimization. In Proceedings of the 5th International Conference on Industrial and Information Systems, ICIIS, Mangalore, India, 29 July–1 August 2010; pp. 60–65. [Google Scholar] [CrossRef]
- Ethier, J.L.; McNamara, D.A. Antenna shape synthesis without prior specification of the feedpoint locations. IEEE Trans. Antennas Propag. 2014, 62, 4919–4934. [Google Scholar] [CrossRef]
- Thiel, D.V.; Shahpari, M.; Hettenhausen, J.; Lewis, A. Point contacts in modeling conducting 2-D planar structures. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 978–981. [Google Scholar] [CrossRef]
- MathWorks. Genetic Algorithm and Direct Search Toolbox; The MathWorks Inc.: Natick, MA, USA, 2004. [Google Scholar]
- EPCglobal. EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID; EPCglobal Inc.: Brussels, Belgium, 2013. [Google Scholar] [CrossRef]
- Kotani, K.; Sasaki, A.; Ito, T.; Member, S. High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs. IEEE J. Solid-State Circuits 2009, 44, 3011–3018. [Google Scholar] [CrossRef]
- Rogers Corporation’s Advanced Circuit Materials Division. RO4000® Series High Frequency Circuit Materials Some Typical Applications: #92-004; Rogers Corporation’s Advanced Circuit Materials Division: Chandler, AZ, USA, 2006; pp. 1–4. [Google Scholar]
- Qing, X.; Khan Goh, C.; Ning Chen, Z. Impedance Characterization of RFID Tag Antennas and Application in Tag Co-Design. IEEE Trans. Microw. Theory Tech. 2009, 57, 1268–1274. [Google Scholar] [CrossRef]
- Thomas, A. Milligan. Modern Antenna Design; McGraw-Hill, Inc. Professional Book Group: New York, NY, USA, 1985; p. 408. [Google Scholar]
- Wheeler, H.A. Small Antennas. IEEE Trans. Antennas Propag. 1975, 23, 462–469. [Google Scholar] [CrossRef]
- Erman, F.; Hanafi, E.; Lim, E.H.; Mahyiddin, W.A.W.M.; Harun, S.W.; Umair, H.; Soboh, R.; Makmud, M.Z.H. Miniature compact folded dipole for metal mountable UHF RFID tag antenna. Electronics 2019, 8, 713. [Google Scholar] [CrossRef]
- Tatomirescu, A. Compact UHF RFID Antenna for On-body Applications. In Proceedings of the 13th European Conference on Antennas and Propagation, EuCAP, Krakow, Poland, 31 March–5 April 2019. [Google Scholar]
- Rokunuzzaman, M.; Islam, M.T.; Rowe, W.S.; Kibria, S.; Singh, M.J.; Misran, N. Design of a miniaturized meandered line antenna for UHF RFID tags. PLoS ONE 2016, 11, e0161293. [Google Scholar] [CrossRef]
- Chen, X.; Ukkonen, L.; Bjöninen, T.; Virkki, J. Comparison of E-textile dipole and folded dipole antennas for wearable passive UHF RFID tags. Prog. Electromagn. Res. Symp. 2017. [Google Scholar] [CrossRef]
Antenna | [MHz] | [dB] | [MHz] | [dB] | ffl [%] | [%] |
---|---|---|---|---|---|---|
Antenna A | 861.5 | −16.06 | 874.9 | −17.21 | 0.79 | 0.75 |
Antenna B | 863 | −15.87 | 875.1 | −38.08 | 0.81 | 0.58 |
Antenna C | 873.5 | −15.99 | 878.8 | −8.32 | 1.15 | 0.63 |
Antenna | [dBi] | [dBi] | MAE [dB] | MAE [dB] | MAE [dB] |
---|---|---|---|---|---|
Antenna A | 1.3 | 1.49 | 1.32 | 0.92 | 1.03 |
Antenna B | −1.37 | −0.11 | 0.96 | 0.59 | 0.91 |
Antenna C | −3.9 | −2.02 | 0.87 | 1.35 | 1.3 |
Antenna | Material | X × Y [cm] | Dn [%] | Gain [dBi] | Freq. [MHz] |
---|---|---|---|---|---|
[33] (*) | FR4 | 7.77 × 3.55 | 26.22 | 1.75 | 920 |
[34] (*) | EPDM | 4 × 4 | 16.23 | −13.8 | 860 |
[31] | PTFE | 8.28 × 1.95 | 24.59 | −0.53 | 866.5 |
[32] (x) | FR4 | 8 × 5 | 27.06 | −1.6 | 860 |
A | RO4350B | 6 × 6 | 24.57 | 1.4 | 868 |
B | RO4350B | 4 × 4 | 16.38 | −1.4 | 868 |
C | RO4350B | 3 × 3 | 12.28 | −3.9 | 868 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mair, D.; Renzler, M.; Pfeifhofer, A.; Ußmüller, T. Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID. Electronics 2020, 9, 1856. https://doi.org/10.3390/electronics9111856
Mair D, Renzler M, Pfeifhofer A, Ußmüller T. Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID. Electronics. 2020; 9(11):1856. https://doi.org/10.3390/electronics9111856
Chicago/Turabian StyleMair, Dominik, Michael Renzler, Alexander Pfeifhofer, and Thomas Ußmüller. 2020. "Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID" Electronics 9, no. 11: 1856. https://doi.org/10.3390/electronics9111856
APA StyleMair, D., Renzler, M., Pfeifhofer, A., & Ußmüller, T. (2020). Evolutionary Optimization of Asymmetrical Pixelated Antennas Employing Shifted Cross Shaped Elements for UHF RFID. Electronics, 9(11), 1856. https://doi.org/10.3390/electronics9111856